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Abstract

We analyze via theoretical approaches and molecular dynamics simulations the collective mode

structure of strongly coupled two-dimensional binary Yukawa systems, for selected density, mass

and charge ratios, both in the liquid and crystalline solid phases. Theoretically, the liquid phase is

described through the Quasi-Localized Charge Approximation (QLCA) approach, while in the crys-

talline phase we study the centered honeycomb and the staggered rectangular crystal structures

through the standard harmonic phonon approximation. We identify “longitudinal” and “trans-

verse” acoustic and optic modes and find that the longitudinal acoustic mode evolves from its

weakly coupled counterpart in a discontinuous non-perturbative fashion. The low frequency acous-

tic excitations are governed by the oscillation frequency of the average atom, while the high fre-

quency optic excitation frequencies are related to the Einstein frequencies of the systems.
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I. INTRODUCTION

Yukawa systems, i.e. many particle systems where the pair interaction potential energy

is

φ(r) = Z1Z2ϕ(r)

ϕ(r) =
exp(−κr)

r
(1)

have been of interest for some time. The Yukawa potential has the unique feature that

by varying the screening parameter κ the potential can assume the feature both of a short

range (hard sphere like) and of a long range (Coulomb like) interaction potential. Since

the 1970-s this feature motivated a number of investigations relating to the properties of

Yukawa liquids and solids, their phases and phase transitions [1–3]. Quite apart from this

academic interest, the Yukawa potential has been recognized as a good approximation for the

interaction potential between charged particles in colloids [4] and, more recently, in complex

(dusty) plasmas, where the original Coulomb interaction between the main constituents

is transformed by Debye screening into a Yukawa-type potential (for a review see, e.g.

[5, 6]). Complex plasmas constitute an especially suitable medium for the study of waves

and collective excitations because these are much less damped than in colloidal systems. In

recent years a host of papers, both theoretical [7–15] and experimental [16, 17] have studied

collective modes in Yukawa systems [18–25]. Most of the experimental work on colloidal

systems and complex plasmas has focused attention on two dimensional (2D) layers. We

note that the physics of the 2D and 3D systems, the dynamics of the collective excitations

in particular, is, in fact, quite different and addressing 2D and 3D systems separately is also

warranted on theoretical grounds [4].

The strength of the coupling between the particles can be characterized by the nominal

bare coupling parameter Γ = (Z2e2)/(kbTa), with a being the Wigner-Seitz radius. A

physically more meaningful Γeff that, basically represents the ratio of the potential and

kinetic energies, can be defined for orientation purposes as Γeff = Γ exp(−κa) [26], although

more sophisticated expressions are available [27–29].

The main interest lies in the behavior of the strongly coupled state, Γeff ≫ 1. In this

strongly coupled state the system can be either in the dense liquid or in the crystalline solid

phase.
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Past works on the dynamics have overwhelmingly concentrated on Yukawa systems con-

sisting of one single component, the equivalent of the One Component Plasma, both in

three and two dimensions (Y3dOCP and Y2dOCP, respectively). A great deal of theoreti-

cal [9, 11–15, 30, 31] and computer simulation [10, 32–35] efforts have been devoted to the

mapping and understanding of the collective mode structures in these systems, both in the

liquid and solid phases. The theoretical methods required in the two situations are, of course,

quite different. Once the lattice structure is identified, the crystalline solid is amenable to

the standard harmonic phonon analysis. Concerning the treatment of the collective modes

in the strongly coupled liquid phase, the Quasi Localized Charge Approximation (QLCA)

approach developed by Kalman and Golden [36, 37] has turned out quite successful. The ob-

servation that serves as the basis for the QLCA is that the dominating feature of the physical

state of a classical charged liquid with coupling parameter ΓD >> 1 is the quasi-localization

of the constituent charged particles. The ensuing model closely resembles a disordered solid

where the dipoles occupy randomly located sites and undergo small-amplitude oscillations

about them. However, the site positions also change and a continuous rearrangement of

the underlying quasi-equilibrium configuration takes place. Inherent in the model is the

assumption that the two time scales are well separated, and that it is sufficient to consider

the time average (converted into ensemble average) of the drifting quasi-equilibrium config-

uration. The latter is calculated via the equilibrium pair correlation function, which may

be provided by Molecular Dynamics simulations (for details see [37]). As a result of these

works, the collective mode spectra of the Y3dOCP and Y2dOCP are well understood and

this understanding is well corroborated by observations [16, 17].

As to strongly coupled Yukawa mixtures consisting of more than one single species, in

particular binary Yukawa mixtures (Y3dBM, Y2dBM), the collective dynamics of these

systems constitutes a largely unexplored area (see, however, a recent work by Daligault [38])

, even though the problem is of great theoretical interest. (For a related one dimensional

problem see [39, 40]). One expects that the simple analytic structure of the Yukawa potential

allows one to derive nearly exact solutions, which will elucidate the common features of the

dynamics of binary liquids and solids [41, 42]. Also, the flexibility of the Yukawa interaction

would make the qualitative features of the results to serve as paradigms for the collective

mode structures of binary systems interacting through other potentials as well (alloys, dipole

systems, etc.). From the point of view of actual applications, the creations of binary complex
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plasmas has technical problems, but, nevertheless, one expects that such strongly coupled

complex plasmas of two different grain species will become available in the near future.

This paper, the first in a series, presents a systematic study of he collective mode spectra

of the Y2dBM system. The system consists of two species, with charges Z1 and Z2, masses

m1 and m2 and densities n1 and n2 (or concentrations c1 and c2), respectively. Our strategy

is similar to the one followed in our previous works on the Y3dOCP and Y2dOCP: for the

theoretical analysis of the liquid state we apply the QLCA formalism; for the crystalline

solid we calculate dispersion relations by the standard method. In both cases, we parallel

our theoretical analysis with detailed Molecular Dynamics (MD) simulations of the den-

sity and current fluctuation spectra of the system; it is, then, the positions of the peaks

of the fluctuation spectra from which the dispersion relations are inferred. It has to be

noted, however, that following this road map is fraught with questions stemming from the

fundamental difference between the binary and single component systems. Concerning the

QLCA, is it justified to represent the system through separate collective coordinates for

each of the species in a liquid where the two species are spatially not separated? Concerning

the MD, if different partial fluctuation spectra provide conflicting information, which one of

them should be accepted as most relevant to the actual dispersion? Finally, one has to be

aware of the fact that in the presence of different Z1 and Z2 charges with different c1 and c2

concentrations, the liquid phase is governed by a complex phase diagram [41–47] in which

only certain combinations of these parameters allows a homogeneous system. In the solid

phase, similarly, with a given set of parameters only certain lattice structures are permissible

[48, 49].

We tackle these issues along the work as presented in the sequel. We have to empha-

size though, that our goal is restricted to determining the existence, interrelationships and

dispersion of the collective modes. We do not address a number of related problems: the

damping of the modes, the detailed structures and the link between the various fluctuation

spectra, the critical freezing values of Γ, the nature of the underlying order in the liquid

phase, lattice stability and structures, etc. The issues investigated in this paper are orga-

nized according to the following plan: Section II is devoted to the description of the liquid

phase and Section III of the crystalline solid phase. In each case we first analyze the qual-

itative features of the optic (ω finite at k = 0) and then the acoustic (ω → 0 as k → 0)

excitations, before presenting the description of the full mode structure. In Section III we
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compare the mode structures in the two phases and draw conclusions. (For a preliminary

account of some of the results pertaining to the optic modes see [50] and to the acoustic

modes see [51]).

Whenever not noted otherwise, we measure frequencies in units of ω1, the plasma fre-

quency of species 1, use Γ1, the bare coupling value for species 1 to characterize the coupling

strength, and adopt κa = 1 (a =
√
a1a2) for the screening parameter.

II. STRONGLY COUPLED LIQUID PHASE

The theoretical analysis of the mode structure in the liquid state is based on the QLCA

approach, as discussed above. The fundamental equation for the dynamical matrix is

Cµν
AB(k) = −ZAZBe

2

√
nAnB√
mAmB

[

∫

d2r

{

Ψµν(r) (exp(−ik · r)− δAB) [1 + hAB(r)]−

δAB

∑

C 6=A

ZCnC

ZAnA
Ψµν(r) [1 + hAC(r)]

}]

= −ω2
AB

1

2π

∫

d2r̄Ψµν(r̄) (exp(−ik · r)− δAB) [1 + hAB(r̄)] +

δAB

∑

C 6=A

Ω2
AC

∫

d2r̄Ψµν(r̄) [1 + hAC(r̄)] (2)

with

Ψµν(r) = ∂µ∂νϕ(r), (3)

where ϕ(r) is the Yukawa interaction, ϕ(r) = exp(−κr)/r characterized by the screening

constant κ. Then

Ψµν(r) =
exp(−κr)

r

(

3
rµrν

r2
a(κr)− δµνb(κr)

)

a(y) = 1 + y +
1

3
y2, b(y) = 1 + y. (4)
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Additional notational conventions are

Ω2
AB =

2πe2ZAZBnB

mAa

ω2
AB =

2πe2ZAZB
√
nAnB√

mAmBa

a =
√
a1a2

aA = 1/
√
πnA

κ̄ = κa

r̄ = r/a

y = κr (5)

with Z, m, n and a representing the charge number, mass, density and Wigner-Seitz radius

for the respective components. The ΩAB and ωAB frequencies are the nominal Einstein and

nominal plasma frequencies of the system. The hAB pair correlation functions are to be

obtained from the MD simulations, as described below.

The elements of the C-matrix can be expressed in terms of the kernel functions K, L:

CL
AB = ω2

AB

∫

dr̄

r̄2
K(kr, y) [1 + hAB(r̄)]−

δAB

∑

C(all)

Ω2
BC

∫

dr̄

r̄2
K(0, y) [1 + hBC(r̄)]

CT
AB = ω2

AB

∫

dr̄

r̄2
L(kr, y) [1 + hAB(r̄)]−

δAB

∑

C(all)

Ω2
BC

∫

dr̄

r̄2
L(0, y) [1 + hBC(r̄)] (6)

with the kernel functions given by

K(u, r) = − exp(−y)
{[

1 + y + y2
]

J0(u)− 3
[

1 + y + y2/3
]

J2(u)
}

L(u, r) = − exp(−y)
{[

1 + y + y2
]

J0(u) + 3
[

1 + y + y2/3
]

J2(u)
}

(7)

In order to clearly display the behavior in the vicinity of k = 0 we also introduce

G(u, r) = K(u, r)−K(0, r)

H(u, r) = L(u, r)− L(0, r)

F(r) = −K(0, r) = −L(0, r) (8)

6



The integrals of the kernel functions over the pair correlation functions 1 + h(r) are

KAB(k) =

∫

dr̄

r̄2
K(kr, r) [1 + hAB(r)]

LAB(k) =

∫

dr̄

r̄2
L(kr, r) [1 + hAB(r)]

FAB =

∫

dr̄

r̄2
F(r) [1 + hAB(r)] (9)

These integrals would be divergent at r = 0, were it not for the pair correlation function

1 + h(r) that becomes 0 at r = 0. Similarly

GAB(k) =

∫

dr̄

r̄2
G(kr, r) [1 + hAB(r)]

HAB(k) =

∫

dr̄

r̄2
H(kr, r) [1 + hAB(r)] (10)

Introducing the asymmetry parameters p and q

p2 = Z2n2/Z1n1

q2 = Z2m1/Z1m2 (11)

one obtains for the longitudinal elements

CL
11(k) =

ω2
1

2

[

G11(k) + p2F12

]

CL
12(k) =

ω2
1

2
pq [G12(k)− F12]

CL
22(k) =

ω2
1

2

[

p2q2G22(k) + q2F12

]

(12)

while the transverse elements are

CT
11(k) =

ω2
1

2

[

H11(k) + p2F12

]

CT
12(k) =

ω2
1

2
pq [H12(k)− F12]

CT
22(k) =

ω2
1

2

[

p2q2H22(k) + q2F12

]

(13)

We have found it useful to introduce ω1 (= ω11) as the reference frequency. In general,

there exist 4 modes as the roots of the characteristic equations,

||CL,T
AB − ω2|| = 0, (14)
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which will be labeled ωL
+, ω

T
+, ω

L
−, ω

T
−. The ± notation identifies the polarizations in species

space of the modes: the “+” sign designates polarization where the two components move

in-phase, while the “–” sign designates polarization where the two components move out-

of-phase. The two + modes are acoustic (ω → 0 as k → 0) and the two – modes are

optic modes (ω finite for k = 0). In addition, the modes are labeled as Longitudinal L or

Transverse T , referring to the their polarization with respect to k when the propagation is

along the principal axes. We note that the elements of the C-matrix, and consequently the

eigenfrequencies, depend only on the two p and q combinations of the originally introduced

three Z = Z2/Z1, M = m2/m1, N = n2/n1 parameters.

A. Optic modes

At k = 0, GAB(k) ∝ HAB(k) ∝ O(k2), thus ω−(k = 0), the gap frequency, is longitudi-

nal/transverse degenerate, as it should be for an isotropic liquid:

ωGAP = ωL
−(k = 0) = ωT

−(k = 0) = ω1

√

1

2
(p2 + q2)F12

=

√

1

2
(Ω2

12 + Ω2
21)F12 =

√

1

2

(

Ω̄2
12 + Ω̄2

21

)

. (15)

In view of Eqs. (6) through (9) FAB can be interpreted as the average potential generated

by species B in the environment of a particle of species A.

FAB =
1

2π

∫

d2r̄〈Ψ(r)〉 [1 + hAB(r)]

Ω̄2
AB = Ω2

ABFAB (16)

with 〈. . . 〉 designating angular averaging. The Ω̄AB frequency represents the oscillation

frequency of a particle of species A in the frozen environment of particles of species B. We

note that it is the correlation dependent Ω̄-s, rather than the nominal Ω-s that are the real

Einstein frequencies of the system [34], with a similar definition being used in the theory

of liquids [52]. In a single component system the Einstein frequency Ω̄ also provides the

ω(k → ∞) limiting frequency [11].

In order to find the k → ∞ limits for the binary systems we re-express the elements of
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the C-matrix as

CL
11 =

ω2
11

2

{

K11(k) +
(

Ω̄2
11 + Ω̄2

12

)}

CL
12 =

ω2
12

2
K12(k)

CL
22 =

ω2
22

2

{

K22(k) +
(

Ω̄2
22 + Ω̄2

21

)}

(17)

In the k → ∞ limits the K-terms vanish. This can be seen by observing that

KAB(k) = k

∫

du

u2
K(u, y) [1 + hAB(u/k)] (18)

and that [1 + h(r → 0)] → 0 fast enough to make this happen. Similar considerations apply

to the transverse elements.

Thus the k → ∞ respective upper and lower effective Einstein frequencies become ΩI ,ΩII :

ω−(k → ∞) =

√

1

2

(

Ω̄2
11 + Ω̄2

12

)

= Ω̄I

ω+(k → ∞) =

√

1

2

(

Ω̄2
22 + Ω̄2

21

)

= Ω̄II . (19)

The calculated gap frequencies and the effective Einstein frequencies as functions of Γ,

together with the results obtained by MD simulations (see below) are shown in FIG 1; also

shown is the variation of the correlation integral F12. In anticipation of the results of the

next Section, we have also indicated the gap frequencies in the crystal lattices. We will

further comment on the relationships between these gap frequencies in the next Section.

B. Acoustic modes and sound speed

We now turn to the calculation of the acoustic modes in the binary system. We are

interested primarily in the small-k behavior, which will lead to the determination of the

sound speed.

First we observe that by dropping h(r) in the integrals for the G(k) and H(k) functions

the resulting G0(k) and H0(k) integrals become doable and provide the RPA expressions:

G0(k) =

∫

dr̄

r̄2
exp(−κr)

[{

1 + y + y2
}

{1− J0(u)} − 3
{

1 + y + y2/3
}

J2(u)
]

=
k̄√

κ̄2 + k̄2

H0(k) =

∫

dr̄

r̄2
exp(−κr)

[{

1 + y + y2
}

{1− J0(u)}+ 3
{

1 + y + y2/3
}

J2(u)
]

= 0 (20)
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FIG. 1. Liquid state: QLCA gap (●) and Einstein (■) frequencies vs. Γ. The arrows indicate

the positions of the corresponding gap in the lattice. The Inset shows the Γ dependence of the

correlation integral F12 (symbols), which does not vary with the mass ratio. (a) n2 = n1/2; (b)

n2 = n1.

The C-matrix equivalent to the cold RPA approximation would be obtained by dropping

the F12 terms in (12) and (13), and using (20) for C11, C12 and C22. Then one obtains the

RPA result

ωL
+ = ω0

k̄√
κ̄2 + k̄2

ωL
− = 0

ω0 = ω1

√

1 + p2q2 =
√

ω2
1 + ω2

2. (21)

Note that the intuitively more reasonable requirement that in order to obtain the RPA
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limit one sets h12 equal to zero everywhere in (12) and (13) would result in a meaningless

divergent integral for F12. This feature shows that there is no smooth transition from the

QLCA expression to the RPA. In other words, in contrast to the case of the YOCP, in

the YBM the RPA Eq. (20) cannot be simply amended by adding correlational corrections

in order to obtain the strong coupling expression: the strong correlations show up in an

essentially non-perturbative fashion.

Returning now to Eqs. (12) and (13) we now calculate the small k expansion. The result

is given in terms of the integrals

UAB = − 5

16

∫ ∞

0

dy

[

1 + y +
3

5
y2
]

exp(−y)hAB(r),

VAB = − 1

16

∫ ∞

0

dy
[

1 + y − y2
]

exp(−y)hAB(r). (22)

Thus the longitudinal and transverse CL
AB and CT

AB matrix elements in the k → 0 limit

become

CL
11(k → 0) =

ω2
1

2

{

(1− U11)
k̄2

κ̄
+

1

2
p2κ̄F12

}

CL
12(k → 0) =

ω2
1

2

{

pq(1− U12)
k̄2

κ̄
− 1

2
pqκ̄F12

}

CL
22(k → 0) =

ω2
1

2

{

p2q2(1− U22)
k̄2

κ̄
+

1

2
q2κ̄F12

}

CT
11(k → 0) =

ω2
1

2

{

V11
k̄2

κ̄
+ p2κ̄F12

}

CT
12(k → 0) =

ω2
1

2

{

pqV12
k̄2

κ̄
− 1

2
pqκ̄F12

}

CT
22(k → 0) =

ω2
1

2

{

p2q2V22
k̄2

κ̄
+

1

2
q2κ̄F12

}

. (23)

Proceeding now from (23), after some algebra one finds the small-k expansion of the

relevant ωL
+(k), ω

T
+(k) mode frequencies as

(ωL
+)

2(k → 0) = ω̄2

{

1− U11 + 2p2U12 + p4U22

(1 + p2)2

}

k̄2

κ̄

(ωT
+)

2(k → 0) = ω̄2

{

V11 + 2p2V12 + p4V22

(1 + p2)2

}

k̄2

κ̄
(24)

While the first term in (ωL
+)

2 is RPA-like in appearance since it shows no explicit depen-

dence on h(r), in fact it reflects an essentially strong coupling behavior, the correlational

effects manifesting themselves through the ω̄ coefficient, which we will refer to as the “virtual
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average atom” (VAA) frequency (this frequency has also been mentioned in relation to the

self-diffusion coefficient of a plasma in [53]).

ω̄2 = ω2
1

q2

p2 + q2
(

1 + p2
)2

. (25)

The Virtual Atom in fact represents an entity created from the averages of the system

parameters. To see this, Eq. 25 is re-written in terms of the average charge and mass as

ω̄ =

√

2πe2

a

〈Z〉2
〈m〉 n,

n = n1 + n2. (26)

The averages are defined through

〈X〉 =
∑

i Xini
∑

i ni
. (27)

Compare now ω̄ with of Eq. 21: the dramatic difference in the dependence on the plasma

parameters, in particular on the mass ratio, is evident. (A similar result but restricted to

the Z1 = Z2 case was already anticipated in [51]).

The notion of the VAA originates from the literature, pertaining to liquid alloys and dis-

ordered binary systems [54–56], as a heuristic concept. Here the derivation of this behavior,

as a result of the evolution of the system from weak to strong coupling, is given.

All the observations now made on the k → 0 behavior of the acoustic mode can be

translated into statements about the sound speeds

sL,T =
[

ωL,T
+ (k)/k

]

k→0
. (28)

Thus, according to (23) and (28), the longitudinal sound speed at weak coupling has its

RPA value, governed by ω0; for strong correlations the sound speed is substantially reduced

and strong correlations manifest themselves, in contrast to the YOCP, in two ways: first,

by morphing the mean field contribution into one whose properties are dictated by the VAA

and do not explicitly depend on the correlations and, second, by generating an explicit

correlational correction. For the transverse sound speed, similarly to the YOCP, there is no

h-independent contribution.

In parentheses we remark that to what extent the weak coupling value of the sound

velocity is well represented by the RPA (or “cold fluid”) expression is not clear. It is generally
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assumed that it is [53, 57]. Nevertheless, the issue is that while for a Coulomb system there

exists a clear rigorous derivation (also supported by ample observational evidence) that shows

that in the Γ → 0 limit the RPA is correct, no such demonstration is currently available for

a Yukawa system. In fact, there is reason to believe [58] that for a finite range system the

description of the behavior of the system in the weak coupling limit is more involved. All

this, however, has very little bearing on our conclusion that the sound speeds and the low

frequency excitations in the strongly coupled system are governed by the frequency of the

VAA and thus are quite different from their weak coupling counterparts.

We have studied the Γ-dependence of the sound speeds and of the related effective masses,

the latter being defined by subtracting the explicitly correlation dependent term from the

sound speed coefficient
meff

m1
=

ω2
1a

2

sL2

〈Z〉2
κ̄

[

1 +
n2

n1

]

(1− U) (29)

by MD simulations for the parameter set given previously. Results are shown in Figs. 2 and

3 for Γ values between Γ = 5 and Γ = 120. For Γ=1 and Γ=5 sound speed values calculated

through the (Vlasov Equation based) RPA approach are also displayed.

At the high Γ end the QLCA predicted behavior is in excellent agreement with simulation

results. As Γ approaches the freezing boundary, the sound speeds smoothly join their values

in the crystal lattice, which are also given, in anticipation of the results of the next Section.

Some further comments on the relationship between the sound speeds in the two domains

will be given there. In the liquid, as Γ is lowered, the remarkable decrease of the effective

mass and the concomitant increase of the sound speed can be observed. At the same time,

the QLCA sound speed, in general, stays below the observed value because the QLCA

ignores the modification of the effective mass as Γ is reduced. It can be noted, that even at

the relatively low Γ = 5 value the strong coupling behavior seems to be still dominant and

the sound speed is much below its calculated RPA value. The behavior of the sound speed

below this Γ value is not clear: it is a domain that would require substantial theoretical,

simulation and experimental work to arrive at a reliable and coherent picture.

C. Mode Dispersion

Now we turn to the description of the full mode structure in the liquid state. By solving

the characteristic equations for the matrices (12) and (13) one obtains the full ω(k) dispersion
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FIG. 2. Liquid state: Longitudinal sound speeds. (●) MD, line: QLCA, gray shaded area/line:

lattice value. For Γ = 1 and Γ = 5 the RPA (Vlasov equation based) values of the sound speeds

are also indicated (■). (a) n2 = n1/2; (b) n2 = n1.

for the 4 liquid modes. The results of this calculation are displayed for n2/n1 = 1 and 1/2

density ratios and for the already chosen Z = Z2/Z1 = 0.7 and 1.4 (2.0), M = m2/m1 = 0.2

and 5.0 parameter values. The Z2/Z1 values have been chosen in the vicinity of the stability

boundary for the (staggered rectangular and honeycomb) binary lattices.

Our theoretical analysis of the mode structure was accompanied by detailed Molecular

Dynamics studies of the dynamical fluctuation spectra of the system, as described below.

In the Molecular Dynamics simulations we trace the trajectories of individual particles

as obtained from the integration of the their equations of motion:

mi
dvi

dt
= −

N
∑

j 6=i

∇φij, (30)

where φij is the interaction potential energy (∝ ZiZj) between the particles i and j, and mi
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FIG. 3. Liquid state: Effective masses for Z1 = Z2 vs. Γ. (a,b) n2 = n1/2; (c,d) n2 = n1. The

arrows indicate the mass average 〈m〉 = (n1m1 + n2Z2)/(n1 + n2). The error bars represent 5%

(10%) uncertainty in the measurement of the MD sound speed for M = 5 (20).

are the masses of the particles. The exponentially decaying nature of the Yukawa potential

allows us to introduce a cut-off radius, and to restrict the summation in Eq.(30) to given

”neighbors” of particle i, defined as those located from it within a distance smaller than the

cut-off radius. The latter is normally chosen in a way that the force between particle i and

the disregarded particles (situated at a distance greater than the cut-off radius) is less than

10−4 . . . 10−3 as compared to the force between particle i and those particles residing within

its first coordination shell. We use periodic boundary conditions. The primary simulation

cell is surrounded by image cells, in which, when necessary, ”neighbors” of the particles

(defined above) are also searched for. This way edge effects are eliminated and the properties

of an infinite system are well approximated. The edge lengths of the computational box (Lx

and Ly) and the total number of particles are chosen to accommodate a perfect lattice for the

selected density ratios (and expected associated lattice structures). In the case of n2/n1 = 1

we use N1 = N2 = 2040 particles, while in the case of n2/n1 = 1/2 we use N1 = 2720 and

N2 = 1360 particles. Even though we have not investigated possible effects of the system

size (number of particles), our preliminary tests have indicated that the system sizes used

throughout the paper result is a good representation of the physical effects, the only limiting

factor being the smallest accessible wave number (see below). This, however, did not prove

to be an important constraint either.
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In the simulations of liquid-phase systems normally random initial particle configurations

are set up. In all cases ample time is given to the systems to reach thermodynamic equilib-

rium before measurements on the systems start. During this equilibration phase, rescaling

of the particle velocities is applied to reach the desired system temperature; this procedure

is, however, stopped before data collection.

The central quantities to be calculated in the simulations are the fluctuation spectra of

the densities and currents. Static pair distribution functions gAB(r) = 1 + hAB(r) are also

obtained and used as input for the QLCA calculations. Information about the (thermally

excited) collective modes is obtained from the Fourier analysis of the correlation spectra of

the density fluctuations of the different species (A,B= 1,2):

ρA(k, t) =

Nα
∑

j=1

exp
[

ikxj(t)
]

, (31)

yielding the dynamical structure functions as [59]:

SAB(k, ω) =
1

2π
√
NANB

lim
∆t→∞

1

∆t
ρA(k, ω)ρ

∗
B(k, ω), (32)

where ∆t is the length of data recording period and ρ(k, ω) = F
[

ρ(k, t)
]

is the Fourier

transform of (31). The (A,B) combinations label spectra related to component 1, S11, to

component 2, S22, as well as to the cross term S12.

Similarly, the spectra of the longitudinal and transverse current fluctuations, L(k, ω) and

T (k, ω) are obtained from Fourier analysis of the microscopic quantities, respectively,

λA(k, t) =
Nα
∑

j=1

vjx(t) exp
[

ikxj(t)
]

,

τA(k, t) =

Nα
∑

j=1

vjy(t) exp
[

ikxj(t)
]

, (33)

where xj and vj are the position and velocity of the j-th particle. Here we assume that k

is directed along the x axis. These calculations allow the determination of the spectra for a

series of wave numbers, which are multiples of kmin,x(y) = 2π/Lx(y), where Lx(y) is the edge

length of the simulation box in the x (or y) direction.

The identification of the collective modes is based on the observation of the extrema of

L11 and L22. When the peak positions do not completely coincide, (this may happen for

various reasons, which will be discussed elsewhere), it is the position of the stronger peak

that is accepted.
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FIG. 4. Liquid state: Examples for the g(r) pair distribution functions at Γ = 120 (a,c,e) n2 = n1/2;

(b,d,f) n2 = n1. Note that for Z1 = Z2 we obtain g11 = g22 = g12, irrespective of the density ratios.

Distribution functions gAB(r) = 1+ hAB(r) that have been inputted in the QLCA calcu-

lations are given in FIG 4 for the previously chosen n2/n1 and Z2/Z1 values. We have also

added the Z2/Z1 = 1 distribution functions, in order to show that in this case the three,

h11, h12, and h22, correlation functions are identical, independently of the density ratios (the

mass ratios obviously do not affect the correlation functions).

Some illustrative current fluctuation spectra are given in Fig. 5.

The MD simulated mode structures, together with the QLCA calculated dispersion curves

are given in Fig. 6. Although the MD spectra are sometimes quite noisy as the collective

modes have rather broad peaks in the spectra, the agreement between the simulated and

calculated dispersions, in general, is good. A new feature shown by the simulation but not

predicted by the QLCA formalism is the merging of a portion of the longitudinal acoustic

and longitudinal optic modes at low m2/m1 values into a new acoustic mode.
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FIG. 5. (Color online) Liquid state: Examples for the longitudinal current fluctuation spectra. (a)

left column: n2 = n1/2, Z2 = 2Z1; (b) right column n2 = n1, Z2 = 1.4Z1.

III. BINARY LATTICE

Depending on the Z and n values of the two components, a variety of ordered and

disordered phases should exist in a 2D binary crystal. In combination with the different

melting temperature associated with the different phases, a rather complex phase diagram

can emerge. The stability of the different structures can be analyzed through a thermody-

namic approach [48, 49] (minimizing the free energy) or through a dynamical normal mode

analysis. In this paper we restrict ourselves to the study of the T = 0 (Γ → ∞) lattice

structures only, which is amenable to the latter approach.

The lattice calculation is based on the evaluation of the lattice sum for the dynamical
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FIG. 6. (Color online) Liquid state: Current fluctuation spectra from MD simulation (color map)

compared with QLCA calculated dispersion (black lines) for Γ = 120. (a) n2 = n1/2; (b) n2 = n1.

matrix

Cµν
AB(k) = −e2

ZAZB√
mAmB

[

∑

i

{

Ψµν(ri,AB) (exp(−ik · ri,AB − δAB)− δAB

∑

C 6=A

∑

j

ZC

ZA
Ψµν(rj,AC)

}]

(34)

over all the particle pairs with designated A,B and A,C indices, which now run over all the

bases in the primitive cell (the number of which may be equal to or greater than the number

of species, i.e. 2). The evaluation was done for ca. 105 particles.
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In the following we will consider two different lattice structures with the previously studied

density ratios n2/n1 = 1 and n2/n1 = 1/2. These two cases provide a reasonable guidance

as to what lattice mode spectrum to expect in more general situations. In both cases we

choose the equilibrium hexagonal lattice as the skeleton Bravais lattice. The descendent

crystal structures should be stable in the vicinity of Z1 = Z2. With Z1 = 1, Z2 is restricted

to Zm < Z2 < ZM . The values of Zm and ZM have been determined by finding the onset

of unstable normal modes [60] and are given for both cases in Table I. Then the resulting

lattice structures are the following;

TABLE I. Stability regions.

n2/n1 Zm ZM

1 0.646 ± 0.001 1.548 ± 0.002

1/2 0.51± 0.01 2.88 ± 0.01

1. In the equal-density case with n1 = n2 we obtain a staggered rectangular (SR) lattice

with the aspect ratio
√
3 : 1.

2. In the half density case with n2 = n1/2 we obtain a honeycomb (HC) lattice for species

1, while the particles of species 2 occupy the center sites of the honeycomb and form

a hexagonal lattice; the lattice constants of the two lattices are in the ratio
√
3 : 1, see

figure 7.

2

(a) (b)

1’ 1’’

2

1

FIG. 7. (Color online) Principal lattice structures: staggered rectangular (a), and honeycomb (b).

Primitive cells are shown with dashed lines. In (b) the positions 1′ and 1′′ are distinguished.

The SR structure is built up from 2 bases in the primitive cell, while the HC structure

has 3 bases in the primitive cell. According to [48, 49] other possible structures may exist
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outside the stability domains of Table I, such as various rhombic structures, the asymmetric

hexagon (also with 3 bases in the primitive cell) and various pentagonal structures (with 3-5

bases in the primitive cell).

The number of modes r in general is r = d × b, where d is the dimensionality and b is

the number of bases in the primitive cell. In general, the polarizations of the modes can be

characterized only in the combined r-dimensional species–configuration space. In specific

situations, however, (i) the r-dimensional space factorizes into the b-dimensional species-

and d-dimensional configuration sub-spaces; moreover, (ii) longitudinal and transverse po-

larizations (with respect to k) may become the eigen-polarizations in the latter. This occurs

when k is along one of the principal axes of the crystal. Thus the L+, etc. designations

remain still meaningful and, by continuity, can be used for the labeling of the modes, with

the proviso that since in general, more than one pair of optic modes may exist, a further

index, say β = I, II may be needed for the full labeling. The HC mode structure consists of

6 modes altogether, out of which 3 are “longitudinal” and 3 are “transverse” modes. Due

to the rotational symmetry of the reciprocal lattice for k → 0 the L and T optic modes

are degenerate at k = 0. In this limit, one can identify a pair of acoustic and two pairs of

degenerate optic (gapped) modes. The SR mode structure consists of 4 (2 longitudinal and

2 transverse) modes. In the absence of rotational symmetry the L and T modes are not

degenerate at k = 0, and the ωL
− and ωT

− gaps are separated.

A. Optic modes

The simple geometric structure of the primitive cell allows one to obtain a transparent

result for the ω(k → 0) frequency gaps. The results are given below and portrayed in Fig.
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10. For the HC at k = 0 the elements of the C-matrix are

CL
1′1′(0)

ω2
1

=
1

2
√
2

[

∑

j

ΨL(rj,1′1′) + ΨL(rj,1′2)

]

=
CL

1′′1′′(0)

ω2
1

(35)

CL
22(0)

ω2
1

=
1

2
√
2

Z

m

[

∑

j

ΨL(rj,21′) + ΨL(rj,21′′)

]

CL
1′1′′(0)

ω2
1

= − 1

2
√
2

[

∑

j

ΨL(rj,1′1′′)

]

CL
1′2(0)

ω2
1

= − Z

2
√
2m

[

∑

j

ΨL(rj,1′2)

]

=
CL

1′′2(0)

ω2
1

By symmetry, all the lattice sums are equal; the rotational symmetry (L = T ) can be

further exploited to obtain

P =
1

2
√
2

∑

j,21′

exp(−y)
1

r̄3

(

1

2
(1 + y + y2)

)

(36)

in terms of which the roots of the cubic equation are

ωL,T
−,I =

√

2 (p2 + q2)P (37)

ωL,T
−,II =

√

2 (1 + p2)P ,

Note that ωL,T
−,II is an “invariant mode”, where the gap frequency is independent of m2;

in this mode the light particles oscillate around the inert heavy particle.

For the SR a similar construction yields

QL,T =
1

2
√
2

[

∑

j,12

ΨL,T (rj)

]

(38)

in terms of which

ω̄L
− =

√

(p2 + q2)QL (39)

ω̄T
− =

√

(p2 + q2)QT .

Here the P , Q-s are lattice sums, characteristic of the lattice structure (SR or HC); they

depend on κ only. They can be contrasted with F12 factor appearing in the gap frequency

expression in the liquid (16), that depends on Z2/Z1 as well (see Fig. 9), but for Γ → Γfreeze

its value in the n2 = 1/2n1 and n2 = n1 cases reasonably well approaches the corresponding

4P (for the HC) and 2(QL +QT )/2 (for the SR) values respectively.
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While the gap frequencies are angle independent, the polarizations associated with them

are not: Fig. 8 shows that T and L polarizations switch place as the propagation angle

varies from 0 to 90 degrees.
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FIG. 8. SR lattice: polarizations of the gap frequencies versus propagation angle for Z2 = Z1.

Figure 9 shows the Z and m dependences of the respective gap frequencies in the SR and

HC crystal lattices and the corresponding gap frequency in the liquid. Commenting on the

HC case first, we note that the liquid has only one frequency gap and therefore there is no

equivalent of the invariant mode in the liquid. Turning to the SR lattice, one observes the

separation of the longitudinal ωL
− and transverse ωT

− gaps. The ωGAP frequency in the liquid

largely follows the angular average of ω1 and ω2, but less closely than it does in the case of

the YOCP [61].

Figure 10 shows the dependence of the P , Q lattice sums on the screening parameter;

the smooth extrapolation to the κ = 0 value provides the input for the calculation of the

noteworthy Coulomb gap frequencies via Eqs. 37 and 39. In parenthesis we note that a little

reflection shows that the P (κ = 0) value bears a close relationship to the M =
∑

r−3 dipole

sum over a hexagonal lattice whose value is well-known [62]: M/2 = 0.7985/b3 in terms of

the Wigner-Seitz radius b. Then P (κ = 0) = 2−13/4(33/2 − 1)M/2.

B. Acoustic modes and sound speed

In contrast to the optic modes, whose dispersion is highly structure dependent and is,

in general, quite different from the corresponding mode dispersion in the liquid, the k → 0
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FIG. 9. (Color online) Mass and charge ratio dependence of the gap frequencies. The QLCA and

MD result are also shown. (a) HC lattice; note the portrayal of the “invariant mode” in the right

(Z = const.) panels. (b) SR lattice.

behavior of the acoustic phonons in the lattice is largely similar to that of their liquid

counterpart. More precisely, the sound speeds, as calculated by the QLCA and verified by

simulations, go over quite smoothly to the lattice sound speeds as Γ crosses the freezing

boundary. This is visible in Fig. 2. The only difference of some significance arises in the

case of the SR lattice, due to the fact that its reciprocal lattice space is, in contrast to the HC
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structure, anisotropic even in the k → 0 limit. The most important observation, however,

is that the notion of the VAA as a dominant feature for the low frequency excitations both

in the liquid and in the solid state, is of universal validity.

C. Mode dispersion

The full calculated lattice phonon dispersion diagrams both for the HC and SR lattices

are portrayed in Fig. 11. In order to be able to compare the MD results with lattice

summation data, simulations were carried out at very low temperatures, at Γ1 = 104. In

these runs the particles are initially arranged in a perfect lattice and their thermal motion

does not disrupt the lattice in the course of the simulations. In Fig. 12 we display the MD

simulation results for these finite temperature lattices: the MD simulations and the results

of the lattice calculations are in full agreement.

The polarizations of the modes in the combined (in general not factorizable) cartesian and
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FIG. 11. Calculated mode dispersions for different propagation angles. (a) HC lattice, note that

the invariant mode frequency at k = 0 (pointed at by the arrows) remains invariant for any

M = m2/m1 and any angle; (b) SR lattice.

species space can be assessed from Figures 13, 14 and 15, 16, where the components of the

eigenvectors for the HC (SR) lattice modes along the 6 (4) eigendirections of the dynamical

matrix for a given k are shown. The lengths of the LA and TA labeled bars (components

of the eigenvectors) are proportional to the longitudinal and transverse displacements of

particles at position A. Samples are given for propagation angles along and off the principal

axes. Note that in the latter case no overall polarization direction can be assigned to the

displacement of the particles belonging to different species.
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Finally we address the question of how the collective mode dispersion depends on κ,

the screening parameter of the Yukawa potential and, in particular, how the transition to

the κ = 0 Coulomb limit occurs. Figure 17 shows that there is a smooth evolution of the

mode dispersions towards the Coulomb limit and towards the changeover of the longitudinal

acoustic mode into the characteristic quasiacoustic
√
k Coulombic behavior. It will be shown

in another publication, that this behavior is in sharp contrast to what happens in the 3D

case [63]).

IV. COMPARISONS AND CONCLUSIONS

The results of earlier analyses [10–15] of the collective mode structure of the YOCP have

established the close affinity of the mode structures in the strongly coupled liquid and in

the crystalline lattice states. More precisely, what has been found is that the QLCA model,

which essentially portrays the strongly coupled liquid as a superposition of randomly oriented

microcrystals and determines the eigenmodes as those of the averaged crystal, provides an

adequate description of wave propagation in the liquid. Whether such a simple picture would

prevail in the binary liquid where the non-random distribution of the particles belonging to

the two species is an issue as well, is not a priori obvious. The study presented in the previous

Sections shows, however, that this is the case. In the following, we discuss the relationship

between the phonon dispersion in the binary crystal, as calculated by lattice summation and

corroborated by MD simulations, and collective excitations in the binary liquid, as provided

by the QLCA description and the MD simulations. Judged by comparison with the results

of the MD simulations, the QLCA results are quite reliable, with two exceptions, that we

will discuss below. In comparing mode structures in the liquid and in the solid, the effect

of the different density ratios has to be kept in mind: while in the former the difference

between the n2 = n1 and n2 = n1/2 cases does not make a major difference, in the latter

the two different crystal structures (SR and HC) substantially affect the mode structure.

Focusing first on the low-k acoustic excitations, we see that there is an almost perfect

agreement between the liquid QLCA and MD sound speeds, on the one hand, and the

corresponding values in the liquid and in the two crystal structures studied, on the other

hand. The only difference of note, as we have already pointed out, arises in the case of

the SR lattice, due to its anisotropy, which results in a narrow band of sound speeds; in
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FIG. 12. (Color online) Current fluctuation spectra from MD simulation at Γ1 = 10, 000 (color

map) compared with dispersion from lattice calculations (black lines). (a) HC lattice; (b) SR

lattice.

the liquid, as represented by the QLCA, it is replaced by an angular average. The most

important result that emerges from all this is the fact that the low frequency excitations

are governed by oscillation frequency ω of the Virtual Average Atom (see Eq. 26) which

is created by the average charges and masses of all the components. This effect, as it was

discussed in some detail elsewhere [51], has its most dramatic manifestation for the effective

mass of the nominal plasma frequency of the binary (with respective masses m1 and m2),
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FIG. 13. (Color online) HC lattice: Mode polarizations for 0 deg propagation. Z = 0.7, M = 5,

α = 0◦ (k||x), ka = 0.2 in the panels, particle ”2” is the heavy one (see Fig. 7).

which in the weakly coupled case is formed, in general, through the “parallel connection”

of the two masses (1/meff = 1/m1 +1/m2), but which in the strongly coupled case becomes

the “series connection” of the two masses (meff = m1 + m2). While the VAA has been a

useful heuristic concept for liquid alloys [64] and for disordered systems [65–68], and also in

connection with self-diffusion [53], here we have been able to give a rigorous demonstration

through the QLCA of the emergence of this phenomenon. The MD simulation has shown (see

Figs. 1 – 3) that in the Γ → Γfreeze limit the VAA concept becomes “exact”, in the sense that

after the subtraction of the explicitly identifiable pair correlation h12 dependent correlational

contribution it determines the sound speed. With decreasing Γ the meff decreases, seemingly

marching towards weak coupling limit, but within the boundaries of our MD simulation

which covers only the Γ > 5 domain, the behavior is still essentially strongly coupled, in
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FIG. 14. (Color online) HC lattice: Mode polarizations for 90 deg propagation. Z = 0.7, M = 5,

α = 90◦ (k||y), ka = 0.5 in the panels.

that the decrease of meff from its high Γ value is quite slow. However, this decrease of meff

in the moderately coupled domain is not reflected by the QLCA model: there meff preserves

its high Γ value (Eq. 29) for any Γ. This is the first inadequacy of the QLCA and it is the

consequence of the fact that the appearance of the VAA structure is formally correlation

independent. Correlational effects appear only indirectly, through the model from which it is

derived and which adopts quasilocalization as its basis. That the quasilocalization can lead

to such a qualitative effect is a novel feature of the approximation, which manifests itself

only in binary systems. In contrast, in the single component system, the weakly coupled and

strongly coupled states differ through their explicit correlation function dependence only.

A hallmark of the binary system is the emergence of – one or more – optic modes with

a k = 0 gap frequency. In the liquid state there is only one gap frequency, corresponding
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FIG. 15. (Color online) SR lattice: Mode polarizations for 0 deg propagation. Z = 0.7, M = 5,

α = 0◦ (k||x), ka = 0.2 in the panels, particle “2” belongs to species “2”. Note the L/T and 1/2

polarization mixings.

to the two – longitudinal and transverse – modes that become degenerate at k = 0, due

to the isotropy of the liquid. In the crystal lattice this degeneracy may or may not be

lifted, depending on the local environment: it is in the SR crystal, but it survives in the

HC crystal. In addition, in the crystal lattice the number of optic modes increases with

the number of particles in the unit cell, which increases in oder to accommodate n2/n1

unequal 1 density ratios: hence an additional degenerate gap frequency in the HC crystal.

This latter is the “invariant mode” whose gap frequency is independent of the mass of the

lower density component, which remains inert in this mode. The mode does not have an

equivalent in the liquid. The other, “normal” mode does re-appear in the liquid, with the gap

frequency in the vicinity of the crystal equivalent (for the HC) or between the longitudinal

and transverse gaps (in the SR). It should be emphasized though that the approximation of

the liquid dispersion by angle averaging the lattice phonons is not equivalent to the QLCA.

This difference was already demonstrated for the YOCP: here it is much more pronounced.

The gap frequencies are not related to the VAA. In the liquid they can be expressed in
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FIG. 16. (Color online) SR lattice: Mode polarizations for 10 deg propagation. Z = 0.7, M = 5,

α = 10◦, ka = 0.5 in the panels, particle “2” belongs to species “2”.

terms of the nominal Einstein frequencies Ω̄AB (Eq. 15) and thus they follow the “parallel

connection” rule.

In the liquid state one can identify two upper (Ω̄I) and lower (Ω̄II) Einstein frequencies.

(Eq. 19) For high k values the two “acoustic” (longitudinal and transverse) modes of the liq-

uid merge into Ω̄II , while the two optic modes merge into Ω̄I . These latter cannot be directly

identified in the crystal lattice, but they appear in the expressions for its gap frequencies,

showing a good agreement with the QLCA calculated liquid Ω̄I and Ω̄II quantities.

According to the MD simulation result (Fig. 6) the slopes in the vicinity of k = 0

of the longitudinal acoustic and longitudinal optic modes match and the two modes fuse

into a single acoustic mode. There is no indication of this phenomenon within the QLCA

formalism.

As to the dependence on the screening constant κ, we see (Fig. 17) that the qualitative

features of the dispersion remain unaffected over a wide range of κ values, down to and

including the κ = 0 Coulomb limit.

A number of problems relating to the collective dynamics of the system have been iden-

32



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2   = 0.01
  = 0.02
  = 0.05
  = 0.1
  = 0.2
  = 0.5  

 

1

ka

FIG. 17. The dependence of the HC lattice dispersions on the Yukawa screening parameter (κ) at

m2 = 5m1 and Z2 = 0.7Z1.

tified, but have not been studied in this paper: the damping of the modes, the detailed

structures and the link between the various fluctuation spectra, the nature of the underlying

order in the liquid phase, lattice stability and structures, etc. These problems will have to

be investigated in future works.
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