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Neither a purely deterministic rotary nanomotor nor a purely orientational diffuser exhibits long-
term translational motion, but coupling rotation to orientational diffusion yields translational dif-
fusion. We demonstrate that this effective translational diffusion can easily dominate the ordinary
thermal translational diffusion for experimentally relevant nanomotors, and that this effective dif-
fusion is chiral. Unpowered chiral particles do not exhibit chiral diffusion, but a nanorotor has both
handedness and an instantaneous direction of powered motion, thus – unlike an unpowered particle
– its diffusional motion can distinguish left from right.
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1. INTRODUCTION

The development of artificial nanomotors that move
autonomously by transducing chemical energy to me-
chanical motion has defined a fascinating new field in
colloid science [1–5]. Many models explain determinis-
tic motion of various linear nanomotors [5–9]. However,
the significance of thermal fluctuations at the nanoscale
raises important questions about how deterministic and
stochastic dynamics interact for powered objects [10, 11].
Whereas translational and orientational Brownian diffu-
sion are weakly coupled for ordinary unpowered colloidal
nanorods – even under external driving – for nanomotors
the direction of powered motion can be strongly influ-
enced by a stochastic orientation. This interplay is of
fundamental interest, but is also important to the inter-
pretation of experimental data and designing motors.

Previously, Lauga [12] (see also [13]) considered cou-
pling of orientational diffusion to powered linear motion
in three dimensions with a cyclic speed schedule, and van
Teeffelen and Löwen [14] analyzed a planar rotor. Here
we demonstrate that the coupling of orientational dif-
fusion with powered rotation in a nanorotor creates an
effective translational diffusion with medium-term chiral
bias: the motor is not equally likely to wander left or
right from its position during one period; chiral symme-
try of traditional diffusion is broken.

Imagine a non-diffusing powered rotor and an unpow-
ered purely-orientational diffuser. Neither exhibits trans-
lational diffusion. However, when a powered nanorotor
experiences orientational diffusion, that stochastic mo-
tion deforms its deterministic circular path (see Fig 1),
resulting in an effective translational diffusion at long
times. A nanorotor near a flat substrate (the typical ex-
perimental geometry) moves in a plane at speed v in a
direction which rotates at a deterministic constant an-
gular velocity ω and wanders stochastically with orien-
tational diffusion coefficient Do. For a linear nanomotor
(i.e. with ω = 0), the induced effective diffusion repre-
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sents a degradation of the ability to get from one place
to another, but for a nanorotor the effect is opposite. We
derive the effective diffusion coefficient Deff in terms of
the fundamental parameters Do, v and ω, similar to the
results given in [11, 15, 16]. Deff is an asymptotic prop-
erty. We extend the analysis to short-time correlations
through stroboscopic sampling of the motion at integer
multiples of the period. Under this sampling, the purely
deterministic rotary motion is invisible, but a chirality
manifests: the expected displacement after one period
has a chirality-dependent component that can be compa-
rable to the orbit radius. A powered nanorotor has both
a handedness and an instantaneous direction of motion,
thus its diffusional motion can distinguish left from right.

As illustrated in Fig. 1, the particle follows an instan-
taneous circular trajectory of radius R = v/ω about an
instantaneous center c(t). The particle’s lab-frame posi-
tion x(t) and its location p(t) in the moving frame with
origin at c(t) are related by x(t) = c(t) + p(t). In the
absence of orientational Brownian motion (Do = 0), c
is constant. With two-dimensional vectors represented
as complex numbers, the particle’s location with respect
to c(t) is p(t) = Ru(t) = Reiθ(t) and its instantaneous
velocity is v = ivu. The change in position x for an
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FIG. 1. At time t, the nanorotor orbits at velocity v(t) about
a guiding center c(t), with position p(t) relative to that center.
Orientational diffusion deforms the trajectory. One cycle T
later, the motor is instantaneously on a circular trajectory
about a new center c(t+ T ). The velocity and motor axis do
not necessarily align.
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FIG. 2. Dimensionless mean square increments across one
period of the rotation, 〈|ξ(T ) − ξ(0)|2〉/4|ω|R2T , for the
center of mass ξ = x (dotted) and the center of rotation
ξ = c (dashed). The gray curve shows the t → ∞ com-
mon asymptotic behavior of x and c, i.e. Deff/|ω|R2 =
limn→∞〈|ξ(nT ) − ξ(0)|2〉/4|ω|R2nT as the effective transla-
tional diffusion coefficient. The deviations above the asymp-
tote indicate anticorrelations between changes of ξ across pe-
riods, as depicted in Fig. 3.

infinitesimal time dt is

dx = ivu dt. (1)

The particle orientation evolves according to the stochas-
tic differential equation dθ = ω dt + σ dW where σ =√

2Do and W (t) is a normalized Wiener process: W (t)−
W (t′) is normally distributed with mean zero and vari-
ance |t−t′|, and increments for non-overlapping intervals
are independent. The orientation, central to later calcu-
lations, is

u(t) = ei[ωt+σW (t)]. (2)

The velocity autocorrelation function, measuring how
rapidly the motor forgets its orientation, is the same
as the u autocorrelation function up to a constant fac-
tor v2. It follows from Eq. (2) and 〈eiσ(W (t)−W (t′))〉 =

e−σ
2|t−t′|/2 that

Cuu∗(t) := 〈u(t)u(0)∗〉 = eiωt−Do|t|, (3)

where the orientational correlation time is D−1
o = 2/σ2.

The angled brackets average over both the initial orien-
tation u(0) and perturbation realization W . The ori-
entation becomes scrambled after about (2π|τ |)−1 or-
bits, where |τ | is the ratio of the deterministic time
scale |ω|−1 to the orientation correlation time D−1

o , i.e.
τ = ω−1/D−1

o = σ2/2ω. The parameters ω, v, and τ are
all signed quantities to allow for both chiralities. The loss
of orientational correlation drives long-term diffusive be-
havior for both the particle position x and the guiding
center c.

The effective diffusion coefficient does not depend on
the initial conditions on u, since they are forgotten expo-
nentially fast. Using the Green-Kubo formula in two di-
mensions combined with Eqs. (1) and (3) leads to Deff =

limt→∞ 1
2

∫ t
0
〈~v(t) · ~v(0)〉 dt = v2<

{∫∞
0
dt′ Cuu∗(t′)

}
where < extracts the real part; hence,

Deff =
v2

2ω

(
τ

1 + τ2

)
. (4)

A one-dimensional diffusional process – orientational
diffusion in a fixed plane – generates two-dimensional
translational diffusion through coupling to powered mo-
tion. The effective diffusion coefficient Deff, represented
by the thick solid gray curve in Fig. 2, varies non-
monotonically with Do and attains a peak value of
v2/4|ω| for |τ | = 1, when the deterministic and stochas-
tic time scales are equal. Both x and c have the same
effective diffusion coefficient, owing to the constraint
|c − x| = R. However, their motions differ markedly
across one period T = 2π|ω|−1 of the deterministic rota-
tion: 〈|ξ(T )−ξ(0)|2〉/T for ξ = x and ξ = c both deviate
from 4Deff, but in different regimes, as shown in Fig. 2.

To develop our intuition, consider the limiting regimes
of fast and slow orientational diffusion. For |τ | � 1,
the particle forgets its orientation so rapidly that the
deterministic rotational motion is irrelevant. It might
as well be moving straight at speed v, except that its
direction changes after time D−1

o . Thus, it follows a
random walk with steps of length v/Do and duration
D−1

o . The diffusion coefficient Deff ≈ v2/2Do is pro-
portional to (step-length)2/(step-duration) and indepen-
dent of ω. In this regime, x barely moves and c diffuses
rapidly on a circle centered at x, which explains why
〈|x(T ) − x(0)|2〉/T is very close to 4Deff when |τ | � 1,
whereas 〈|c(T ) − c(0)|2〉/T is much larger. Motion on a
circle cannot contribute to long-term diffusion.

When the stochastic time scale is much larger than the
deterministic time scale (|τ | � 1), Deff ≈ v2Do/2ω

2 is
linear in Do. In this regime, the circular orbit is only
slightly perturbed. In a short time interval ∆t, the ran-
dom change in orientation (∼ √Do∆t) leads to a random
shift |∆c| ∼ R√Do∆t (recall that c is not moved by the
deterministic orientation change). The random walk for-
mula gives a diffusion coefficient for c proportional to
R2Do = v2Do/ω

2. The random motion of c is always on
a circle about the position x, but in this regime c changes
only a little before u has changed significantly, causing
the curvature of the motion about x to disappear. There-
fore, this motion is nearly along a time-dependent axis,
and 〈|c(T )− c(0)|2〉/T closely follows 4Deff.

Is this effective diffusion a significant contributor to
the overall translational diffusion of real nanorotors?
For a typical “slow” rotor [17], ωslow ≈ 2.3 rad/s and
Dslow

o ≈ 0.1 rad2/s, while for a typical “fast” rotor [18],
ωfast ≈ 30 rad/s and Dfast

o ≈ 0.5 rad2/s. Both nanoro-
tors operate in the regime of weak orientational diffu-
sion, |τ | ≡ |ω|−1/D−1

o � 1. The linear velocity of the
slow nanomotor is vslow ∼ 10µm/s [19], which yields
an effective diffusion coefficient of Dslow

eff ' 0.9 µm2/s.
For the fast rotor, vfast ∼ 30µm/s [20] and Dfast

eff '
0.2 µm2/s. The passive translational diffusion coefficient
for a similarly-sized (2 µm long) unpowered nanorod in
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water is about Dt = 0.4 µm2/s [19]. For the slow rotor,
the effective diffusion is twice as strong as passive transla-
tional diffusion. More generally, when orientational dif-
fusion is weak (i.e. τ � 1), Deff scales linearly in Do.
Since Dt ∝ L−1 but Do ∝ L−3, the ratio of the effective
roto-Brownian diffusion to passive translational diffusion
scales as L−2. Thus, for typical nanorotors synthesized to
date, effective diffusion can dominate at sub-µm scales.

Over long times compared to the period of rotation and
the orientational correlation time, the effects of chirality
wash out, since the phase of the nanorotor in its orbit
randomizes. However, the effective diffusion over shorter
times can strongly manifest chirality. The short-time dif-
fusion can be seen most clearly by examining the motion
stroboscopically at multiples of T = 2πω−1, the period
of the deterministic rotation. This sampling makes the
deterministic part of the motion invisible.

The displacement expectations for short times de-
pends on the time interval of the measurement and the
initial conditions. We denote expectations under spe-
cific initial conditions c(0) = 0, u(0) = eiθ0 by Eθ0 [·],
and the expectation under a uniform distribution of θ0

(still with c(0) = 0) by 〈·〉 = 1
2π

∫
Eθ0 [·] dθ0. Passage

from Eθ0 to 〈·〉 is straightforward, as is the reverse.
For example, for a set of variables ξ, · · · , ζ generically
denoting any of c,u, or x (not necessarily different),
E0 can be obtained from 〈·〉 using E0 [ξ(t) · · · ζ(t′)∗] =
〈ξ(t)u(0)∗ · · · ζ(t′)∗u(0)〉. Passage from E0 to Eθ0
is then provided by the covariance of Eθ0 , that
is, Eθ0 [ξ(t) · · · ζ(t′)∗] = E0 [ξ(t) · · · ζ(t′)∗] e−i(n−n)θ0 ,
where n (n) denotes the number of unconjugated
(complex conjugated) variables among ξ(t), . . . , ζ(t′)∗.
Thus, 〈ξ(t) · · · ζ(t′)∗〉 vanishes unless n = n since∫ 2π

0
e−i(n−n)θ0dθ0 = δnn. The expectation 〈·〉 has two

technical advantages over Eθ[·]; it is time-translation
invariant, assuming we only take differences of c’s
or x’s, and it has the simple time-reversal property
〈ξ(t) · · · ζ(t′)∗〉 = 〈ξ(−t)∗ · · · ζ(−t′)〉.

For brevity, we label the time argument along the stro-
boscopic sampling sequence at multiples of T as an inte-
ger subscript, ξj : = ξ(jT ), and denote increments over
one period as ∆ξj := ξ((j + 1)T ) − ξ(jT ). The rotated

increments ∆̂ξj : = ∆ξj u
∗
j are of great value as they

are independent and identically distributed. Therefore,

∆̂ξj ’s are identically distributed and ∆̂ξj is independent

of ∆̂ζk for j 6= k. Thus, for n ≥ 1, we have the reduction

∆ξ∗0∆ζn = ∆ξ∗0 un ∆̂ζn = (∆ξ∗0 u1)(R1 · · ·Rn−1)∆̂ζn
into independent factors, where Rj := uj+1u

∗
j is the ro-

tation of the orientation from time jT to (j+1)T . Taking
an expectation yields

〈∆ξ∗0∆ζn〉 = 〈∆ξ∗0 u1〉Ĉn−1〈∆̂ζn〉 , (5)

where Ĉ : = 〈Rj〉 = Cuu∗(T ) = e−DoT = e−2π|τ |. Using
the time-reversal (TR) and time-translation (TT) invari-
ances of 〈·〉, the first factor on the right-hand side of

Eq. (5) can be written as 〈∆ξ∗0 u1〉 TR
= 〈(−∆ξ−1)u∗−1〉

TT
=
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FIG. 3. One-period correllators 〈∆~ξ0 ·∆~ξ1〉 = <〈∆ξ0∆ξ∗1〉 for
ξ = u (solid), x/R (dotted), and c/R (dashed). The mild
anticorrelation for x/R at |τ | . 1 and strong anticorrelation
for c/R at |τ | � 1 arise from deviations (from the asymptotic
behavior) of the mean square increments across one period.

−〈∆ξ0 u
∗
0〉 = −E0[∆ξ0]. Defining the one-period-

increment expectation of ξ as

Fξ := E0[∆ξ0] = 〈∆ξ0 u
∗
0〉 ≡ 〈∆̂ξ0〉, (6)

we have

〈∆ξ∗j∆ζj+n〉 = −FξFζĈn−1, n ≥ 1. (7)

This shows more explicitly how the decays of all cor-
relations are controlled by that of the orientation given
in Eqs. (3). The one-period-increment expectations, Fξ,
are easy to obtain; Fu, that of the orientation u with re-
spect to the instantaneous center c, follows from Eq. (3),

Fx = iv
∫ T

0
Cuu∗(t) dt for the motor position x, and for

the center c, Fc follows from Fc +RFu = Fx:

Fu = Ĉ − 1, Fx =
RFu

1 + iτ
, Fc =

−iτRFu
1 + iτ

. (8)

Covariances among all of the basic variables take the form

〈(ξn − ξ0)∗(ζn − ζ0)〉 =

n−1∑
j=0

n−1∑
k=0

〈∆ξ∗j∆ζk〉 (9)

=

[
〈∆ξ∗0∆ζ0〉+2

<{FξFζ}
Fu

]
n+ 2(1− Ĉn)

<{FξFζ}
F 2
u

.

Note that the coefficient of n in Eq. (9) must be 4TDeff

when ζ ∈ {c,x}, and zero if either ξ or ζ is u. Thus,
〈∆u∗0∆ζ0〉 = −2<{Fζ}, across a single increment for
ζ ∈ {u, c,x}. Similarly, for both ξ, ζ ∈ {c,x}, we obtain
〈∆ξ∗0∆ζ0〉 = 4TDeff − 2<{FξFζ} /Fu, combined with
Eq. (9) yields

〈(ξn−ξ0)∗(ζn−ζ0)〉
nT

=4Deff+
2(1− Ĉn)

nT

<{FξFζ}
F 2
u

. (10)

The first term on the right-hand side represents the dif-
fusive contribution, and dominates the second term for
long times.
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FIG. 4. A potential V = Cd

∑3
i=1 ci cos(ki · x + δi) im-

parts an additional instantaneous velocity −∇V/Cd onto the
nanorotor, where Cd is the drag coefficient. For c1 = 0.3Rv,
c2 = c3 = 0.18Rv, δ1 = δ2 = 0, δ3 = 1.3 rad (and wavevec-
tors of magnitude 3/R oriented as shown), V is chiral. The
plot shows tracks over 10000 nominal periods for orienta-
tional diffusers with |τ | = 0.5: dark red for clockwise (

⊗
)

and dark blue for counter-clockwise (
⊙

). Tracks for purely-
translational diffusers with the same (potential-free) effective
diffusion coefficient are shown in light red and light blue.

Although one might expect correlations between suc-
cessive increments to vanish in the limit of strong orien-
tational diffusion (|τ | → ∞), they do not. The plots
of <〈∆c∗0∆c1〉/R2, <〈∆x∗0∆x1〉/R2, and <〈∆u∗0∆u1〉
shown in Fig. 3 reveal a strong anticorrelation between
successive increments of u and c. Surprisingly, it is
strongest in the limit |τ | → ∞ for which the motion is
most disordered. This phenomenon, like the gap between
the dotted (x) and dashed (c) curves in Fig. 2, is related
to the fact that u is trapped on a circle, |∑n

i=0 ∆ui| ≤ 2.
Hence, when the individual summands become large at
large |τ |, there must be strong anticorrelations.

Since stroboscopic sampling makes the deterministic
rotary motion invisible, one might naively expect that it
would not display any chirality. But it does, and it gen-

erates a chiral diffusion. Since ξ∗ζ = ~ξ · ~ζ + iẑ · (~ξ × ~ζ)

(where ~ξ is the vector counterpart of the complex num-
ber ξ, and ẑ defines the plane of motion), the chirality
manifests itself through the imaginary parts of correla-

tors, ẑ · 〈~ξ × ~ζ〉 = ={〈ξ∗ζ〉}. For example, according to
equations (8)

〈∆x0 u
∗
0〉

RFu
=

1− iτ
1 + τ2

;
〈∆c0 u

∗
0〉

RFu
= − (τ + i)τ

1 + τ2
. (11)

If the chirality τ is positive (from the perspective of an
observer sitting at the nanorotor’s initial position x0 = R
and facing in the direction of initial velocity v0 = iv),
then the expected position x(T ) of the nanoparticle af-
ter one period is to the left and forward while the ex-
pectation of the instantaneous center c(T ) is to the right
and forward. To our knowledge, this is the first deriva-
tion of a chiral stochastic diffusion. Experiments that
seemed to show an effective attraction between counter-
rotating nanorotors [18] will need to be reassessed to de-
termine whether the observed “attraction” was an ar-
tifact of chiral diffusion. Furthermore, from Eq. (7),

we obtain ẑ · 〈∆~xj ×∆~xj+n〉 = 2τR2F 2
u Ĉ

n−1/(1 + τ2)2.
The positive proportionality to τ shows that the stro-
boscopically sampled path of the motor position has the
same chirality as the deterministic motion. The distribu-
tion mean of ξn − ξ0 is chirality-dependent. Generally,

〈(ξn − ξ0)u∗0〉
n→∞−−−−→ −Fξ/Fu gives 〈(xn − x0)u∗0〉 →

−R/(1 + iτ) and 〈(cn − c0)u∗0〉 → iτR/(1 + iτ). Again,
the dependence on the sign of τ reflects chirality. The
stroboscopically sampled rotor position xn is not Marko-
vian: a hidden orientational variable (un) provides the
memory for xn to behave as a chiral persistent random
walk with a surprising short-term drift that must be
borne in mind during experimental analysis.

Chirality of motion can have particularly dramatic im-
pact in the presence of a chiral environment. For exam-
ple, consider a population of rotary nanomotors within
a chiral periodic potential, moving according to over-
damped dynamics (i.e. at low Reynolds number). Such a
potential could be created by e.g. a patterned substrate
or an optical lattice. Our simulations demonstrate that
this scenario generically produces a long-term chirality-
dependent drift velocity as illustrated in Fig. 4.

Powered nanoscale motors are now a laboratory reality.
Powered rotational motion combined with orientational
diffusion produce an effective translational diffusion with
an unusual chiral character. Recent advances in mecha-
nisms for inducing rotary motion at the nanoscale [21, 22]
also suggest possible extensions of these phenomena to
smaller length-scales, particularly when the dynamics are
compatible with orientational fluctuations and symmetry
is broken to obtain orbital motions.

This work was supported by the NSF under grant
DMR-0820404 through the Penn State Center for
Nanoscale Science.
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