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Abstract

The imposition of a cost constraint for constructing the optimal navigation structure surely rep-

resents a crucial ingredient in the design and development of any realistic navigation network. Pre-

vious works have focused on optimal transport in small-world networks built from two-dimensional

lattices by adding long-range connections with Manhattan length rij taken from the distribution

Pij ∼ r−α
ij , where α is a variable exponent. It has been shown that, by introducing a cost con-

straint on the total length of the additional links, regardless of the strategy used by the traveler

(independent of whether it is based on local or global knowledge of the network structure), the best

transportation condition is obtained with an exponent α = d+ 1, where d is the dimension of the

underlying lattice. Here we present further support, through a high performance real-time algo-

rithm, on the validity of this conjecture in three-dimensional regular as well as in two-dimensional

critical percolation clusters. Our results clearly indicate that cost constraint in the navigation

problem provides a proper theoretical framework to justify the evolving topologies of real complex

network structures, as recently demonstrated for the networks of the US airports and the human

brain activity.
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I. INTRODUCTION

In recent years, complex web-like structures have been the subject of intensive research

in several fields, including those focusing on social relationships, biological resources, and

transportation systems [1–7]. The topological features of these systems, which go beyond the

standard regular lattice geometry, have been described in terms of complex network struc-

tures. In this way, the theory of random graphs as well as concepts like “small-worldliness

and “scale-freeness” have been consistently used to characterize and classify the diverse com-

plex networks found in nature [8–13], providing interesting insights about their underlying

structure and functionality. Generally speaking, the geometrical features of complex net-

works are not necessarily associated or restricted to a given topological dimension in space.

However, a large number of real transport networks can be geographically represented or

spatially embedded [14–18], such as the US airport network [19], networks of streets and

highways [20], physical systems [21], mobile agents [22] and also the network of activity in

the brain [23, 24].

In science, nature and technology, the transport of information, energy, or even people,

can be optimized by adding long-range connections (shortcuts) to an underlying geographical

network. In recent studies [25, 26], it has been shown that the optimal design of transport

networks can be associated with the presence of special “critical” correlations between the

local structure and the long-range connections, added in such a way as to generate gradients

that permit the information to flow efficiently from source to target in the network. In

several real systems, however, transport is usually constrained by some involved cost. In

a subsequent study [27], it has been shown that, without loss of generality, transport with

local and global knowledge on a square lattice with cost limitation on the additional links

can be optimized through the inclusion of long-range connections between pairs of nodes

following a probability distribution that decays as a power-law of their Manhattan distance,

namely the the distance counted as the number of connections separating nodes in the

regular lattice. Efficient transport is then obtained when the exponent α of the power-

law distribution is tuned to 3 for a two-dimensional lattice, in sharp contrast with the

previous results for unconstrained local [25, 26] and global [28] navigation, where the optimal

value is α = 2 and 0, respectively. Considering the results for a one-dimensional ring and

a two-dimensional lattice, it is then conjectured that optimal transport is achieved when
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α = αe = d + 1 for a d-dimensional lattice. Subsequently, power-law distributions of long-

range connections on geographical networks have also been used to study navigation and

other types of processes [20, 29–34]. Moreover, as suggested in Ref. [27], the value of

α ≈ 3 for airline networks reported by Bianconi et al. [19] may be due to optimizing the

transportation system. Furthermore, recent studies by Gallos et al. measured empirically

α in the brain and found α = df + 1 ≈ 3 which may suggest that the brain is optimizing

connections with a cost constraint [23, 24].

In this work, we propose a new real-time algorithm for efficient study of the global naviga-

tion. Using this algorithm, simulation results could be obtained for large system sizes, up to

the order of 109 nodes. This is carried out by memorizing only the neighbors of a particular

node at each time step of the algorithm. Initially, optimal exponents have been obtained

using this algorithm, reproducing previous numerical estimates of both unconstrained and

constrained global navigation for one and two dimensions [25–29]. In addition, we present

here results of simulations for three-dimension global navigation and constrained global nav-

igation processes on a fractal lattice of dimension df , reinforcing the conjectured optimal

navigation exponent, αe = d+1. The paper is organized as follows. In Section II, we present

the basic model we use to study the navigation on spatially embedded networks, namely

the Kleinberg Model [25]. In Section III the real-time algorithm for global navigation on

spatially embedded networks is introduced. In Section IV, the conjecture previously re-

ported in the literature for the optimal navigation with global knowledge and without cost

limitation is further supported for one, two and three-dimensional systems. In addition,

results from simulations with cost limitation for one, two, and three dimensions, as well as

for two-dimensional percolation lattices, are presented and discussed. Later, in Section V

we present an analytic argument for the scaling behavior and leave the final summary for

Section VI.

II. NAVIGATION WITH LOCAL INFORMATION

Using local information and a decentralized algorithm, the problem of efficient navigation

in small-world networks was recently studied by Kleinberg [25]. Figure 1 shows a regular

two-dimensional square lattice with N = L × L nodes, where L is the linear size of the

lattice. Accordingly, each node i has a random long-range connection to a node j with
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probability P (rij) ∼ r−α
ij , where rij is the lattice (Manhattan) distance between node i and

j. This model follows the small-world paradigm, i.e., it is rich in short-range connections

and but has only few long-range connections. The optimal delivery time by a decentralized

algorithm based on the local information occurs when the exponent α = 2 [25].

The probability P (rij) that nodes i and j will have a long-range connection can be mapped

on a density distribution p(r), where r = rij . The number of nodes separated by a lattice

distance r from a given node in a d-dimensional lattice is proportional to rd−1 (see Fig. 1).

Thus we have

p(r) ∼ r−αrd−1. (1)

The normalization factor of Eq. (1) scales as

∫ L

1

r−αrd−1dr ∼



















Ld−α, α < d

lnL, α = d

(α− d)−1, α > d

(2)

where L = N1/d.

In order to improve the transport property of a lattice network, it is not necessary to

assign every node a long-range connection – which would be a high-cost strategy. Instead,

we assign a long-range connection to a small fraction of randomly selected nodes. This leads

to a dramatic improvement in the transport properties of the network, but at a much lower

cost. This model can be generated using the following steps:

(i) A regular d-dimensional lattice with N nodes is created with each node connected to

its 2d nearest neighbors.

(ii) A node i is randomly selected from the total N nodes to receive a long-range connec-

tion. The length of the long-range connection r is randomly generated using Eqs. (1)

and (2).

(iii) Another node j is also randomly selected from those nodes with the same lattice

distance r to node i. We then connect node i and node j. For example, Fig. 1 shows

eight nodes (on the dashed square box) that have the same lattice distance to node i

(r = 2). We randomly take node j from these eight nodes and connect it to node i.

(iv) Repeat steps (ii) and (iii) until the total number of long-range connections Nl reaches

a preset value, e.g., 10% of the total number of nodes N .
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III. THE REAL-TIME ALGORITHM FOR GLOBAL NAVIGATION

In many real-world optimal navigation problems, one has access to global information

when designing the optimal transport network. With global information, between any two

randomly selected nodes a and b, we can compute the shortest path length ℓab, which is in

sharp contrast with the delivery time based on local information. For the specific model, i.e.

the Kleinberg Model [25] introduced in Section II, we will show that ℓ follows approximately

a Gaussian distribution in the next section. Since almost all values lie close to the average

value in a Gaussian distribution, the average shortest path length 〈ℓ〉 of the Kleinberg Model

is thus the most important parameter to evaluate the overall shortest path length between

each pair of nodes, namely transport efficiency of the entire network.

The usual method of calculating 〈ℓ〉 is first to build the model with long-range connections,

and then measure the shortest path length ℓ for every pair of nodes. This method is fast

and effective for small systems, however, given the present-day computer resources, it is not

practical nor efficient to pre-build such a big system and then add long-range connections.

Hence, we introduce a real-time algorithm to calculate 〈ℓ〉 for large systems, which gives us

the same results as the common method previously described, but much faster. To evaluate

〈ℓ〉 for a network, the usual procedure is to calculate the shortest path length for every pair

of nodes. If we have many realizations of a network, however, we can randomly pick one

pair of nodes in one realization and calculate ℓ of this pair. Then, in another realization,

we randomly pick another pair of nodes and calculate ℓ again. After a large number of

realizations, we are then able to determine 〈ℓ〉. Since for every realization the network is

created by using the same parameters, 〈ℓ〉 from many different realizations reflects the result

from different pairs of nodes in a single network.

For a single realization of the real-time algorithm, it is not necessary to create the entire

network. Starting from a randomly-selected node a, we generate its neighbors in real time

(time step). For example, in a square lattice, node a always has 4 nearest neighbors (or

2d nearest neighbors on a d-dimensional lattice), if node a is on the boundary, we generate

its neighbors using a periodic boundary condition. After that, we consider the additional

long-range connections of node a, the one that it receives according to step (ii), and the

others that eventually start from another node, according to step (iii). As long as we have

all the available neighbors of node a (including connections to both the nearest- and long-
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range neighbors), we record and classify them as shell one nodes, meaning that they are one

link apart from node a. After that, we generate all the neighbors of the shell one nodes not

generated yet and classify them as shell two nodes. We repeat this process until we reach

the destination node b, which is also randomly selected. We count the number of steps from

node a to b during this process. In this way, we find ℓab between node a and b. We repeat

many realizations to find the average 〈ℓ〉, until we generate a smooth curve 〈ℓ〉 vs α for

different values of α.

A crucial step of this algorithm is when we consider the additional long-range connections

of node a. When we add long-range connections to the network we always randomly select

two nodes with the lattice distance r, thus the number of additional long-range connections

kl for each node obeys a Poisson distribution,

f(kl) =
λkle−λ

kl!
, (3)

where λ is the average number of long-range connections for each node, and is calculated as

λ = 〈kl〉 =
2Nl

N
, (4)

where Nl is the total number of long-range connections, which can be a preset value.

Using the Poisson distribution (3), we generate the number of long-range connections kl

for node a. It must be noted that kl can be greater than one, this means we do not limit the

number of long-range connections for each node. This is a little different from the original

model of Kleinberg that each node has one long-range connection. From Eqs.(1) and (2),

we assign r to each long-range connection of node a. Finally, as described in step (iii), we

choose all the long-range neighbors for node a.

In this real-time algorithm, we do not build the entire network, but only generate the

neighbors needed for each step. This algorithm saves computer resources and, as we shall see

later, produces exactly the same results as those from the more usual method of building

the entire network. This real-time algorithm makes the simulation of very large systems

possible (e.g., 109 nodes).

IV. RESULTS AND DISCUSSION

We note that when 〈ℓ〉 is based on the global information of the network it does not

demonstrate the uniqueness of the navigation based on local information described by Klein-
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berg. In this case, the optimal 〈ℓ〉 is achieved at αe = 0 [28] which can be understood from a

simple analysis. When α = 0, the length of the long-range connections does not depend on

the distance, and thus the process of adding long-range connections is simply the same as

the procedure used to create a Watts- Strogatz (WS) network [11] or even an Erdős-Rényi

(ER) network [8, 9]. In this situation, the average shortest path length scales as a logarithm

function of the network size, 〈ℓ〉 ∼ lnN .

Figure 2 shows 〈ℓ〉 for three different lattices (d = 1, 2, and 3) with the same linear size

L = 1000, in which a fixed fraction (10%) of nodes receive long-range connections. We find

that the optimal 〈ℓ〉 indeed emerges at αe = 0. Moreover, when α < d (for d = 1, 2, and 3),

〈ℓ〉 appears almost the same as the results for α = 0, which means in this regime 〈ℓ〉 ∼ lnN ,

and that the transport property behaves as small-world networks, see also Ref. [28, 34].

In real-world situations, however, the financial cost of adding links always plays an impor-

tant role when improving the transport in an existing network. Consider, for example, the

case of an existing network with a transport efficiency that needs improvement [35]. Creat-

ing a large number of long-range connections is not feasible because the available resources

are limited. This cost limitation can be modeled by fixing the total length of additional

long-range connections to a certain number Λ ≡
∑

rij. We further assume that the total

cost Λ will be proportional to the size N of the network, i.e., Λ = AN , where A is a con-

stant [27]. This assumption is justified since bigger systems should obtain proportionally

larger budgets for improvement. Moreover, the total length of the links in the original lattice

is proportional to N (number of nodes).

When the total cost is fixed, there is a trade-off between the length and the number of

long-range connections Nl. If the total cost is fixed at Λ = AN = ALd, the available number

of long-range connections will be

Nl = Λ/〈r〉, (5)

where 〈r〉 is the average length of long-range connections, which can be calculated from (1)

for a given α as,

〈r〉 ∼

∫ L

1

rd−αdr ∼







































L, α < d

L/ lnL, α = d

Ld+1−α, d < α < d+ 1

lnL, α = d+ 1

1, α > d+ 1.

(6)
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Note that in Eq. (6), 〈r〉 decreases and Nl increases, when α increases. When α is small

(α 6 d), 〈r〉 ∼ L and Nl = Λ/〈r〉 ∼ Ld−1, only a small fraction (in fact zero fraction in

the limit L → ∞) of nodes are needed to have long-range connections in order to improve

the transport of the network. When α > d + 1, however, a large number of long-range

connections are available (Nl ∼ Ld) to improve the transport of the network, but each

long-range connection is short, thus, these long-range connections do not efficiently improve

transport. Thus, the intermediate regime of α can be expected to be useful and optimize

the transport on the network, i.e., d < α 6 d+ 1.

Figure 3 (a) shows the distribution P (ℓ) of shortest path length ℓ for different α on a

two-dimensional lattice with additional long-range connections of total length N = L2. Note

that P (ℓ) follows an approximate Gaussian distribution for different α. Consequently, since

〈ℓ〉 has its minimum value when α = d + 1 = 3, the optimal navigation is achieved at that

α value. Figure 3 (b) shows the normalized distribution P (ℓ) for different α. The different

curves in Fig. 3 (a) approximately collapse to a single curve when scaled appropriately.

We study additional quantitative information about the transport properties of the net-

work by performing extensive simulations for different system sizes N and different values

of α. We first focus on identifying the optimal transport conditions on regular lattices, i.e.,

d = 1, d = 2 and d = 3. In each case, we simply add long-range connections to the regular

lattice. The procedure is almost the same as in the Kleinberg navigation model, except that

in step (iv) we stop adding the long-range connections when the total length of long-range

connections
∑

rij reaches a preset value Λ = AN , instead of a fixed number of long-range

connections. After that, we calculate the average shortest path 〈ℓ〉 over all realizations of

pairs of nodes.

From the results in Figs. 4 (a), (b) and (c), we see the presence of a minimum 〈ℓ〉 for

different system sizes at the same value of the exponent α = d + 1, when N → ∞. Thus,

based on the global knowledge of the network structure, the most efficient navigation occurs

at αe = d+ 1.

Thus far for Kleinberg model with global information available, the transport property

of the network can be presented by the average shortest path length 〈ℓ〉. 〈ℓ〉 changes with

exponent α and reaches a minimal value where optimal transport occurs. After we introduce

cost to each long range link, the cost of total long-range connection Λ becomes a crucial

parameter to affect the optimal transport exponent αe. If Λ is not constrained, i.e. Λ → ∞,
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from Fig. 2, the optimal transport occurs at α = 0. And with cost constrained Λ ∼ N , αe

goes to d+1. Therefore, in the intermediate regime, there exists a crossover between αe = 0

and αe = d + 1. It must be noted that the optimal delivery time without cost constrained

studied by Kleinberg occurs at α = d, which is based on local information with decentralized

algorithm [25]. While we study the average shortest path length 〈ℓ〉 based on the global

information with cost constrained and find that the minimal 〈ℓ〉 occurs at α = d + 1. We

also found that the optimal delivery time with cost constrained based on local information

occurs at α = d+ 1 in the previous work [27].

To further test the optimal navigation condition, α = d + 1 with cost constrained, we

plot 〈ℓ〉 vs L for different α. Figures 5 (a), (b) and (c) clearly show that for α 6= d+ 1 the

shortest path length 〈ℓ〉 follows a power-law with L. For α = d + 1, 〈ℓ〉 follows power-law

with a smaller exponent when d = 1 (Fig. 5 (a)), and it appears to be less than a power-law

for d > 1 (Figs. 5 (b) and (c)).

Figures 4 (d) and 5 (d) show the analogous optimal navigation results when the substrate

is a fractal. Specifically, the fractal is generated from an original two-dimensional regular

lattice. We randomly remove the nodes with a probability 1 − p = q. We increase q from

0 until a critical percolation occurs [37, 38]. In this critical condition, q = qc ∼= 0.4 a

giant cluster extends from top to bottom and from left to right across the lattice, which

is a fractal. The dimension of this giant cluster is df ∼= 1.9. In Ref. [26] it is shown

that, for local navigation and without constraints on total length, the optimal transport is

for α = df . In order to improve the transport with global knowledge on this fractal, we

append additional long-range connections to the cluster using the same procedure as in a

two-dimensional regular lattice. The difference here is that the total length of long-range

connections is fixed to be ANf , where Nf is the number of nodes in the giant component of

the fractal, which can be calculated as Nf = Ldf . From Figs. 4 (d) and 5 (d), we see that

optimal navigation occurs at df + 1 ∼= 2.9 when N → ∞. We also tested another fractal

lattice, i.e., the Sierpinski carpet [39] with df = 1.89 and find that the optimal navigation

is achieved at df + 1 ∼= 2.89 when N → ∞. Note that the real-time algorithm can not be

used on these critical percolation lattices because the shortest path length is calculated on

the giant cluster which must be pre-built up.

Figure 5 (a) suggests that in a one-dimensional lattice 〈ℓ〉 always follows a power-law

dependence as a function of system sizes. For d > 1, as seen in Figs. 5 (b) and (c), however,

9



〈ℓ〉 scales as a power law with the system linear size L for all values of α except for α = d+1

for which the scaling seems to be less than a power law. For d > 1, we test two possible forms

for 〈ℓ〉 vs L, (i) a power law and (ii) a logarithmic law. Figure 6 (a) shows the successive

slopes δs obtained from ln〈ℓ〉 vs lnL for d = 2, testing whether 〈ℓ〉 follows a power-law

or not. Here we assume 〈ℓ〉 ∼ Lδs and see that δs remains approximately constant when

α 6= d + 1, but decreases when α = d + 1 = 3. This suggests that 〈ℓ〉 follows a power-law

only when α 6= d + 1. Similar results have been obtained for d = 3 and d = df . We next

assume that 〈ℓ〉 vs L follows a logarithmic law with exponent γs, i.e., 〈ℓ〉 ∼ lnγs L. In Fig.

6 (b) we plot the data assuming this function in a double logarithmic plot. As can be seen,

apart from the case α = 3, which fits quite well as a straight line, for the other values of α,

〈ℓ〉 increases faster. Indeed, we plot in Fig. 6 (c) the successive slopes γs obtained from the

plot of ln〈ℓ〉 vs ln lnL for d = 2 (Fig. 6 (b)). We see that γs keeps almost a constant value

when α = d+1 = 3 but it increases when α 6= d+1. This suggests that 〈ℓ〉 follows a power

of a logarithmic dependence when α = d + 1. Similar results have been obtained for d = 3

and df = 1.9.

V. ANALYTIC ARGUMENTS

Besides the support from simulation results, we present analytic arguments suggesting

that for N → ∞ the optimal navigation is achieved for α = d + 1. Figure 5 (a) shows the

one-dimensional case in which the scaling of 〈ℓ〉 with L is a power-law for different α, and

that the power-law is smallest when α = 2. Li et al. [30] provides an exact solution for the

optimal navigation with a total cost restriction for the one-dimensional case. They conclude

that, for d = 1, the optimal navigation occurs at α = 2 when N → ∞.

Next, we suggest a simple analysis showing that, for d > 1, α = d+ 1 is indeed the only

case for which a logarithmic scaling of 〈ℓ〉 with L can occur while for α 6= d+1 a power-law

with L must hold. For a fixed total cost Λ = ALd, the density of long-range connections

is defined as ρ = Nl/N , where Nl is the available number of long-range connections in the

lattice. From Eq. (5) and Λ = AN , we find that ρ = A〈r〉−1. From Eq. (6), it follows that

for d ≤ α < d + 1, ρ ∼ Lα−d−1 and, for α < d, 〈r〉 ∼ L, leading to ρ ∼ L−1. So when

α < d + 1, the density ρ of long-range connections decreases as a power-law with L. As a

consequence of this power-law decrease in density, 〈ℓ〉 must increase as a power of L. To
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verify this, we bound 〈ℓ〉 by the relation 〈ℓ〉 > ρ−1/d. Here ρ−1/d is from the small world

model in which α = 0, with a fixed concentration of links 〈ℓ〉 ∼ ρ−1/d lnL [36]. Since, for

0 < α < d + 1, 〈ℓ〉 decreases with increasing α, the bound 〈ℓ〉 > L(d+1−α)/d is rigorous and

〈ℓ〉 in this range must scale as a power of L. For α > d + 1 and N → ∞, from Eq. (6)

〈r〉 ∼ 1 and the density becomes independent of the system size, i.e., ρ ∼ 1. When this

is the case, the effect of the constraint Λ on navigation is negligible. Thus the navigation

on the networks is similar to the original lattice without additional long-range connections,

therefore 〈ℓ〉 ∼ L. Thus we conclude that, as Figs. 5 (b), (c) and (d) show, when α = d+1,

the increase with L of 〈ℓ〉 is less rapid than a power-law and may scale logarithmically with

L.

VI. SUMMARY

We analyze the navigation with global knowledge (knowing the shortest path between any

two sites) in d-dimensional lattices. We assume additional long range links following a power

law distribution, p(r) ∼ r−α with the total length constraint proportional to system size, Ld.

Our results suggest that the optimal navigation is obtained when the exponent α = d + 1

for one-, two-, and three-dimensional lattices, and α = df +1 for fractal lattices. This result

can be compared to the optimal local navigation without cost constraint found by Kleinberg

[25] to be for α = d. In the situation when α is near the critical threshold, the structure

of the long-range connections form a type of gradient that the whole network reaches the

optimal navigation and below this critical value the network becomes more homogeneous.

While with the condition that the total cost is constrained, the critical threshold is shifted

to d + 1 because the network reaches a new state that the heterogeneity of the length

of connections is maximized at this new critical point under the competitive equilibrium

between the length and number of long-range connections. We also find that in the optimal

condition (α = d + 1), the number of nodes needed to have long range links is extremely

low and represents a zero fraction of the total number of nodes. We also studied the scaling

of the shortest path 〈ℓ〉 with L and find that while for α 6= d+ 1 the scaling is a power law

11



with L, for α = d+ 1 the scaling is of logarithmic dependence on L (except for d = 1).
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r
i j

ij

FIG. 1. (Color online) Two-dimensional square lattice with long-range connections. Each node

has 4 short-range connections to its nearest neighbors. A long-range connection is added to a

randomly chosen node i with probability proportional to r−α. Here r = 2, there are 8 nodes (on

dashed square box) with the same lattice distance r to node i, and we randomly choose the node

j from these 8 nodes to be connected to node i.
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FIG. 2. (Color online) A fraction of 10% of nodes in a regular d-dimensional (d = 1, 2 and 3) lattice

with linear size L = 1000 are randomly selected to receive long-range connections with different

α. As seen, the optimal 〈ℓ〉 is achieved for α = 0. The results are averaged over 4,000 realizations

for each network. Note, when α increases above the value of d, 〈ℓ〉 increases dramatically. For the

dependence of 〈ℓ〉 on L for different α, see Refs. [28, 32, 34].
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FIG. 3. (Color online) (a) Distribution and (b) normalized distribution of the shortest path length

ℓ for two-dimensional lattice (L = 1000) with additional long-range connections where the total

length Λ of the added long-range connections is limited to N = L2. Note, the non-monotonic

behavior with respect to α. For α = d + 1 = 3 the location of the peak of the distribution is the

smallest. In (b), 〈ℓ〉 is the mean ℓ and σ is the standard deviation for each curve. We sampled

100,000 network realizations for each α.
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FIG. 4. (Color online) Average shortest path length 〈ℓ〉 as a function of α for (a) one-, (b) two-, (c)

three-dimensional lattices and (d) fractal (df ∼= 1.9) with additional long-range connections taken

from the power-law distribution, Eq.(1) as a function of α. The total length Λ of the added long-

range connections is limited to 10N for one-dimensional lattice, N for two- and three-dimensional

lattices and Nf for the fractal. The plots suggest that the optimal shortest path length is achieved

at α = d+ 1 for regular lattices and α = df + 1 for the fractal. Note that (b) is similar to Fig. 3

in Ref. [27] but with larger system sizes. The results are averaged over 4000 realizations for the

three smaller L and 400 realizations for the largest L.
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FIG. 5. (Color online) Average shortest path length 〈ℓ〉 as a function of system linear size L with

different α for (a) one-, (b) two-, (c) three-dimensional and (d) fractal (df ∼= 1.9) lattices with

additional long-range connections taken from the power-law distribution, Eq.(1). The total length

Λ of the added long-range connections is limited to 10N for one-dimensional lattice, N for two-

and three-dimensional lattices and Nf for the fractal. The plots suggest that the optimal shortest

path length is achieved at α = d+ 1 for regular lattices and α = df + 1 for the fractal. For d = 1,

the slope of the fitting line δs ∼= 0.54 for α = d+1 = 2, δs ≈ 0.84 for α = 1.5 and 2.5, and δs ≈ 1 for

α = 0, 1 and 3. For d = 2, δs ≈ 0.60 for α = 0 and 1, δ ∼= 0.71 for α = 4, however for α = d+1 = 3,

〈ℓ〉 seems to follow a weaker dependence from a power law, more likely a logarithmic law (see Fig.

6 (b)). For d = 3, δs ≈ 0.46 for α = 0, 1 and 2, δs ∼= 0.40 for α = 3, δs ∼= 0.45 for α = 5, however

for α = d + 1 = 4, 〈ℓ〉 seems to follow a logarithmic law. For d = 1.9, δs ≈ 0.75 for α = 0 and

1, δ ∼= 0.89 for α = 4, however for α = df + 1 = 2.9, 〈ℓ〉 seems to follow a logarithmic law. The

results are averaged over 4000 realizations for each α for d = 1, 2 and 3 and 1000 realizations for

d = 1.9.
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FIG. 6. (Color online) Successive slopes for d = 2 of (a) δs obtained from ln〈ℓ〉 vs lnL (of Fig. 5

(b)), (b) 〈ℓ〉 as a function of lnL in a double logarithmic plot and successive slopes of (c) γs obtained

from ln〈ℓ〉 vs ln lnL taken from (b). The total length Λ of the added long-range connections is

limited to N = L2. Note that in (a) for α = d+1 = 3, δs decreases with L while for other values of

α, δs is roughly constant. In (c) for α = d+ 1 = 3, γs keeps roughly constant and for other values

of α, γs increases with L. This suggests that for α = 3 the relation between 〈ℓ〉 and L is a function

that increases less than a power-law and more likely that 〈ℓ〉 increases logarithmically with L.
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