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This paper underscores the conjecture that intrinsic computation is maximal in systems at the
“edge of chaos.” We study the relationship between dynamics and computational capability in
Random Boolean Networks (RBN) for Reservoir Computing (RC). RC is a computational paradigm
in which a trained readout layer interprets the dynamics of an excitable component (called the
reservoir) that is perturbed by external input. The reservoir is often implemented as a homogeneous
recurrent neural network, but there has been little investigation into the properties of reservoirs
that are discrete and heterogeneous. Random Boolean networks are generic and heterogeneous
dynamical systems and here we use them as the reservoir. An RBN is typically a closed system;
to use it as a reservoir we extend it with an input layer. As a consequence of perturbation, the
RBN does not necessarily fall into an attractor. Computational capability in RC arises from a
trade-off between separability and fading memory of inputs. We find the balance of these properties
predictive of classification power and optimal at critical connectivity. These results are relevant to
the construction of devices which exploit the intrinsic dynamics of complex heterogeneous systems,
such as biomolecular substrates.

I. INTRODUCTION

Reservoir computing is an emerging paradigm that
promotes computing using the intrinsic dynamics of an
excitable system called the reservoir [1]. The reservoir
acts as a temporal kernel function, projecting the input
stream into a higher dimensional space, thereby creating
features for the readout layer. To produce the desired
output, the readout layer performs a dimensionality re-
duction on the traces of the input signal in the reservoir.
Two advantages of RC are: computationally inexpensive
training and flexibility in reservoir implementation. The
latter is particularly important for systems that cannot
be designed in a top-down way by traditional engineering
methods. RC permits computation with physical sys-
tems that show extreme variation, interact in partially
or entirely unknown ways, allow for limited functional
control, and have a dynamic behavior beyond simple
switching. This makes RC suitable for emerging uncon-
ventional computing paradigms, such as computing with
physical phenomena [2] and self-assembled electronic ar-
chitectures [3]. The technological promise of harnessing
intrinsic computation with RC beyond the digital realm
has enormous potential for cheaper, faster, more robust,
and more energy-efficient information processing technol-
ogy.

Maass et al. [4] initially proposed a version of RC called
Liquid State Machine (LSM) as a model of cortical micro-
circuits. Independently, Jaeger [5] introduced a variation
of RC called Echo State Network (ESN) as an alterna-
tive recurrent neural network approach for control tasks.
Variations of both LSM and ESN have been proposed
for many different machine learning and system control
tasks (Lukosevicius and Jaeger [1]). Insofar, most of the
RC research is focused on reservoirs with homogeneous

in-degrees and transfer functions. However, due to high
design variation and the lack of control over these de-
vices, most self-assembled systems are heterogeneous in
their connectivity and transfer functions.
Since RC can be used to harness the intrinsic com-

putational capabilities of physical systems, our study is
motivated by three fundamental questions about hetero-
geneous reservoirs:

1. What is the relationship between the dynamical
properties of a heterogeneous system and its com-
putational capability as a reservoir?

2. How much does a reservoir need to be perturbed
to adequately distribute the input signal? It may
be infeasible to perturb the entire system. Also,
a single-point perturbation may not propagate
throughout the system due to its internal topol-
ogy. Thus, we consider the size of the perturbation
necessary to adequately distribute the input signal.

3. In a physical RC device, it may be difficult to ob-
serve the entire system. How much of the system
and which components ought to be observed to ex-
tract features about the input stream?

We model the reservoirs with Random Boolean Net-
works (RBN), which are chosen due to their heterogene-
ity, simplicity, and generality. Kauffman [6] first intro-
duced this model to study gene regulatory networks. He
showed these Boolean networks to be in a complex dy-
namical phase at “the edge of chaos” when the average
connectivity (in-degree) of the network is 〈K〉 = 2 (criti-
cal connectivity). Rohlf et al. [7] showed that with near-
critical connectivity information propagation in Boolean
networks becomes independent of system size. Packard
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[8] used an evolutionary algorithm to evolve Cellular Au-
tomata (CA) for solving computational tasks. He found
the first evidence that connects critical dynamics and op-
timal computation in CA. Detailed analysis by Mitchell
et al. [9] refuted this idea and accounted genetic drift,
not the CA dynamics, for the evolutionary behavior of
the CA. Goudarzi et al. [10] studied adaptive computa-
tion and task solving in Boolean networks and found that
learning drives the network to the critical connectivity
〈Kc〉 = 2.
Snyder et al. [11] introduced RBNs for RC, and found

optimal task solving in networks with 〈K〉 > 〈Kc〉. Here,
using a less restrictive RC architecture, we find that
RBNs with critical dynamics provided by 〈Kc〉 tend to
offer higher computational capability than those with or-
dered or chaotic dynamics.
To be suitable for computation, a reservoir needs to

eventually forget past perturbations, while possessing dy-
namics which respond in different ways due to different
input streams. The first requirement is captured by fad-

ing memory. The separation property captures the sec-
ond requirement and computes a distance measurement
between the states of two identical reservoirs after be-
ing perturbed by two distinct input streams. It has been
hypothesized that computational capabilities are optimal
when the separation property is highest, but old input is
eventually forgotten by the reservoir, which occurs when
fading memory is lowest [12]. We extend the measure-
ments described in [12, 13] to predict the computational
capability of a reservoir in finite time-scales with a short-
term memory requirement.

II. MODEL

A Reservoir Computing device is made up of three
parts: input layer, reservoir, and readout layer [cf.
Fig. 1]. The input layer excites the reservoir by pass-
ing an input signal to it, and the readout layer interprets
the traces of the input signal in the reservoir dynamics to
compute the desired output. In our model, the reservoir
is a Random Boolean Network (RBN). The fundamental
subunit of an RBN is a node with K input connections.
At any instant in time, the node can assume either of the
two binary states, “0” or “1.” The node updates its state
at time t according to a K-to-1 Boolean mapping of its
K inputs. Therefore, the state of a single node at time
t + 1 is completely determined by its K inputs at time

t and by one of the 22
K

Boolean functions used by the
node. An RBN is a collection of N such binary nodes.
For each node i out of N nodes, the node receives Ki in-
puts, each of which is connected to one of the N nodes in
the network. In this model, self-connections are allowed.
The network is random in two different ways: 1)

the source nodes for an input are chosen from the
N nodes in the network with uniform probability and
2) the Boolean function of node i is chosen from the

22
Ki

possibilities with uniform probability. Each node

sends the same value on all of its output connections
to the destination nodes. The average connectivity will

be 〈K〉 = 1
N

∑N
i=1 Ki. We study the properties of

RBNs characterized by N nodes and average connectiv-
ity 〈K〉. This refers to all the instantiations of such
RBNs. Once the network is instantiated, the collec-
tive time evolution at time t can be described as using
xt+1
i = fi(x

t
1, x

t
2, . . . , x

t
Ki

), where xt
i is the state of the

node i at time t and fi is the Boolean function that gov-
erns the state update of the node i. The nodes are up-
dated synchronously, i.e., all the nodes update their state
according to a single global clock signal.
From a graph-theoretical perspective, an RBN is a di-

rected graph with N vertices and E = 〈K〉N directed
edges. We construct the graph according to the random
graph model [14]. We call this model a heterogeneous
RBN because each node has a different in-degree. In
the classical RBN model, all the nodes have identical
in-degrees and therefore are homogeneous. The original
model of Kauffman [6] assumes a static environment and
therefore does not include exogenous inputs to the net-
work. To use RBNs as the reservoir, we introduced I ad-
ditional input nodes that each distribute the input signals
to L randomly picked nodes in the network. The source
nodes of Ki links for each node i are randomly picked
from N nodes with uniform probability. The input nodes
are not counted in calculating 〈K〉. For online computa-
tion, the reservoir is extended by a separate readout layer
with O nodes. Each node in the readout layer is con-
nected to each node in the reservoir. The output of node
o in the readout layer at time t is denoted by yto and is

computed according to yto = sign
(

∑N

j=1 αjx
t
j + b

)

. Pa-

rameters αj are the weights on the inputs from node j in
the reservoir to node o in the readout layer, and b is the
common bias for all the readout nodes. Parameters αj

and b can be trained using any regression algorithm to
compute a target output [5]. In this paper, we are con-
cerned with RBN-RC devices with a single input node,
and a single output node.

III. MEASURES

A. Perturbation Spreading

RBNs are typically studied as closed systems in which
the notion of damage spreading is used to classify the
RBNs’ dynamics as ordered, critical, or chaotic [15]. Be-
cause our model requires external perturbations, we must
extend the notion of damage spreading to account for
RBNs which are continuously excited by external input.
Since an RBN used as a reservoir is not a closed system,
the propagation of external perturbations may behave
distinctly from the propagation of damage in the initial
states of the RBN. Let M be an RBN with N nodes and
average connectivity 〈K〉. Let ua be an input stream, and
ub be a variation of ua. Then the perturbance spread-
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FIG. 1. Schematic of a reservoir computing system. The
input layer delivers the input signals to random nodes in-
side the reservoir. The readout layer receives output signals
from random nodes inside the reservoir. The reservoir itself
is made of a collection of computing nodes that are randomly
interconnected. The reservoir creates a representation of the
input signals that can be read and classified by the readout
layer. Learning is performed by training only the readout
layer nodes and connections.

ing of M with an input stream ua and its variation ub

is P(M, ua, ub) =
H(A,B)

N
, where A and B are the states

of the RBN after being driven by input streams ua and
ub respectively, and H(A,B) is the Hamming distance
between the states.
For a dynamical system to act as a reservoir, it needs

to be excited in different ways by very different input
streams, while eventually forgetting past perturbations.
These measurements are captured by the notions of sep-
aration and fading memory in [12]. However, to account
for the importance of short-term memory in the reservoir
and finite-length input streams, we are specifically inter-
ested in the separation of the system τ time steps in the
past, within an input stream of length T .
The ability of the RBN to separate two input streams

of length T , which differ for only the first T − τ time
steps, is given by

Sτ (M, T ) = P(M, u, v), (1)

where T = |u| = |v| and

vi =

{

ūi, if i < T − τ

ui, otherwise.

In order for an RC device to be able to generalize, a
reservoir needs to eventually forget past perturbations.
Thus we define:

F(M, T ) = P(M, u, w), (2)

where T = |u| = |w| and

wi =

{

ūi, if i = 0

ui, otherwise.

Natschläger et al. [12] found that computational ca-
pability of recurrent neural network reservoirs are great-
est when the difference between separation and fading

memory are largest and that this coincides with critical
dynamics. Therefore, we want fading memory to be low,
while separation is high. We define the computational ca-
pability of a reservoir M over an input stream of length
T , τ time steps in the past as:

∆(M, T , τ) = Sτ (M, T )−F(M, T ). (3)

B. Entropy and Mutual Information

Information theory [16] provides a generic framework
for measuring information transfer, noise, and loss be-
tween a source and a destination. The fundamental quan-
tity in information theory is Shannon information defined
as the entropy HS of an information source S. For a
source S that takes a state {si|1 ≤ i ≤ n} with probabil-
ity p(si), the entropy is defined as:

HS = −

n
∑

i=1

p(si) log2 p(si). (4)

This is the amount of information that S contains. To
measure how much information is transferred between a
source and a destination, we calculate the mutual infor-
mation I(S : D) between a source S and a destination D
with states dj . Before we can calculate I(S : D) we need
to calculate a joint entropy of the source and destination
as follows:

HSD = −
n
∑

i=1

m
∑

j=1

p(si, dj) log2 p(si, dj). (5)

Now the mutual information is given by:

I(S : D) = HS +HD −HSD. (6)

We will see later how we can use entropy and mutual
information to see how much information from the input
signals are transferred to the reservoir and how much
information the reservoir can provide about the output
while it is performing computation.

C. Tasks

We use the temporal parity and density classification
tasks to test the performance of the reservoir systems.
According to the task, the RC system is trained to con-
tinuously evaluate n bits which were injected into the
reservoir beginning at τ + n time steps in the past.

1. Temporal Parity

The task determines if n bits τ + n to τ time steps in
the past have an odd number of “1” values. Given an
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input stream u, where |u| = T , a delay τ , and a window
n ≥ 1,

An(t) =

{

u(t− τ), if n = 1
⊕n−1

i=0 u(t− τ − i), otherwise,

where τ + n ≤ t ≤ T − τ − n.

2. Temporal Density

The task determines whether or not an odd number
of bits τ + n to τ time steps in the past have more “1”
values than “0.” Given an input stream u, where |u| = T ,
a delay τ , and a window n = 2k + 1, where k ≥ 1,

Bn(t) =











1, if 2

n−1
∑

i=0

u(t− τ − i) > n

0, otherwise,

where τ + n ≤ t ≤ T − τ − n.

3. Training and Evaluation

For every system, we randomly generate a training set
ST and testing set SG. For each stream v ∈ ST or u ∈ SG,
|v| = |u| = T . The size of the training and testing sets
are dependent on n, and determined by the following
table.

n |ST | |SG|
1 50 50
3 150 150
5 300 150
7 500 150
9 500 150

We train the output node with a form of stochastic
gradient descent in which the weights of the incoming
connections are adjusted after every time step in each
training example. Given our system and tasks, this form
of gradient descent appears to yield better training and
testing accuracies than the conventional forms. We use
a learning rate η = 0.01, and train the weights for up
to 20,000 epochs. Since the dynamics of the underly-
ing RBN are deterministic and reset after each training
stream, we terminate training early if an accuracy of 1.0
is achieved on ST . The accuracy of an RC device on a
stream v ∈ ST is determined by the number of times
that the output matches the expected output as speci-
fied by the task divided by the total number of values
in the output stream. The accuracy on each input set
is summed together and divided by the total number of
input streams in the set to calculate the current training
accuracy T . After the weights of the output layer are
trained on the input streams in ST , they remain fixed.
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FIG. 2. (Color online) The computational capability ∆ of
RBN reservoirs with N = 500, L ∈ [1, N ] and τ ∈ [1, 9].
Parameters 〈K〉 and T are: 〈K〉 = 1, T = 10 (a), 〈K〉 =
1, T = 100 (b), 〈K〉 = 2, T = 10 (c), 〈K〉 = 2, T =
100 (d), 〈K〉 = 3, T = 10 (e), 〈K〉 = 3, T = 100 (f). The
computational capability ∆ varies according to 〈K〉 ∈ {1, 2, 3}
and T = 10 in the left column and T = 100 in the right

column.

We then drive the reservoirs with input streams u ∈ SG

and record the number of times that the output of the
RC device matches the expected output. The generaliza-
tion capability G is then computed by dividing the total
number of times in which the output of the readout layer
matches the correct output, by the total number of cor-
rect outputs. This process is averaged over all streams in
SG. In general, we are interested in finding the reservoirs
that maximize G.

IV. RESULTS

A. Computational Capability

The computational capability as predicted by ∆ are de-
pendent on the properties of the reservoir M, the length
of the input stream T , and the memory τ required by the
reservoir. The properties ofM are determined by the dy-
namics which are due primarily to 〈K〉 and the number
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FIG. 3. (Color online) The computational capability ∆ of
RBN reservoirs M with N = 500 and 〈K〉 ∈ [1, 4] summed

over L ∈ [1, 500]. These are calculated as:
∑

N

L=1
∆(M,T , τ ),

where T = 10 (a), and
∑

N

L=1
∆(M,T , τ ), where T = 100 (b).

The dashed curve is a spline fit to the highest ∆, illustrat-
ing that near-critical connectivity maximizes computational
capability, particularly in high T .

of nodes L which the input directly perturbs. For each
L, 〈K〉, T , and τ we calculate the average ∆(M, T , τ) of
50 instantiations of M. In figure 2 we present these re-
sults for 〈K〉 ∈ {1, 2, 3}. To produce figure 3 we sum over
∆(M, T , τ) for all L. The dashed curves in figures 3(a)
and 3(b) are spline fits which highlight the greatest ∆
values. In figures 2 and 3 we see that RBNs with criti-
cal connectivity 〈Kc〉 = 2 tend to provide the highest ∆.
A high ∆ signifies that the reservoir dynamics have the
ability to separate different input streams, while having
dynamics which are determined more by recent input,
than past input. In contrast, a low ∆ signifies either or
both of the following: i) the reservoir’s dynamics are too
frozen to separate different input streams effectively or ii)
traces of early perturbations are never forgotten by the
reservoir. The consequence of i) is the inability to com-
pute difficult tasks, such as An or those which require
long short-term memory. The consequence of ii) is great
difficulty in generalizing; if past information which is ir-
relevant to computing the correct output in the readout
layer dominates the dynamics of the reservoir, the output
layer will be unable to classify the dynamics caused by
the more relevant, recent input.
We see that 〈K〉 = 1 has a very high ∆ only when τ

is small. This is due to the brief short-memory afforded
to an RBN with subcritical dynamics. Since a network
with 〈K〉 = 1 has little short-term memory, its compu-
tational capabilities are unaffected by an increase in T ,
as demonstrated in figures 2(a) and 2(b): there is no
memory at all of early perturbations.
Chaotic reservoirs, represented here by 〈K〉 = 3, are

characterized by their sensitivity to initial perturbations,
and a high separation. In two identical, chaotic systems,
a single bit difference in their respective input streams
will eventually become magnified until the two systems
differ by the states of some P nodes. If the initial per-
turbation is larger than P , then the differences in the
systems will diminish until reaching P . Because of this,
a chaotic system could maximize its ∆ in two different

ways: i) compute over a sufficiently short input stream
and ii) perturb enough of the system so that the recent
input has a more significant effect on the dynamics than
the past input. In i), the restriction of a brief input
stream can be relaxed if the input stream perturbs as few
nodes as possible, giving the system more time to propa-
gate perturbations [cf. Fig. 2(e)]. On the other hand ii)
requires maximizing L [cf. Fig. 2(f)]. However, even if
distortion is staved off by slowing down the propagation
of external perturbations, the system is ultimately fated
to disorder.

B. Information and Optimal Perturbation

In the traditional implementations of reservoir com-
puting, all the nodes in the reservoir are connected to the
source of the input signal. Many task specific and generic
measures of computation in reservoirs have been compre-
hensively studied in [13]. However, the relationship be-
tween the computational properties of the reservoir and
the number of nodes which the input layer perturbs re-
mains unexplored. Here, we use information theory to
characterize the computation in the reservoir as infor-
mation transfer between the input and the reservoir and
between the reservoir and the output.
In reservoir computing, the reservoir is a dynamical

system and therefore has intrinsic entropy. The input is
also time-varying and we can calculate its entropy. In or-
der to reconstruct the desired function, the output layer
has to pick up the traces of the input in the reservoir dy-
namics. This fact is reflected in the entropy change of the
reservoir due to its input and therefore can be measured
using mutual information between the input I and the
reservoir R, i.e., I(I : R). In our study we distribute the
input to the reservoir only sparsely, we would thus like to
find how I(I : R) changes as a function of L and if there
is an optimal L. Moreover we would like to know, given
a task to be solved, how much information the reservoir
can provide to the output. That is, given the desired out-
put, can the reservoir state be predictive of the output?
This is equivalent to determining how much information
is transferred from the reservoir to the desired output.
We show this measure using I(R : O) where O indicates
the output as the target.
In order to calculate I(I : R) and I(R : O), we con-

sider the instantaneous states of the reservoir and its out-
put to calculate the entropy. For the input, we need
to calculate the entropy over the states that the input
can take over the window size n. For example, on a in-
put stream of length T = 50 bits, window size n, and
time delay τ = 1, the input pattern un

t1
is an n-bit long

moving window over the stream, starting at time step
t1 = 0, i.e., {un

t1
|0 ≤ t1 ≤ T − τ − n}. To calculate

the entropy of the reservoir we consider the collection
of instantaneous reservoir states st2 at time step t2, i.e.,
{st2 |τ + n ≤ t2 ≤ T }. The output pattern is calculated
using the output of the Bn(t) task. A subtlety arises while
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calculating the reservoir entropy; since the reservoir fol-
lows deterministic dynamics, if L = 0, where the input
signals does not perturb the reservoir, then the reservoir
dynamics will be identical when one repeats the experi-
ment. For reservoirs with chaotic dynamics, where each
st2 is unique, we have a many-to-one mapping between
the reservoir states and the output patterns and therefore
the reservoir states appear to be capable of reconstruct-
ing the output completely. To get the correct result, one
must calculate the entropy over many streams. In this
case, since the corresponding output patterns change ev-
ery time, the mapping between the reservoir state and the
output will not appear predictive of the output. We feed
the reservoir with 50 randomly chosen input sequences of
length 50. The entropies HI , HR, and HO are calculated
using the states the input, the reservoir, and the desired
output takes during this 50 time interval. Note there is
no need to have an output layer in these experiments and
the calculations are independent of training mechanism.
Figure 4 illustrates I(I : R), and I(R : O) as a function

of L for reservoirs of 〈K〉 ∈ {1, 2, 3}. For comparison, we
have also included HI , HR, and HO. In an ideal reser-
voir in which the reservoir contains all the information
from the input I(I : R) = HI , and I(R : O) = HO,
indicating that the reservoir contains the required infor-
mation to reconstruct the desired output perfectly. For
〈K〉 = 1 we see that growing L increases I(I : R) and
I(R : O) to a maximum level below the ideal values even
for L = 500, where all the nodes in the reservoirs are
receiving the input. These systems do not have enough
capacity to calculate the desired output perfectly. For
〈K〉 = 2, we see that mutual information increases and
reaches the ideal level at L = 20. In these systems, the
sparse connectivity between input and reservoir is enough
to provide all the required information about the input
to the reservoir. We see that at the same level of L the
reservoir dynamics are completely predictive of the out-
put. For 〈K〉 = 3, the intrinsic dynamics of the reservoir
are very rich (supercritical dynamics) and the mutual in-
formation between the reservoir and output reaches its
peak at L = 5. In these systems a small perturbation
quickly spreads. The reservoir at this perturbation level
will have enough information to reconstruct the output.

C. Task Solving

We calculate the generalization capability G of RBN-
RC devices with 〈K〉 ∈ {1, 2, 3}, N = 500, and L ∈
(0, 500] on the Bn and An tasks with random input
streams of length T ∈ {10, 100}. For each set of pa-
rameters, we instantiate, train, and test 30 RC devices.
Figures 5 and 6 present cubic spline fits to the average of
these results. We observe in figures 5 and 6 that critical
dynamics provide the most robust generalization capa-
bility in task solving. Ordered and chaotic reservoirs can
evidently solve tasks under certain circumstances. How-
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FIG. 4. Mutual information between the input and reservoir
I(I : R) and reservoir and output I(R : O). The results
are for: 〈K〉 = 1.0 (a) and (b), 〈K〉 = 2.0 (c) and (d),
〈K〉 = 3.0 (e) and (f). We have also included the intrinsic
information in the input stream, reservoir, and output. For
all of these cases τ = 1. In an ideal reservoir I(I : R) =
HI and I(R : O) = HO. For 〈K〉 = 1.0, as L grows both
I(I : R) and I(R : O) grow to a maximum level below the
ideal level. The reservoir in these systems does not carry
enough information for the output layer to solve the task.
For 〈K〉 = 2.0, as L grows, the mutual information grows
and reaches the sufficient level at L = 20. For 〈K〉 = 3.0,
mutual information peaks near L = 5. Small perturbation
from the input provide enough information to the reservoir to
reconstruct the desired output.

ever, the ordered networks are limited by little short-term
memory, while the chaotic networks accumulate extra-
neous information from past perturbations and demon-
strate reduced performance as the length of the input
stream increases.
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FIG. 5. The generalization capability G of an RBN-RC
device M on the task Bn is dependent on L and 〈K〉, as
well as task parameters n and T . Here the parameters are:
n = 3, T = 10 (a), n = 3, T = 100 (b), n = 7, T = 10 (c),
n = 9, T = 10 (d). Notably, chaotic networks achieve their
maximum generalization capability with a lower L than or-
dered networks. Ordered networks possess little memory and
so their performance drops as n increases. On the other hand,
chaotic networks perform poorly with T = 100 as opposed to
T = 10, due to an inadequately fading memory.

1. Average Reservoir Indegree 〈K〉 = 1

When n ofAn and Bn is small, there is very little mem-
ory and processing required by the reservoir, and so RC
devices in which the reservoir has 〈K〉 = 1 can achieve
perfect generalization G for B3 and A3 [cf. Figs. 5(a)
and 6(a)]. However, ordered networks are dominated by
fading memory, hence the dynamics do not retain enough
information about past perturbations to achieve high ac-
curacy when n increases. Since the dynamics of ordered
networks are only determined by their most recent per-
turbations, the length of the input stream T is irrelevant
for the task solving capability, which explains why the
generalization G of ordered networks computing B3 is
very similar when T = 10 and T = 100, as seen in fig-
ures 5(a) and 5(b) respectively.

Since memory fades quickly in an ordered reservoir, in-
put cannot propagate swiftly through the network. More-
over, a 〈K〉 = 1 network will almost certainly possess
islands. These islands will be unreachable by an input
stream that does not strongly perturb the system. In ad-
dition, figure 4(b) demonstrates that an ordered network
with 〈K〉 = 1 increases its mutual information between
input and reservoir I(I : R) as L increases from 0 to N .
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FIG. 6. The generalization capability G of an RBN-RC device
M on the task An is dependent on L and 〈K〉, and task
parameters n and T . Here the parameters are: n = 3, T =
10 (a), n = 3, T = 100 (b), n = 5, T = 10 (c), n = 7, T =
10 (d). Due to high sensitivity to the initial perturbations,
the generalization capability of chaotic networks drop as the
length of the input stream increases from T = 10 to T = 100.
Ordered networks possess little short-term memory and are
least robust to an increase in n, with generalization capability
on A7 no better than chance.

Because of this, we see in figures 5 and 6 that increasing
L tends to result in higher accuracy on Bn and An re-
spectively. Therefore, an increase of L can only increase
the performance of the reservoir.

2. Average Reservoir Indegree 〈K〉 = 3

Chaotic reservoirs, represented here by 〈K〉 = 3, are
dominated by the separation property. As a result, the
G of the chaotic networks are least affected by increasing
the window n. However, high performance is only pos-
sible when the input stream is sufficiently small, such as
T = 10. In figures 5(d) and 6(a) the stream length is
T = 10 and the G of the chaotic network is high. How-
ever, when the length of the input stream is increased
to T = 100, the performance drops significantly, even
while the performance of networks with lower connectivi-
ties remain relatively unchanged [cf. Figs. 5(a) and 5(b)].
Though no longer relevant to the RC device, early pertur-
bations have a significant effect on the dynamics, which
makes it difficult for the output layer to extract informa-
tion about the more recent input. On the other hand, if
the input stream is sufficiently short, chaotic reservoirs
have less time to be distorted by early input.
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In a network which is chaotic due to high connectivity,
there will be fewer and larger connected components than
in those which are less densely connected [14]. Therefore,
the minimal L needed to adequately distribute the input
signal in a 〈K〉 = 3 network is less than the other con-
nectivities explored here [cf. Fig. 4(f)]. Also, a chaotic
reservoir can effectively increase its computational capa-
bility as predicted by ∆ by reducing its L, which increases
the time it takes for perturbations to spread through the
system [cf. Fig. 2(e)]. Evidently, the chaotic system uses
this strategy in computing Bn when T = 10, as seen
in figure 5. However, this behavior is not observed for
the highly non-linear parity task An. We speculate that,
due to the complexity of the task, separation capability

is more significant than it is in Bn; this causes a strategy
which maximizes the separation property by increasing L
to be optimal.

3. Average Reservoir Indegree 〈K〉 = 2

As observed in figure 3, the difference between the sep-
aration property and fading memory tends to be maxi-
mized with near-critical connectivity 〈K〉 = 2. This is
evident in our task solving results: when the n of Bn

and An increases, these systems do not show the dra-
matic drop in G that the ordered systems do [cf. Figs. 5
and 6]. Simultaneously, the G of these systems are unaf-
fected by an increase in the stream length T , in contrast
to chaotic networks. In figure 4(d) we observe that with
L < 20 the input signal cannot adequately propagate the
input signal, which is demonstrated by a lower G for very
small L in figures 5 and 6. However, increasing L in task
solving appears to afford more of a benefit than simply
increasing the information about the input stream. In
both figures 5 and 6 we see that the best G of the critical
networks occurs after the system has already achieved
maximal I(I : R) between input stream and reservoir
dynamics.

V. SUMMARY AND DISCUSSION

We investigated the computational capabilities of ran-
dom Boolean networks when used as the dynamical com-
ponent in reservoir computing devices. We found that
computation tends to be maximized at the critical con-
nectivity 〈Kc〉 = 2. However, in RC, the reservoir is
continuously perturbed, and both the size of the pertur-
bations as well as the length of time that the reservoir
is perturbed for must be taken into account, along with
the chaoticity of the dynamics. If the input stream is
sufficiently short, then chaotic systems can still perform
quite well, but as the length of the input stream increases,
these networks can no longer differentiate and generalize
on subsets of the input stream, as the past perturbations,
which may no longer be relevant to the computation, are

dominating the dynamics. On the other hand, ordered
networks can perform well, independent of the length of
the input stream, as long as the window of computation
is sufficiently small, as an ordered system retains little
information about perturbations in the past.
A network view of the RC device can also give us more

insight as to why connectivity influences performance. If
the reservoir acts on the input stream as a set of spa-
tiotemporal kernels, a suitable reservoir needs to include
a diverse set of kernels. In [10], we saw that at the connec-
tivity 〈Kc〉 = 2 the network shows maximal topological
diversity and dynamics. A reservoir with connectivity
〈Kc〉 = 2 therefore can act as many networks of the same
connectivity, each acting as different kernel.
In [12] and [13] it was shown that optimal computation

occurs in recurrent neural networks at the critical points,
and our results provide an additional example of this, in a
binary, heterogeneous reservoir. In RC, we continuously
perturb the reservoir and so the underlying RBN of our
model is not a closed system. Therefore, computation
cannot be dependent on attractors and must be enabled
by the dynamics of the RBN. However, in some circum-
stances the network dynamics can fall into an attractor
temporarily or indefinitely, due to frozen dynamics, inad-
equate distribution of the input signal, or a non-random
input stream. Therefore, RC is a novel framework in
which to explore the capacity of RBN dynamics for infor-
mation processing. RBNs have been studied under other
task solving scenarios; in Goudarzi et al. [10] networks
evolve towards criticality, although computation is still
performed by attractors. Our study shows that unlike
the findings in [9], for RBNs there is a strong connection
between computation and dynamics, and optimality of
the computation is evidently due to critical dynamics in
the network. Despite the differences between externally
perturbed RBNs in RC and RBNs explored as a closed
system, we nevertheless observe that critical RBNs are
indeed optimal for reservoir computing. Criticality also
plays an important role in biological systems that often
require an optimal balance between stability and adapt-
ability. For example, it has been shown by using com-
pelling theoretical and experimental evidence that gene
regulatory networks—which are commonly modeled by
RBNs—are indeed critical [17, 18].
Our conclusion provides an intriguing link between dis-

parate usages of RBN. By providing evidence that crit-
ical dynamics are desirable for heterogeneous substrates
in RC, our findings may be relevant to the development
of devices which exploit the intrinsic information process-
ing capabilities of heterogeneous, physical systems such
as biomolecular or nanoscale device networks.
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