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Stability and energetics of Bursian diodes.

M.S. Rosin1∗, H. Sun1

1Department of Mathematics, UCLA, Los Angeles, CA 90095

We present an analysis of the stability, energy and torque properties of a model Bursian diode in
a one dimensional Eulerian framework using the cold Euler-Poisson fluid equations. In regions of
parameter space where there are two sets of equilibrium solutions for the same boundary conditions,
one solution is found to be stable and the other unstable to linear perturbations. Following the
linearly unstable solutions into the non-linear regime, we find they relax to the stable equilibrium.
A description of this process in terms of kinetic, potential and boundary-flux energies is given,
and the relation to a Hamiltonian formulation is commented upon. A non-local torque integral
theorem relating the prescribed boundary data to the average current in the domain is also provided.
The results will be useful for numerical verification purposes, and understanding Bursian diodes in
general.

I. INTRODUCTION

In its simplest form, a diode consists of two conducting
electrodes with a relative electric potential bias |φ1|, and
a distribution of moving charge carriers. Fundamentally,
the transport of these charge carriers is constrained, self-
consistently, by nonlinear space charge effects. For exam-
ple, in the case of a steady un-neutralized electron flow in
one dimension (a Bursian diode), the charge flux cannot
exceed the analytically derivable ‘Child-Langmuir limit’
that depends only on |φ1|, the size of the domain and the
velocity of the incoming electrons [1–3]. Mechanistically,
if the electron flux exceeds the limiting value, there is
a charge build-up – a virtual cathode – and an associ-
ated electric field that resists the passage of additional
electrons.

Understanding and controlling the onset of this virtual
cathode, as well as other, nearby, physically and numeri-
cally accessible states, their stability properties, and the
energy demands of maintaining a diode flow, has appli-
cations in a wide range of settings that are well reviewed
by Ender et al. [4]. Some examples include inertial-
electrostatic confinement [5]; pinch reflex diodes for in-
tense ion beam generation [6]; vircators [7]; reflex triodes
for microwave generation [8]; photoinjectors [9, 10], and
producing GHz to THz electromagnetic radiation [11, 12].

Historically, much of the illuminating analysis has
come from simulations, especially in complex geometries
and for kinetic systems. To ensure the fidelity of future
codes, a good understanding of the basic physics and a
suite of test cases for benchmarking is desirable. These
are an integral part of the verification process [13, 14].
Indeed, for just this purpose, there has recently been
an explicit call for analytic and high-accuracy numerical
solutions for model problems in plasma physics [15–17].
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Solutions that meet these requirements would also be of
benefit in a wide range of simulation-assisted fields where
the equations governing diode dynamics are also appli-
cable: collisional electrostatics, inviscid fluid dynamics,
gravitating astrophysical systems.

On a more primitive level, beyond the industrial ap-
plications that can be inferred from simulation, diodes
exhibit important fundamental physics. The entering
and exiting particles carry with them kinetic and po-
tential energy, thereby making them readily analyzable,
energetically open system. This means that the con-
timuum Hamiltonian description, designed for energet-
ically closed systems, must be extended if it is to be ap-
plicable [18, 19]. Again, because of the wide applicability
of the diode equations to other areas of physics, extend-
ing the Hamiltonian formalism would be of significant
general importance. A good precursor to any such at-
tempt would be a diode energetics analysis that focused
on the role of boundary terms.

To these ends, providing benchmarks for numerical
codes and a boundary-inclusive energetics analysis, this
paper investigates the linear and nonlinear dynamics of
the simple Bursian diode above. In particular, we con-
sider the time dependent solutions and energy evolution
of the two-equilibria region of parameter space.

While this is an old problem with many existing de-
scriptions e.g. [3, 20], our approach has several original
contributions. Firstly, our results are presented in an
Eulerian, as opposed to Lagrangian, framework, which
is the most generally convenient representation against
which to compare numerical simulation. Secondly, we
consider in detail the intermediate non-linear regime of
solutions that exists beyond the linear stage and before
the final relaxed state is reached. It is in this regime,
where the nonlinear dynamics compete with the electro-
statically driven relaxation, that code irregularities will
most likely appear. While the initial and final states of
a perturbed Bursian diode in the two-equilibria region
are well know, how the system transitions between these
states is not. Finally, we present new interpretations and
parallels between disperate areas of physics that have not
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FIG. 1: Potential profiles φ associated with branch I
(solid lines) and branch II (dashed lines) equilibria for
(d, v0, φ0, φ1) = (1.0, 1.0, 0, 0.25), and ρ0 = 2.45 (red, no sym-
bols), ρ0 = 2.00 (blue, diamonds), and ρ0 = 1.00 (black,
squares) respectively. Note that for ρ = 1.00 there is only one
solution, as given by (9)

been previously discussed: diodes, the role of torque con-
servation, and, briefly, astrophysics.

The plan of this paper is as follows. In Sec. II we in-
troduce our equations and review what is known about
their time independent, i.e. equilibrium, solutions. We
focus on regions of parameter space that supports two
distinct equilibria. In Sec. III we present a new perspec-
tive on their linear stability, showing one to be stable
and the other unstable. In Sec. IV we continue our
investigation by following the linear instability into the
nonlinear regime, and discuss the associated system en-
ergy and torque, and their role as diagnostics. In Sec. V
we conclude and discuss some potential applications for
our results.

II. EQUILIBRIUM SOLUTIONS

The physical picture of a working Bursian diode is
one of electrons flowing across a diode domain under
the influence of an electric potential. The potential is
made up of an external component that is determined
by the boundary conditions at the incoming and outgo-
ing edges, and an internal potential that is determined
self-consistently by Poisson’s equation.

When the electrons are cold and collisionally domi-
nated, this systems is described by the Euler-Poisson
fluid equations

∂tρ+ ∂x(ρv) = 0, (1)

∂tv + v∂xv = ∂xφ, (2)

∂xxφ = ρ. (3)

Here x, t, ρ, v, φ are the scaled position, time, density, ve-
locity and potential for an electron fluid. The hyperbolic
equations, (1) and (2), respectively describe the conser-
vation of mass, and the momentum evolution of a fluid
element forced by an electric field −∂xφ. Equation (3)
relates the electric potential to the charge density via the
elliptic Poisson equation.

To determine the the external electric potential, and
incoming electron density and velocity, we introduce the
following time independent Dirichlet boundary condi-
tions

φ = 0
v = v0
ρ = ρ0

 on x = 0 (4)

φ = φ1 on x = d

Here x = 0 is the incoming boundary and x = d is the
outgoing boundary, so electrons flow from 0 to d. Equa-
tions (1)-(4) have been normalized using

(x, t, v, φ, ρ) = (x′/L, t′/T, v′/(L/T ), φ′/ϕ, ρ′/R)

ϕ = (me/qe)(L/T )2 R = (ε0/qe)(ϕ/L
2),

where the primed variables are unscaled, L, T are char-
acteristic length and time scales, me is the electron mass,
qe the fundamental charge (positive), and ε0 is vacuum
permittivity.

In the steady state (1) and (2) constrain the current
ρv and the energy density of a fluid element, kinetic plus
potential v2/2−φ, to be constant across the domain (the
minus is because electrons are negatively charged). This
implies that for given boundary conditions, i.e. (4), the
two unspecified fields at the outgoing boundary ρ(d), v(d)
are uniquely determined. The motion of the fluid can be
understood energetically in terms of Hamilton’s princi-
ple, the principle of least action, from which (2) can be
derived. The gain (loss) in the kinetic energy of a fluid
element as it crosses the domain equals its loss (gain) in
potential energy as work is done on (against) it by the
electric field (that accelerates electrons from the emitting
cathode to the collecting anode, in the case of a mono-
tonically increasing potential).

It is known that there are two kinds of equilibrium
solutions to the system (1)-(4), and we review them here
[3]. For φ1 > 0, their implicit expressions are given by:

(Φ− 2α)
√

Φ + α =
3

4

√
8ρ0
v0

x+ (1− 2α)
√

1 + α, (5)

(Φ− 2α)
√

Φ + α =

∣∣∣∣34
√

8ρ0
v0

x− (1− 2α)
√

1 + α

∣∣∣∣ , (6)

where Φ =
√

1 + 2φ/v20 and Φd =
√

1 + 2φ1/v20 are nor-

malized potentials. The quantities ξ1 = 4/3(1 + Φ
3/2
d ) <

ξ2 = 4/3(Φd + 2)(Φd − 1)1/2 < ξ3 = 4/3 (1 + Φd)
3/2

demarcate (non-exclusively) the boundaries between so-
lutions monotonic in φ given by (5) that occur when
0 < d

√
8ρ0/v20 ≤ ξ2, and solutions with a single turning

point given by (6) that occur when ξ1 < d
√

8ρ0/v20 ≤ ξ3.
The physically relevant difference between (5) and (6) is
that for the former, the electric field always points in one
direction, and for the latter, it changes direction. At the
reversal point for solutions given by (6), the electric field
vanishes and the electrons flow ballistically.
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FIG. 2: Eigenvalues associated with perturbations to branch
II equilibria with parameters (d, ρ0, v0, φ1) = (1, 2.4, 1, 0.25).
Calculated using Chebyshev spectral methods, only a single
positive eigenvalue, the first one, exists, corresponding to an
unstable, purely growing mode. The remaining eigenvalues
are in complex conjugate pairs with Re(λ) < 0, corresponding
to damped, traveling waves.

To close (5) and (6) so the functional form of the fields
can be determined, α is needed. It satisfies

(Φd − 2α)
√

Φd + α =
3

4

√
8ρ0
v0

d± (1− 2α)
√

1 + α, (7)

where the positive and negative signs correspond to (5)
and (6) respectively.

Necessary and sufficient conditions for determining the
number of solutions, zero, one or two, are given succinctly
by

d
√

8ρ0/v20 > ξ3 : zero solutions, (8)

d
√

8ρ0/v20 < ξ1, or = ξ3 : one solution, (9)

ξ1 ≤ d
√

8ρ0/v20 < ξ3 : two solutions. (10)

The number of accessible solutions is a function of d, v0,
ρ0, and φ1, Figs. 1 and 3. For example, for (d, v0, φ1) =
(1, 1, 0.25), there are no steady state solution for ρ0 >
2.5, two when 2.5 > ρ0 > 1.2, and one when ρ0 < 1.2.
It is important to know these boundaries a priori for
both modeling and physical testing purposes because of
the extreme sensitivity of system around the bifurcation
points where the number of solutions changes.

We denote the solution with larger φ as branch I, the
other as branch II. In the literature, these are known as
the C-branch and C-overlap branch respectively [21].

It is the stability, dynamics and energy of perturba-
tions to the equilibria in the region of parameter space
given by (10), that are the focus of this paper. While
these have been investigated before in a Lagrangian
framework, our approach in an Eulerian framework is
new, and has several advantages. Specifically, it allows
for a direct interpretation of solutions that are functions
of x and t, rather than Lagrangian coordinates; the dis-
crete nature of the linear eigenmodes are a natural prod-
uct of the formulation; and the description is robust to

changes that would not allow for a Lagrangian analysis.
These features are all useful for verification purposes, as
are the expressions (5)-(10) for the equilibrium configu-
ration.

In accordance with earlier studies, we find that the C-
overlap branch is unstable to linear perturbations, and
we follow these into nonlinear regime [3, 20, 22].

III. LINEAR STABILITY ANALYSIS

To provide a set of numerical benchmarks for verifi-
cation purposes, and to understand the physics of Bur-
sian diodes at small times, we conduct a perturbation
analysis. We wish to determine the linear stability prop-
erties of branch I and branch II equilibrium solutions
to (1)-(3) when (10) holds. To do so, we use (5)-(7)
subject to (4) to construct equilibria ρ̃(x), ṽ(x), φ̃(x),
and to these we add small perturbations (δρ, δv, δφ) =
(δρ(x), δv(x), δφ(x))eλt that obey (δρ, δv, δφ) = (0, 0, 0)
at x = 0 and δφ = 0 at x = d.

Linearizing, we obtain

λδρ+ ∂x(ρ̃δv) + ∂x(ṽδρ) = 0, (11)

λδv + ∂x(ṽδv) = ∂xδφ, (12)

∂xxδφ = δρ. (13)

This system can be written as

λ

(
δρ
δv

)
= A ·

(
δρ
δv

)
, (14)

where

A :=

(
−∂xṽ − ṽ∂x −∂xρ̃− ρ̃∂x
∂x(∂xx)−1 −∂xṽ − ṽ∂x

)
. (15)

The eigenvalues of (14), determine the linear stability of
the system: Re(λ) > 0 describes unstable modes, and
Re(λ) < 0 describes stable modes. To compute λ, we
discretize the operator matrix (15) using three methods:
A uniform grid with an upwind scheme; a uniform grid
with a centered difference scheme; and a Chebyshev grid
with an associated polynomial interpolation [24]. The
discrete spectrum of eigenvalue-eigenvector solutions - a
discreteness not generally emphasized in the dispersion
relations arising from Lagrangian analyses e.g. [20, 22].
- are obtained numerically and shown in Figs. 2, 4 and 5.
All three schemes converge to the same consistent result.
We take this to constitute a ‘high-accuracy numerical
solution’, and below a numerical example is provided for
testing purposes.

Conducting a parameter scan, for branch II we find
λ > 0 ∈ Re for the first eigenvalue, the one with a
single zero in the corresponding eigenfuctions. For the
remaining eigenvalues in branch II, and all of branch
I, Re(λ) < 0. The system supports a single unstable
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FIG. 3: Number of equilibrium solutions to (1)-(3): Zero -
horizontal lines, one - vertical lines, two - crossing lines, for
varying ρ0, φ1 and (d, v0) = (1, 1). The zero and two solution

boundary at d
√

8ρ0/v20 = ξ3, corresponds to the space charge
limiting current derived by Child and Langmuir for v0 = 0,
Jaffé for v0 > 0, and Caflisch and Rosin for time-varying
boundary conditions [1–3, 23]. The circled dot corresponds
to the parameters used in Fig. 2 and the star to those in
Figs. 5, 6 and 7

mode. For example, for (d, ρ0, v0, φ1) = (1, 1.5, 1, 0.2),
the most positive eigenvalues from branch II and I are
1.1 and −2.1 respectively - one mode is unstable, and
the other stable. As the two equilibrium solutions merge
at d

√
8ρ0/v20 = ξ3, the unstable eigenvalue of branch II

obeys Re(λ) → 0. Approaching the other boundary of
the two solution region d

√
8ρ0/v20 = ξ1, the full-width,

half-maximum of the corresponding eigenmode → 0. It
remains to be seen whether this singular mode bears any
fundamental relation to the singularity that forms in the
case that the current exceeds the Child-Langmuir limit
[23, 25].

The physical implications of these results is that for
any experimental realization, branch II solutions can-
not persist for any extended period. Infinitesimal per-
turbations arising from any source of broadband back-
ground noise will, under an appropriate decomposition,
support an unstable mode. This mode will grow at an
exponential rate λ, moving the total solution (ρ̃(x), ṽ(x),
φ̃(x)) + (δρ, δv, δφ) away from its initial branch II con-
figuration. While the inherent instability of branch II
solutions are well known [20], the growth rates and fields
configurations are not, at least in terms of the boundary
conditions and Eulerian formulation used here.

Furthermore, discussion of the medium term fate of
the unstable solutions has been largely neglected in the
literature. In the next section we address this by follow-
ing the perturbations into the nonlinear regime, and to
their final, stable state.
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FIG. 4: The most positive eigenvalues of (14), i.e. λ, associ-
ated with perturbations to branch II (Re(λ) > 0, unstable)
and branch I (Re(λ) < 0, stable) solutions for the parameters
(d, v0) = (1, 1), and varied ρ0 and φ1 – see Fig. 3.

IV. NONLINEAR DYNAMICS

For small time, coupling between infinitesimal ampli-
tude perturbations, and their feedback on the equilib-
rium solutions, is negligible. However, because λ > 0 for
one mode, that mode grows exponentially and the per-
turbations quickly reach nonlinear amplitudes. In this
case, the methods and results of Sec. III are no longer
applicable. In the nonlinear regime, the most general
method for solving (1)-(3) is numerical integration; al-
though the method of characteristics can also be used to
obtain complete analytic solutions in a Lagrangian frame-
work [4, 22]. The method used here, an Eulerian ap-
proach, has the advantage that it is naturally formulated
as a two point Dirichlet boundary value problem for φ,
which can easily be realized experimentally i.e. φ is pre-
scribed on both boundaries. The alternative Lagrangian
approach is more naturally formulated as a Cauchy prob-
lem, which is harder to realize experimentally and from
which the corresponding Dirichlet conditions are nontriv-
ial to obtain [23], i.e. φ and ∂xφ are prescribed on one
boundary. In terms of the relative verification merits of
the methods, it is worth noting that a Lagrangian anal-
ysis must be numerical remapped before it can be com-
pared to the solution produced by an Eulerian code.

We favor the direct Eulerian numerical approach. We
employ MacCormack’s method to integrate the hyper-
bolic equations (1)-(2), and solve the elliptic Poisson
equation (3) at each time step using a finite-difference
description and inverting a tridiagonal matrix. Our simu-
lations are initialized with unstable equilibrium solutions
from branch II and numerical noise provides broadband
perturbations which are constrained to obey (4). The
solutions to our perturbed system are well matched by
our linear results for small time, and in the final state
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FIG. 5: Evolution of perturbed field quantities associated
with the unstable branch II equilibrium for t ≤ 5.6 and steady
boundary conditions (d, ρ0, v0, φ1) = (1, 3, 1, 1). Snapshots
are every t = 0.35 starting from the δρ, δv, δφ = 0 initial con-
ditions (red circles). The unstable linear eigenmodes (white
circles) with growth rate exp(λt) - Sec. III - overlay the fully
nonlinear solutions (solid lines) up until t = 5.5 (blue dia-
monds), at which point they start to diverge.

the solutions have relaxed to the stable branch I equilib-
rium solutions with the same boundary conditions as the
initial, unstable equilibrium, Fig. 6.

Physical insight and a set of numerical benchmarks
for the system, can be obtained by considering both the
energetics of the system and its global torque. In the
next subsection, we examine each in turn, and derive a
set of integral equations that describe the system’s spa-
tially averaged properties and their interaction with the
boundaries.

These type of equations are both less computation-
ally demanding to solve (which is unimportant here, but
may matter in higher dimensions or kinetic models), and
do not require knowledge of the fundamental unaveraged
solutions. Furthermore, being able to relate prescribed
boundary value data to derived domain data offers a new
avenue for both control, and experimental measurement
of spatially distributed system properties.

Energetics

Even at the model equation level considered here, en-
ergy insights may be important for industrial purposes
[7]. In this subsection, we examine the evolution and
balance of the standard energy integrals. We leave fur-
ther detailed discussion to a forthcoming paper in which
we present a tailored Bursian diode-battery model [26].

We start by multiplying (2) by v and combining it with
(1) to yield an evolution equation for the kinetic energy

K = ρv2/2 balance of the system

∂tK + ∂x (vK) = ρv∂xφ, (16)

where ρv∂xφ is the negative Joule heating term. Inte-
grating over x, the total kinetic energy in the system is
given by

∂tK = v0K0 − vdKd + ρv∂xφ (17)

where overbars denotes spatially integrated quantities∫ d
0
dx and subscripts 0, d indicate that the associated

quantity is to be evaluated at x = 0, d respectively. There
are two contributions to the total kinetic energy: the dif-
ference in the boundary fluxes of kinetic energy, and the
work done on the fluid by the electric field.

To describe the total energy balance in the system, it
helps to decompose φ = φE+φI into external and internal
components, and these satisfy Laplace’s and Poisson’s
equations respectively:

∂xxφE = 0, with φE(0) = 0, φE(d) = φ1 (18)

∂xxφI = ρ, with φI(0) = 0, φI(d) = 0. (19)

The solution to (18) is simply φE = (φ1/d)x, and the
Green’s function for φI is

φI(x) =
1

2

∫ d

0

dx′ρ(x′)

(
|x− x′| − 2

xx′

d
− x− x′

)
. (20)

Rewriting (16) in conservative form using (1) and (19),
we have

∂tE + ∂x (v (E + PI)) = 0, (21)

where E = K+PE+PI is the combined kinetic K, external
potential PE = −ρφE and internal potential PI = −ρφI/2
energy of a fluid element, and we have made use of the
fact that φE, φI(0) and φI(d) are time independent. Phys-
ically, the factor of a half in the definition of PI is to avoid
double counting particle interaction energies [27]. Math-
ematically, it arises from the symmetry properties of the
Green’s function (20) under x⇔ x′.

In the absence of net boundary fluxes, the second term
in (21) vanishes upon integration. In this case, the total
energy E is conserved, and coincides with the fluid Hamil-
tonian H = ρv2/2 + (∂xφ)2/2, from which the equation
of motion (2) can be derived [11, 28]. The evolution of
the various energy quantities is plotted in Fig. 7.

Considerable work has been done on the nonlinear sta-
bility of closed plasma and fluid systems using variational
principles e.g. [29–32]. However, for open systems, i.e.
ones with sources, like boundary fluxes, stability proofs
are difficult to construct, and we do not attempt to do
so here. Nevertheless, the nonlinear stability and Hamil-
tonian structure of such systems has been the focus of
recent work, and so a theorem tailored to the problem
described here may be forthcoming [33–36].
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FIG. 6: Evolution of full solutions to (1)-(3) starting at the
same branch II equilibrium as in Fig. 5, for t ≤ 11.5. Snap-
shots are every t = 0.5, and the initial state (red circles) is
given by (5) - (7). The final state (blue diamonds) is the
same stable branch I equilibrium derived from the same set
of equations and boundary conditions as the initial state.

Torque and boundary conditions.

Unlike energy, torque is not generally considered as
an important property of diode systems. However, it is
frequently invoked in describing stellar systems governed
by (1) - (3), in the context of which (2) is known as the
Jeans equation, and φ is the gravitational potential. We
consider it here too and derive a simplified lower moment
analogue to the astrophysical virial theorem including
boundary effects [37]. As for the virial theorem, we find
a ‘basic structural relation that the system must obey’
[38].

To proceed, we note that, uniquely, the 1D version of
Poisson’s equation (3) can be directly integrated to yield∫ x

0

dx∂xxφ = ∂xφ(x)− ∂xφ(0) =

∫ x

0

dx′ρ(x′) (22)

where the right hand side is the mass between 0 and x
which can vary with time, and we now denote as M(x) :=
Mx. It follows from (22) that

φ1 =

∫ d

0

dx

(∫ x

0

dx′ρ(x′) + ∂xφ(0)

)
= Md (d− x) + ∂xφ(0)d, (23)

where x ≡
∫ d
0
dxxρ/

∫ d
0
dxρ is, by definition, the center

of mass.
Equation (23) has a very simple interpretation. By

definition, the torque about a point d is T = Fr where
r is the magnitude of the directional vector joining d
and the point at which F , the force perpendicular to this

vector, acts. Let us consider a force acting at the system’s
center of mass x, proportional to the total mass Md, and
perpendicular to ∇x, say a gravitational force F = Mdg.
In this case, we have T = Mdg(d− x), and so

φ1 − ∂xφ(0)d = (d− x)Md ≡ T, (24)

where we have absorbed g into the definition of T . For
time independent φ1−∂xφ(0)d, this implies that the total
torque on the system is constant.

This results in an interesting relation between the cur-
rent, the rate of change of the incoming electric field
∂t∂xφ(0) and exiting potential ∂tφ1. Differentiating (24),

∂tT =−∂txMd + (d− x) ∂tMd = ∂t [φ1 − ∂xφ(0)d], (25)

and, using (1), we have

∂tMd = −
∫ d

0

dx ∂x(ρu) = ρ0u0 − ρdud, (26)

∂txMd = −dρdud + J(d)− ∂tMd x, (27)

where J(d) ≡
∫ d
0
dx ρu is the current in the domain, and

(26) simply states that the rate of change of mass is the
flux in minus the flux out.

Combining (25), (26) and (27) we find

ρ0u0 = d−1 (J(d) + ∂tφ1)− ∂t∂xφ(0), (28)

which is the main result of this subsection [40].
Equation (28) relates the average current in the do-

main, a derived quantity, to a set of boundary data. This,
potentially, affords a new avenue for control. As men-
tioned earlier, because (1) - (3) can be written in char-
acteristic form, in a mathematical sense, the appearance
of the incoming electric field −∂xφ(0) is a more natural
choice of boundary condition than φ1.

V. CONCLUSIONS

While Bursian diodes have been well studied over the
last century, the advent of large scale, multidimensional
particle in cell codes, and fluid codes in complex geome-
tries have the potential to offer new insights into their
basic physics and to guide their design. The work pro-
vided here, while relatively basic, provides a reliable set
of analytic and high-accuracy numerical results against
which the results of advanced code-bases can be verified
[15–17]. Specifically, we have included examples through-
out the text using particular parameters, as well as Figs.
2, 5, 6, 7 and equations (24) and (28). Where we have
employed numerical tools we have cross checked our re-
sults using multiple methods and conducted appropriate
convergence studies.

Our results include a linear stability analysis of the
unstable branch II equilibrium (C-overlap branch), and
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FIG. 7: Evolution of the total (spatially integrated) energy
of a Bursian diode system from an initial unstable equilib-
rium solution (branch II) to a final stable equilibrium solu-
tion (branch I) for the same set of boundary conditions as
in Fig. 5. Whilst the final total energy state E is slightly
greater than the initial state, the Hamiltonian H is a strictly
decreasing function of time. The system’s dominant form of
energy switches to kinetic K from internal potential energy
PI as time progresses, and in the final state the net boundary
flux of energy [v(E + PI ]d0 is zero.

nonlinear simulations of its evolution. We have found
that its relaxed state is that of the stable branch I equi-
librium with the same boundary conditions. We have
also provided a quantitative discussion of the role of en-
ergy and torque in diagnosing and controlling the system,
and, to the best of our knowledge, our interpretation of
the latter is new in the literature.

Possible extensions to this work include constructing a
nonlinear stability theorem in the spirit of Bernstein et
al., but including boundary fluxes [29]; using the results
herein for benchmarking more complicated systems in-
cluding investigating the stability of Child-Langmuir lim-
ited solutions; and prescribing optimizing and efficiency
enhancing conditions or frameworks for diode operation
[23, 39].
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[3] G. Jaffé, Physical Review 65, 91 (1944).
[4] A. Ender, H. Kolinsky, V. Kuznetsov, and H. Schamel,

Physics Reports 328, 1 (2000).
[5] M. Carr and J. Khachan, Physics of Plasmas 17, 052510

(2010).
[6] D. Hinshelwood, P. Ottinger, J. Schumer, R. Allen,

J. Apruzese, R. Commisso, G. Cooperstein, S. Jackson,
D. Murphy, D. Phipps, et al., Physics of Plasmas 18,
053106 (2011).

[7] D. Sullivan, J. Walsh, and E. Coutsias, High power mi-
crowave sources 13 (1987).

[8] A. Sharma, S. Kumar, S. Mitra, V. Sharma, A. Patel,
A. Roy, R. Menon, K. Nagesh, and D. Chakravarthy,
Plasma Science, IEEE Transactions on pp. 1–6 (2011).

[9] E. Coutsias and D. Sullivan, Physical Review A 27, 1535
(1983).
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