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We provide a formulation of the local induction approximation (LIA) for the motion of a vortex
filament in the Cartesian reference frame (the extrinsic coordinate system) which allows for scaling
of the reference coordinate. For general monotone scalings of the reference coordinate, we derive
an equation for the planar solution to the derivative nonlinear Schrödinger equation governing the
LIA. We proceed to solve this equation perturbatively in small amplitude through an application of
multiple scales analysis, which allows for accurate computation of the period of the planar vortex
filament. The perturbation result is shown to agree strongly with numerical simulations, and we
also relate this solution back to the solution obtained in the arclength reference frame (the intrinsic
coordinate system). Finally, we discuss non-monotone coordinate scalings and their application
for finding self-intersections of vortex filaments. These self-intersecting vortex filaments are likely
unstable and collapse into other structures or dissipate completely.
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I. INTRODUCTION

The self-induced velocity of a vortex filament has been
described by the local induction approximation (LIA)
v = γκt×n (Da Rios [1], Arms and Hama [2], Ricca [3]),
where t and n are unit tangent and unit normal vectors
to the vortex filament, respectively, κ is the curvature
and γ is the strength of the vortex filament. A number
of methods have been employed to study the LIA. Exact
stationary solutions to the LIA in extrinsic coordinate
space have been found by Kida [4] in the case of torus
knots, and these solutions were given in terms of ellip-
tic integrals. By re-writing the LIA in cylindrical-polar
coordinates, Ricca also obtained torus knot solutions -
which were asymptotically equivalent to Kida’s solutions
- in explicit analytic form and derived a stability crite-
rion [5]. Static solutions to the LIA have also been found
by Lipniacki [6]. Physical invariants obtained under LIA
were discussed in Ricca [7].

The fully nonlinear Schrödinger (NLS) equation gov-
erning the self-induced motion of a vortex filament in
the LIA was previously derived in Van Gorder [8, 9] in
the Cartesian coordinate space. Dmitriyev [10] consid-
ered a linear approximation to the LIA, while Shiva-
moggi and van Heijst [11] considered a more sophisti-
cated approximation, obtaining a cubic derivative NLS
equation. The full nonlinear equation was obtained in
[8]. Some existence results for space-periodic planar vor-
tex filaments are given in a forthcoming work. In par-
ticular, it was shown that there exists a maximal ampli-
tude beyond which space-periodic planar vortex filament
solutions do not exist. We should remark that the afore-
mentioned studies considered the Cartesian form of the
LIA. Umeki [12] obtained an alternate formulation, ap-
plying an arclength-based coordinate system as opposed
to a Cartesian coordinate system. While the Cartesian

and arc-length formulations are obtained through differ-
ent derivations, both formulations are equivalent to the
LIA. Van Gorder [13] obtained exact stationary solutions
for this model in terms of elliptic functions.

In the present paper, we provide a formulation of the
local induction approximation (LIA) for the motion of
a vortex filament in the Cartesian reference frame (the
extrinsic coordinate system) which allows for scaling of
the reference coordinate. For general monotone scalings
of the reference coordinate, we derive an equation for the
planar solution to the derivative nonlinear Schrödinger
equation governing the LIA. We proceed to solve this
equation perturbatively in small amplitude through an
application of multiple scales analysis, which allows for
accurate computation of the period of the planar vor-
tex filament. The perturbation result is shown to agree
strongly with numerical simulations, and we also relate
this solution back to the solution obtained in the ar-
clength reference frame (the intrinsic coordinate system).
Finally, we discuss non-monotone coordinate scalings and
their application for finding self-intersections of vortex
filaments. These self-intersecting vortex filaments are
unstable and collapse into other structures or dissipate
completely.

II. FORMULATION AND SCALING THE LIA

Alternate scaling of the LIA can be useful both for
physical analysis and for computational reasons. For in-
stance, the infinite domain due to x ∈ R can be mapped
into a closed and bounded interval, which can assist with
analytical and numerical analysis. We first determine the
influence of such transforms. Let us consider the scaled
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position vector

r = f(x)ix + y(x, t)iy + z(x, t)iz , (1)

where f(x) denotes a general scaling of the x-coordinate.
This is one of two possible equivalent such scalings, with
the other being

r = xix + y(f−1(x), t)iy + z(f−1(x), t)iz (2)

provided f−1, the inverse map of f , exists. For this rea-
son, we will often be interested in monotone scalings f so
that the inversion f−1 is well-defined. We chose to work
with (1) as opposed to (2) since it gives more computa-
tionally tractable results. From (1), we compute

t =
dr

ds
=
dr

dx

dx

ds
= (f ′, yx, zx)

dx

ds

and v = (0, yt, zt) , where

dx

ds
=

1
√

f ′2 + y2x + z2x

.

We then have κn = dt
ds = dt

dx
dx
ds , giving

κn =
[

f ′′(y2x + z2x)− f ′(yxyxx + zxzxx)
] dx

ds
ix

+
[

yxxzx − yxzxzxx + yxxf
′2 − f ′f ′′yx

] dx

ds
iy

+
[

zxxy
2
x − zxyxyxx + zxxf

′2 − f ′f ′′zx

] dx

ds
iz ,

so that v = γκt× n = γt× (κn) becomes

v = γ(yxzxx − zxyxx)

(

dx

ds

)3

ix

− γ(f ′zxx − f ′′zx)

(

dx

ds

)3

iy

+ γ(f ′yxx − f ′′yx)

(

dx

ds

)3

iz .

Matching the two representation of v, we obtain the con-
straint yxzxx − zxyxx = 0 and the real-valued system

yt = −γ(f ′zxx − f ′′zx)

(

dx

ds

)3

,

zt = γ(f ′yxx − f ′′yx)

(

dx

ds

)3

.

Introducing the complex potential function

Φ(x, t) = y(x, t) + iz(x, t) ,

the PDE system reduces to

iΦt + γ (f ′Φxx − f ′′Φx)
(

f ′2 + |Φx|2
)−3/2

= 0 . (3)

Note that (3) is a complicated nonlinear Schrödinger
equation with variable coefficients (f ′ and f ′′ in gen-
eral depend on x). However, with the scaling Φ(x, t) =
Ψ(µ, t) where µ = f(x), we may reduce (3) to

iΨt + γ
(

1 + |Ψµ|2
)−3/2

Ψµµ = 0 , (4)

for non-degenerate f . Hence, (3) yields solutions of the
LIA. The transformed equation (4) matches exactly that
studied in [8, 9].

The form of (3) (and hence (4)) is U(1)-invariant,
just like many of it’s derivative NLS relatives, hence it
makes sense to consider stationary solutions of the form
Φ(x, t) = e−iγtφ(x) to (3) (and Ψ(µ, t) = e−iγtψ(µ) to
(4)).

To summarize, the permitted scalings are that for
which:
(i) the LIA is invariant under monotone scalings of the x
coordinate;
(ii) the LIA is invariant under scalings of the form e−iγt.

Together, these conditions guarantee the existence
of planar vortex filaments described by Ψ(x, t) =
e−iγtψ(µ(x)). In the extrinsic three-dimensional Carte-
sian frame, the position of the planar vortex filament at
any time t is then given by

r = µ(x)ix + cos(γt)ψ(µ(x))iy − sin(γt)ψ(µ(x))iz , (5)

To better visualize such vortex filaments, see Fig. 1,
where we consider a periodic function ψ(µ(x)). The vor-
tex filament rotates about the x-axis as time increases.
So, by determining ψ(µ(x)), we determine the spatial
structure of the planar vortex filament completely, the
inclusion of a factor e−iγt providing the motion of such
a filament in time.

III. ACCURATE PERTURBATION APPROACH

FOR THE STATIONARY SOLUTION

Let us consider the stationary solution Ψ(µ, t) =
Ae−iγtψ(µ) to the scaled equation (4), where we let the
parameter A > 0 hold the amplitude and normalize
maxψ = 1. Then, we obtain the ordinary differential
equation

ψ +
(

1 +A2ψ′2
)−3/2

ψ′′ = 0 . (6)

The simplest nonlinear approximation to equation takes
the form

ψ +

(

1− 3

2
A2ψ′2

)

ψ′′ = 0 . (7)
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FIG. 1: Plot of the spatial geometry. The curve represents the
planar vortex filament described by Φ(x, t) = e−iγtφ(µ(x))
for periodic ψ(µ(x)). As time increases, the structure rotates
about the x-axis.

FIG. 2: (Color online) Plot of the perturbation solutions
(13) for ψ(x) obtained through the method of multiple scales
against numerical solutions obtained via the Runge-Kutta-
Fehlberg method (RKF45) [16]. The valid region for the ap-
proximation (7) is A < 1/

√
3 ≈ 0.577, and in this region the

results agree nicely. For larger A, the agreement breaks down,
as the solutions fall out of resonance with the true solutions.

As discussed in a forthcoming work, (7) has periodic

real-valued solutions for A < 1/
√
3 ≈ 0.577. For small A,

(7) is a good approximation to (6). It then makes sense
to consider a perturbation solution, in terms of small pa-
rameter A2. However, standard perturbation will yield
inaccurate solutions which fall out of resonance with the
true solution due to the appearance of secular terms.
Hence, we shall be interested in applying the method
of multiple scales to (7). To proceed, assume there exists
parameter δ(A2) such that d/dµ = δ(A2)(d/dη) where

η = δ(A2)µ. Then, we consider the perturbation solu-

tion ψ(µ) = ψ̂(η;A2) = ψ0(η;A
2)+A2ψ1(η;A

2)+O(A4),
δ(A2) = δ0 +A2δ1 +O(A4). Equation (7) becomes

ψ̂ + δ2
(

1− 3

2
A2δ2ψ̂2

η

)

ψ̂ηη = 0 , (8)

giving

δ20ψ0,ηη + ψ0 = 0 , ψ0(0) = 1 , ψ0,η(0) = 0 , (9)

δ20ψ1,ηη + ψ1 =
3

2
δ40ψ

2
0,η(ψ0)ηη − 2δ0δ1ψ0,ηη ,

ψ1(0) = 0 = (ψ1)η(0) .
(10)

The quantities at η = 0 follow from the fact that we de-
sire space-periodic ψ with amplitude A. As we assume a
solution Ψ = Aψ exp(−iγt), it follows that the amplitude
of ψ must be 1 (then the amplitude of Ψ is A). Without
loss of generality, we take η = 0 to correspond to a peak
(this can be translated by η− > η′+η0 if need be). Thus,
ψη(x) = 0. Assuming ψ = ψ0 + A2ψ1 + · · · , it follows
that ψ0(0) = 1, ψ0,η(0) = 0, ψ1(0) = 1 and ψ1,η(0) = 0.

Normalizing to get 2π-periodic solutions, we pick δ0 =
1, obtaining ψ0(η) = cos(η). From here, we have

(ψ1)ηη + ψ1 =

(

2δ1 −
3

8

)

cos(η) +
3

8
cos(3η) , (11)

so picking δ1 = 3/16 prevents any secular terms. We
then obtain

ψ1(η) =
3

64
(cos(η) − cos(3η)) =

3

16
sin2(η) cos(η) .

(12)
Therefore, we have obtained the perturbation solution

ψ(µ) = cos

([

1 +
3

16
A2

]

µ

)

+
3

16
A2 sin2

([

1 +
3

16
A2

]

µ

)

cos

([

1 +
3

16
A2

]

µ

)

.

(13)
Consider the standard case µ(x) = x. From Eq. (13),
we see that the approximate period of small-amplitude
solutions satisfies

T (A) ≈ 2π

[

1 +
3

16
A2

]−1

≈ 2π− 3π

8
A2 +

9π

128
A4 . (14)

In order to demonstrate the agreement between the so-
lution (13) and the true solution, we plot the numeri-
cal solution along with the perturbation solution in Fig.
2. Since the perturbation and numerical results agree so
nicely, the difference between the two is not easily ascer-
tainable, so we plot their errors separately, in Fig. 3.



4

FIG. 3: (Color online) Plot of the absolute error between
the perturbation solutions (13) for ψ(x) obtained through
the method of multiple scales and the numerical solutions ob-
tained via the Runge-Kutta-Fehlberg method (RKF45) [16].
The agreement is strong for small amplitude solutions, while
the agreement gradually breaks down for larger amplitudes.

IV. CONNECTION WITH ARCLENGTH

SOLUTION AND IMPLICIT SOLUTION

In this section, take µ(x) = x, so that Φ(x, t) = Ψ(µ, t).
In Van Gorder [13], an exact stationary solution for the
arclength formulation of the LIA was given by

v(s, t) = e−itq(s) = Be−itsn

(

s− ŝ√
1−B2

, Bi

)

, (15)

where B is the amplitude (in the arclength frame), ŝ is a
constant, and s is the arclength element. It was shown in
[12] that the Cartesian quantity Φ(x, t) and the arclength
quantity v(s, t) are related by

|Φx|2 =
2|v|2

(1− |v|2)2
,

dx

ds
=

1− |v|2
1 + |v|2 . (16)

Noting that |Φx| = φ′(x) and |v| = q(s), we have that

φ′
2
= 2q2(1− q2)−2. Separating variables, and using the

form of dx/ds given in (16), we obtain

φ(x) =
√
2

∫ s(x)

ŝ

Bsn
(

s−ŝ√
1−B2

, Bi
)

1 +B2sn2
(

s−ŝ√
1−B2

, Bi
)ds . (17)

Performing the integration exactly is not possible (in
closed form). And then, one must still contend with the
arclength variable s(x). So, while this formula offers a
connection between the exact arclength solution to the
planar vortex filament problem and that of the Cartesian

FIG. 4: (Color online) Plot of the x-period T (A) for the
stationary solution x-dependence function φ(x). In addition
to the exact value (22), we plot two approximate quantities,
namely the approximation found through multiple scales (14)
and the asymptotic approximation (25) to the true result (22).
We consider A ∈ [0,

√
2].

problem, it is not very practical. We can compare this
formula to the direct solution for φ(x). A first integral
of (6) (when µ = x and hence ψ(µ) = φ(x)) is

φ2 − 2

A2
√

1 +A2φ′2
= −E . (18)

If φ(0) = 1, φ′(0) = 0, then E = (2 − A2)/A2 > 0 since

|A| <
√
2 for any periodic solution. Solving (18) for φ′

and separating variables as needed,

x = ±
∫ 1

φ

A3(ζ2 + E)
√

4−A4(ζ2 + E)2
dζ . (19)

Changing variables to ξ = ζ2 + E ,

x = ±A
3

2

∫ 2/A2

φ2+E

ξdξ
√

(ξ − E)(2−A2ξ)(2 +A2ξ)
. (20)

Eq. (20) is an implicit solution which is not easily in-
verted. However, we may still extract information out of
this relation more easily than is the case when dealing
with (17). In the previous section, we approximated the
period of a space-periodic planar vortex filament using
perturbation. We shall now be interested in comparing
that approximation with a true exact relation between
the period T and amplitude A for a space-periodic solu-
tion to the vortex filament problem.

If we consider the phase portrait, a quarter-period
T (A)/4 occurs when φ goes from φ = 0 to φ = 1, so
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FIG. 5: (Color online) We demonstrate the relative error be-
tween the approximations to the period T (A) and the true
solution (22). Both are extremely accurate for small A, and
gradually lose accuracy for larger A, though the asymptotic
approximation (25) outperforms the multiple scale approx-
imation (14) nicely. That said, in it’s region of validity
(A < 1/

√
3), the multiple scale approximation (14) is rather

accurate for only a first order perturbation result.

from Eq. (20) we obtain the exact yet implicit relation

T (A) = 2A3

∫ 2/A2

E

ξdξ
√

(ξ − E)(2 −A2ξ)(2 +A2ξ)
. (21)

Now, in the valid region 0 < A <
√
2, the definite integral

(21) can be evaluated in terms of elliptic integrals to give
the relation

T (A) = 8E (A/2)− 4K (A/2) , (22)

where K is the complete elliptic integral of the first kind
and E is the complete elliptic integral of the second kind.
Recall that the period of the solutions in the arclength
representation [13], the period of the space-periodic solu-
tion was a bit simpler, involving only the elliptic integral
K.

In order to extract more information from Eq. (22),
we turn to the small-θ asymptotics

K(θ) =
π

2

(

1 +
1

4

θ2

1− θ2
− 1

8

θ4

1− θ2

)

, (23)

E(θ) =
π

2

(

1− 1

4
θ2 − 3

64
θ4
)

. (24)

Using (23)-(24) in (22), and approximating where

needed,

T (A) ≈ 2π − 3π

8
A2 − 7π

256
A4 . (25)

Note that the approximation (25) to the period T (A)
obtained through the fully nonlinear relation (20) for φ
is in extremely good agreement with the approximation
obtained through the method of multiple scales (14) for
the period T (A). In Fig. 4, we plot the exact period
T (A) found in (22), along with the approximations shown
in (14) and (25). In Fig. 5, we plot the relative error
between the approximations and the exact values.

V. NON-MONOTONE SPACE SCALES AND

NUMERICAL SELF-INTERSECTION OF

FILAMENTS

Up to this point we have considered only monotone
scalings f(x) in (1), since these permit well-behaved so-
lutions to (4). As we’ve shown, such solutions can be
studied analytically, and in some cases exactly. How-
ever, in situations where f(x) is non-monotone, we may
still assume a stationary solution of the form Φ(x, t) =
e−iγtφ(x). While ψ(µ) from (6) was defined on the real µ-
axis in the case of monotone µ = f(x), for non-monotone
f(x) it is possible that the domain of φ(x) will be re-
stricted. Assuming a solution Φ(x, t) = e−iγtφ(x), (3)
reduces to

φ+
f ′φ′′ − f ′′φ′

(

f ′2 + φ′2
)3/2

= 0 . (26)

The ordinary differential equation (26) is degenerate
when f is not strictly monotone, i.e. if there exists a point
x = a at which f ′(a) = 0. In order for a planar vortex fil-
ament to have self-intersections, there should exist points
x∗ < x∗ such that f(x∗) = f(x∗) and φ(x∗) = φ(x∗), but
for x∗ < x1 < x2 < x∗, f(x1) = f(x2) and φ(x1) = φ(x2)
can not hold simultaneously. If such x1 and x2 exist,
then there can be a loop (if not, then we just have a
constant valued function). Then from (1) we must have
r(x∗, t) = r(x∗, t) for all t ≥ 0. If we have such points
x∗ < x1 < x2 < x∗, there there is at least one loop
formed. This loop is parametrized by θ ∈ [x∗, x

∗] as

r(θ, t) = f(θ)ix + cos(γt)φ(θ)iy − sin(γt)φ(θ)iz , (27)

with the loop closing since r(x∗, t) = r(x∗, t). In Fig. 6
we provide a schematic of the planar loop vortex filament.
Now that we have some conditions on parametrized cross-
ings and loop strictures on a vortex filament, we provide
some examples to show that these structures can actu-
ally occur as solutions to the equation governing a vortex
filament of planar type.
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FIG. 6: Schematic of a self-intersection for the planar vor-
tex filament governed by a solution φ(x) to equation (26).
Self-intersection occurs at spatial coordinate f(x∗) where the
parametrization x attains the value x∗ such that f(x∗) =
f(x∗) and φ(x∗) = φ(x∗). It is necessary for φ(x1) 6= φ(x2)
for all x∗ < x1 < x2 < x∗ in order to have a single loop. For
multiple loops, similar yet more complicated conditions must
hold.

A. Single loop case

As our first numerical case, we consider an example of
a parametrized single loop on a vortex filament. Let us
consider the scaling f(x) = x2/2. We then have

φ+
xφ′′ − φ′

(

x2 + φ′2
)3/2

= 0 . (28)

Unlike in the simpler case of monotone f , here we can-
not easily solve the differential equation (28) analytically.
So, we resort to numerical solutions. It is useful to as-
sign a specific xN as a numerical initial point. Pick-
ing xN = 0 is problematic, since (28) is degenerate at
that point. So, we shall take xN to be small yet posi-
tive. We find that loops are not obtained for many pa-
rameter values. However, they can occur for our choice
of f . Taking, for instance, xN = 0.1, φ(xN ) = 0.6,
φ′(xN ) = −0.1, we find that φ(2.059) = φ(−2.059) while
f(x) = f(−x) by the form of f selected, so we pick
x∗ = −2.059 and x∗ = 2.059. To make sure the loop
is closed, the derivatives should differ at each point. We
calculate φ′(x∗) = 3.589 while φ′(x∗) = 0.857, so the
loop does close. So, in the prescribed geometry, we have
found a closed filament loop. As mentioned above, the
loop must remain closed for all t ≥ 0. The resulting single
loop planar vortex filament is displayed in Fig. 7.

B. Double loop case

Let us now consider a double loop structure on a vortex
filament. Let us take the scaling f(x) = cos(x). We then

FIG. 7: Plot of the numerical solution for a single loop vortex
filament described by φ(x) when φ(x) satisfies (28), φ(0.1) =
0.6, φ′(0.1) = −0.1. The x scaling is f(x) = x2/2. The space
coordinate is parametrized by x ∈ [−2.12, 3.00].

have

φ+
− sin(x)φ′′ + cos(x)φ′

(

sin2(x) + φ′2
)3/2

= 0 . (29)

Taking xN = 0.1, φ(xN ) = 0.5, φ′(xN ) = −0.095, we nu-

merically solve (29). Defining −x[1]∗ = 2.35 = x∗[1], x
[2]
∗ =

−3.89, x∗[2] = 2.395, we have that φ(x
[1]
∗ ) = φ(x∗[1]) and

φ(x
[2]
∗ ) = φ(x∗[2]). Yet, since f(x) = cos(x), we have

f(x
[1]
∗ ) = f(x∗[1]) and f(x

[2]
∗ ) = f(x∗[2]). So, the con-

ditions for crossing are satisfied at spatial coordinates

cos(x
[1]
∗ ) = −0.70 and cos(x

[2]
∗ ) = −0.73. We verify that

the derivatives differ at each point, so the loop structures
close off at the required points. (If the derivatives do not
differ, then the filament my become tangent to itself, and
therefore not close to form a loop, at the required point.)
Hence, we have obtained a double loop structure on a
vortex filament. The resulting double loop planar vortex
filament is displayed in Fig. 8.

One may continue with multi-loop structures, but
these get progressively harder to construct, since one
must guess an appropriate transform of space variable
f(x) and deduce values of the crossings. Further, since
this is done numerically (such analytical constructions
are very challenging), there is a bit of guess work in-
volved in the initial conditions which permit solutions
φ(x) which allow for the crossings.

While these loop structures have been shown to exist
numerically for appropriate scales f and planar compo-
nents φ, in practice one would not expect these structures
to persist. A more physically relevant situation would be
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FIG. 8: Plot of the numerical solution for a double loop vortex
filament described by φ(x) when φ(x) satisfies (29), φ(0.1) =
0.5, φ′(0.1) = −0.095. The x scaling is f(x) = cos(x). The
space coordinate is parametrized by x ∈ [−4.0, 2.5].

for a vortex filament to cross (or come close to crossing,
since physically the vortex core has non-trivial diameter),
a loop structure is monentarily formed, and then the fil-
ament is disrupted. Depending on the ambient fluid, one
could have that (i) the vortex filament sheds the loop,
and realign as a non-crossing well-defined curve; (ii) the
loop collapses, with the filament stretching laterally to
realign as a non-intersecting curve; (iii) the loop dom-
inates, with the “tails” decaying, resulting in a vortex
ring. While the present results point toward either of
those outcomes, note that one would need to retain more
structure than the LIA permits in order to fully model the
dynamics of such vortex filament crossings. In order to
study such complicated dynamics, the full integral form
of the BiotSavart law would be required. At best, the
LIA provides a sort of first order approximation to such
behavior, though it fails to pick up on the complicated
dynamics of these situations, which would lead from a
vortex filament crossing to one of the possible outcomes
listed. That the LIA can pick up on the occurrence of
such interactions, given it’s simplicity relative to the full
Biot-Savart law, is still beneficial.

C. Analytical calculation

While numerical results are easiest for the case of self-
intersections, we remark that analytical approximations
can be obtained, at a cost. Indeed, when f ′(x0) = 0 for
some x0, then (26) degenerates (the coefficient of φ′′ van-
ishes, decreasing the order of the equation). To counter
this, we must have two solution branches, which we
match at x0. However, while the matching preserves con-

FIG. 9: Plot of the analytical solution for a single loop vortex
filament described by φ(x) when φ(x) satisfies (32). The x
scaling is f(x) = x2/2, while the amplitude of the solution is
taken to be A = 0.25. The space coordinate is parametrized
by x ∈ [x∗(A), x

∗(A)] while on the loop.

tinuity, it cannot preserve continuity of the first deriva-
tive (on each side of x0, that is x < x0 and x > x0, the
slope of the branches must differ). Without loss of gen-
erality, take x0 = 0. Then, in order to match a positive
and negative branch, we consider the following piecewise
defined solution:

φ(x) =











−ψ(f(x)) x∗ < x < 0 ,

0 x = 0 ,

ψ(f(x)) 0 < x < x∗ ,

(30)

where ψ(µ) is a solution as was found in the monotone
case and x∗ < 0 < x∗ such that f(x∗) = f(x∗) = T/2
where T is the period of ψ. From the form of (26), if ψ is a
solution, then so is −ψ. Hence, each branch is a solution
(when f ′ 6= 0). This representation is not unique, as
we could have reversed the signs in (30). To get both
functions to match at x = 0, we use a modified form of
(13) where ψ(0) = 0, ψ′(0) = 1 (which gives a sine, as
opposed to cosine, representation). This is equivalent to
translation of the solution in (13) by −π/2 on the x-axis.
So, to lowest order (one can add higher order corrections,
but we suppress them for brevity) (30) becomes

φ(x) =











− sin
([

1 + 3
16A

2
]

f(x)
)

x∗ < x < 0 ,

0 x = 0 ,

sin
([

1 + 3
16A

2
]

f(x)
)

0 < x < x∗ .

(31)

Note that φ(x∗) = −ψ(f(x∗)) = −ψ(T/2) = 0 =
ψ(T/2) = ψ(f(x∗)) = φ(x∗) by construction, so φ(x∗) =
φ(x∗).
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For example, consider again the f(x) = x2/2 case. We
pick

x∗(A) = −

√

2π

[

1 +
3

16
A2

]−1

,

x∗(A) =

√

2π

[

1 +
3

16
A2

]−1

.

We then get (to lowest order)

φ(x) =















− sin
(

[

1 + 3
16A

2
]

x2

2

)

x∗(A) < x < 0 ,

0 x = 0 ,

sin
(

[

1 + 3
16A

2
]

x2

2

)

0 < x < x∗(A) .

(32)

Note that φ(x∗(A)) = − sin(π) = 0 = sin(π) = φ(x∗(A)).
Furthermore, let

x1(A) = −

√

π

[

1 +
3

16
A2

]−1

,

x2(A) =

√

π

[

1 +
3

16
A2

]−1

.

Then φ(x1(A)) = − sin(π/2) = −1 6= 1 = sin(π/2) =
φ(x2(A)). So, there exist x1(A) and x2(A) such that
x∗(A) < x1(A) < x2(A) < x∗(A), φ(x∗(A)) = φ(x∗(A)),
and φ(x1(A)) 6= φ(x2(A)), so a loop is indeed formed.
The solution (32) is shown in Fig. 9, in the case of A =
0.25. The single-loop structure is prominent.

We remark that since φ is continuous on x ∈
[−√

π,
√
π], yet φ′ has a discontinuity at a single point

x = 0, the matched solution is a class of “weak” solution.

VI. CONCLUSIONS

We have derived the fully nonlinear form of the local
induction approximation (LIA) governing the motion of
a vortex filament. Permitting a scaling of the free coor-
dinate along which the vortex is aligned (x, in our case)
permits us to have greater flexibility in computing so-
lutions, both analytically and numerically. Such vortex
solutions are a variation on the theme of planar vortex
filaments, and take the form

r = (f(x), cos(γt)φ(x),− sin(γt)φ(x)) .

The main analytical benefit is that such a solution form
can capture a greater range of physical behaviors (par-
ticularly when the scale is non-monotone), while numer-
ical simulations can be made easier by taking a scale
f : R → I where I is a compact interval (numerical inte-

gration on such a compact interval can often be simpler
than on an unbounded domain such as the real line).

In the case of monotone scalings f(x) = µ, we have
a very elegant way to determine the planar contribution
φ(x) = ψ(µ) to the vortex filament structure, obtaining a
nonlinear ordinary differential equation (ODE) governing
ψ; see (6). For monotone scalings, we therefore find that
ψ is a strict function of µ and therefore the ODE (6) has
only constant coefficients, making it’s solution possible.
The planar solution is equivalent to a stationary solution
of the form Φ = e−γtψ(µ). The main stationary solution
of interest is periodic for small amplitudes A, so this is
the solution we focus on in Section 3. While numerical
solutions can be obtained, we compute a perturbation
solution, scaling both the function and the variable by
the amplitude A of solutions through a multiple scales
approach. We compare the perturbation solution to nu-
merical solutions, finding that the perturbation solution
accurately captures the structure of the planar vortex fil-
ament (in particular, the spacial period of oscillation for
such solutions). We find that the spatial period T (A) is
given by the approximation

T (A) ≈ 2π

(

1 +
3

16
A2

)−1

,

for small A.

Properties of the planar vortex filament in the ar-
clength system (the intrinsic coordinate frame) were con-
sidered in [13], and in Section 4 we have compared the
two formulations. The primary benefit of the arclength
frame is that it allows for exact solutions, in terms of
elliptic sn functions. The Cartesian framework, however,
gives us a clearer view of exactly what is going on with
the structure of the vortex filament. While there is no
exact solution, the perturbation result does work nicely
for small amplitude periodic solutions. Despite the fact
that there is no exact closed-form solution for ψ(µ), we
are able to derive an exact relation for the period T (A)
in terms of elliptic integrals, obtaining

T (A) = 8E (A/2)− 4K (A/2) ,

which agrees nicely with the approximation found
through perturbation for small A; see Fig. 4. This is
also reminiscent of the period for the arclength repre-
sentation of the planar solution discussed in [13]. Note

that there is a bound A <
√
2 on the amplitude A of

the space-periodic function ψ(µ), as will be discussed in
a forthcoming work. As such, the maximal period occurs
with amplitude A = 0 and is T (0) = 2π while the mini-

mal period solution occurs with amplitude A =
√
2 and

is T (
√
2) = 3.3886. Hence, the period T (A) of a space-

periodic solution is related in an inverse manner to the
amplitude A of such a solution.

For monotone scalings f we were able to obtain the
nice analytical results discussed above. We also discuss
non-monotone coordinate scalings f and their applica-
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tion for finding self-intersections of vortex filaments. An
equation governing the stationary solution φ(x) was given
in (26). This equation becomes singular at points where
monotonicity of f fails, yielding solutions which, in some
cases, permit self-intersection of the curve r given in (1).
Such a self-intersection results in a vortex filament loop.
While such a situation is not tractable analytically, we
provide numerical simulations to demonstrate that such
results are at the very least mathematically possible. We
also outline some general criteria which would permit
a loop filament structure. These self-intersecting vortex
filaments essentially “break” the LIA formulation, mean-
ing that once intersection occurs, the LIA is not sufficient
to study the dynamics of the loop solutions. Such solu-
tions are likely unstable and collapse into other structures
or dissipate completely. These types of dynamics are
quite interesting, and would certainly merit future work.
Analytical results, under weaker conditions than mono-

tonicity, yet stronger conditions than just arbitrary non-
monotone transforms, could be possible, maybe in the
case of the specific examples considered here. Some ana-
lytical results were given for the non-monotone scalings,
and it was shown that such solutions may be constructed
in a piecewise manner. These analytical solutions are
continuous, yet fail to have a continuous derivative. In
this sense, we may view such solutions as weak solutions.
Nevertheless, these analytical results agree qualitatively
with the numerical simulations.
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