
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Exact protein distributions for stochastic models of gene
expression using partitioning of Poisson processes

Hodjat Pendar, Thierry Platini, and Rahul V. Kulkarni
Phys. Rev. E 87, 042720 — Published 26 April 2013

DOI: 10.1103/PhysRevE.87.042720

http://dx.doi.org/10.1103/PhysRevE.87.042720


Exact protein distributions for stochastic models of gene expression using partitioning
of Poisson processes

Hodjat Pendar∗

Department of Engineering Science and Mechanics,Virginia Tech, Blacksburg, VA 24061

Thierry Platini†

Applied Mathematics Research Center, Coventry University, Coventry, CV1 FB, England

Rahul V. Kulkarni‡

Department of Physics, University of Massachusetts, Boston USA
(Dated: April 4, 2013)

Stochasticity in gene expression gives rise to fluctuations in protein levels across a population of
genetically identical cells. Such fluctuations can lead to phenotypic variation in clonal populations,
hence there is considerable interest in quantifying noise in gene expression using stochastic models.
However, obtaining exact analytical results for protein distributions has been an intractable task
for all but the simplest models. Here, we invoke the partitioning property of Poisson processes to
develop a mapping that significantly simplifies the analysis of stochastic models of gene expression.
The mapping leads to exact protein distributions using results for mRNA distributions in models
with promoter-based regulation. Using this approach, we derive exact analytical results for steady-
state and time-dependent distributions for the basic 2-stage model of gene expression. Furthermore,
we show how the mapping leads to exact protein distributions for extensions of the basic model that
include the effects of post-transcriptional and post-translational regulation. The approach developed
in this work is widely applicable and can contribute to a quantitative understanding of stochasticity
in gene expression and its regulation.

I. INTRODUCTION

One of the fundamental problems in biology is the elu-
cidation of molecular mechanisms that give rise to pheno-
typic variations among individuals in a population. Re-
cent research has shown that phenotypic variations can
arise without any underlying differences in the genotype
or environmental factors (1, 2). Such ‘non-genetic in-
dividuality’ is driven by fluctuations (noise) in cellular
levels of gene expression products, as observed in diverse
processes ranging from bacterial persistence (3) to HIV-1
viral infections (4). Quantifying and modeling noise in
gene expression is thus an important step towards a fun-
damental understanding of phenotypic variation among
genetically identical cells.

Noise in gene expression is generally analyzed using
coarse-grained stochastic models (5, 6). For such models,
cellular variations can be characterized using the mean
and variance of mRNA and protein distributions (6–9).
However, in several cases, it is of interest to character-
ize the entire distribution, rather than just the mean
and variance. For example, it has been demonstrated
that protein distributions can exhibit features such as
bimodality (10) that are not adequately represented us-
ing the first two moments alone. Since protein levels in
single cells can be measured experimentally (11, 12), de-
veloping analytical approaches for protein distributions is
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an important contribution towards building quantitative
models of gene expression.

Given the need for analytical results for the entire dis-
tribution, several approaches have been developed in re-
cent work. Analytical results for mRNA distributions
have been derived (13–17, 28, 29); however, the corre-
sponding results for proteins have been significantly more
challenging to obtain. When the mean mRNA lifetimes
(τm) are much shorter than protein lifetimes (τp), ana-
lytical expressions have been derived for protein steady-
state distributions (18, 19). More generally, exact results
have recently been derived (20) for the simplest model of
gene expression, also known as the 2-stage model. While
useful results have thus been obtained, further general-
izations are needed to include a broader class of models
that include the effects of cellular regulation. In this pa-
per, we develop an analytical framework that leads to
exact protein distributions for a wide range of stochastic
models of gene expression. In the following section, we
provide brief definitions of some basic concepts used in
the analysis.

II. MASTER EQUATION AND GENERATING
FUNCTIONS

Defining the probability distribution Φ(X, t) to find
the system under consideration in a given state X at a
time t, the corresponding master equation is given by

∂tΦ(X, t) =
∑
Y

[
Φ(Y, t)wYX − Φ(X, t)wXY

]
, (1)
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where wXY is the rate of transition from X to Y .
It is often the case that the state of the system (X)

is fully characterized by a set of integers ({nj}) such as
the number of mRNA, proteins etc. It follows that the
probability distribution becomes Φ({nj}, t). The corre-
sponding generating function G (a function of a set of
continuous variable {xj}) is defined by

G({xj}, t) =
∑
{nj}

xn1
1 xn2

2 ...xnqq Φ({nj}, t). (2)

All the moments of the probability distribution Φ({nj}, t)
can be obtained from G by succesive differentiation. Fi-
nally, the entire probability distribution can also be ob-
tained from the expression for G, either analytically or
by using numerical approaches. In the following, we de-
velop an analytical framework for obtaining the gener-
ating function G for protein distributions in stochastic
models of gene expression.

III. MAPPING TO REDUCED MODELS

We will consider models of gene expression for which
the creation of mRNAs is a Poisson process occurring
with rate km. Invoking a well-known theorem on the par-
titioning of Poisson processes (21), we develop a mapping
that significantly simplifies analysis of such models.

We begin by partitioning the mRNA arrivals into N
‘types’ (Fig. 1A). Given a mRNA arrival at any time t,
the probability that it is assigned to type i (i = 1 . . . N)
is qi = 1/N . Thus each mRNA is equally likely to be
assigned to one of the N types upon arrival. Denoting
by Ni(t) the number of arrivals of the ith type of mRNA
by time t, it follows from the theorem of partitioning
of Poisson processes (21), that the arrival of each type
of mRNA is an independent Poisson process occurring
with rate km/N (Fig. 1A). In other words, the Ni(t)
(i = 1 . . . N) are independent Poisson random variables
with mean 〈Ni(t)〉 = kmt/N .

The next step consists of taking the limit N →∞ and
leads to the definition of the reduced model. For any
given time t, in the limit N → ∞, the probability of
arrival of more than one mRNA of any given type can
be neglected (see SI Appendix). It follows that the ran-
dom variable describing the number of mRNAs of a given
type is constrained to the value 0 or 1. Effectively, after
partitioning of the Poisson arrival process, the mRNA
dynamics can be replaced by the dynamics of a 2-state
system. Thus, at any time t, we have a mapping from
the original system to N identical subsystems. In the
limit N → ∞, each of these subsystems corresponds to
what will be referred to as a ‘reduced’ model. Further
details on the connection between original and reduced
models is provided in Appendix A. In the following, we
will refer to this approach as the PPA (Partitioning of
Poisson Arrivals) mapping.

As an illustration, let us consider the number of mR-
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FIG. 1. (A) A Poisson arrival process with arrival rate km can
be partitioned to N independent and identical Poisson arrival
processes, each occurring with rate km/N . (B) Partitioning of
the Poisson arrival process leads to a mapping from a simple
model of creation and decay of mRNAs to N independent,
identical 2-state systems (in the limit N → ∞). The proba-
bility of having m mRNAs in the original model is equivalent
to the probability of having m two-state systems in the ON
state in the reduced model (C) The same mapping applied to
the 2-stage model of gene expression for proteins. Note that
the reduced model is identical to a model for creation and
decay of mRNAs with promoter-based regulation.

NAs for the simple model shown in Fig. 1B. It is readily
derived (e.g. using the Master equation) that the cor-
responding steady-state distribution is a Poisson distri-
bution with mean km/µm. This result can also be ob-
tained using the PPA mapping, as illustrated in Fig. 1B.
The dynamics of the reduced model (a 2-state model)
is defined by the transitions between 0 mRNA(OFF)
and 1 mRNA(ON) states driven by the rates km/N
and µm. Therefore, the steady-state generating func-
tion for mRNAs in t he reduced model is given by

g(z) = (1 − km/N
µm+km/N

) + km/N
µm+km/N

z. Correspondingly,

the generating function for the distribution of mRNAs in
the original model is given by G(z) = limN→∞[g(z)]N .
This expression reduces to the generating function of the
Poisson distribution with mean km/µm, thereby recov-
ering the well-known result. An explicit derivation il-
lustrating this approaching using the Master equation is
provided in Appendix B.

The preceding argument can be generalized to analyze
the distribution of proteins in stochastic models of gene
expression. In order to apply the PPA mapping, we will
consider models for which the protein production from
each mRNA proceeds independently. Let P (t) be the
random variable corresponding to the number of proteins
in the system at time t. Partitioning the mRNAs into N
‘types’, we denote by pi the random variable correspond-
ing to the number of proteins created by the ith type of
mRNA. Note that, in the limit N →∞, pi is the random
variable corresponding to the distribution of proteins in
the reduced model. Since each mRNA contributes in-
dependently, the pi(t) are independent, identically dis-

tributed random variables such that P =
∑N
i=1 pi. Cor-
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respondingly, the generating functions for proteins in the
original (G(z, t)) and reduced (g(z, t)) models are related
by

G(z, t) = lim
N→∞

[g(z, t)]N . (3)

Furthermore, it can be shown (Appendix A) that
(g(z, t)− 1) ∝ kmt/N leading to

G(z, t) = lim
N→∞

exp [N (g(z, t)− 1)] . (4)

The significance of the above mapping lies in the fact that
it exactly maps the original problem (obtaining G(z, t))
to a reduced problem (obtaining g(z, t)) which is easier
to analyze. The simplification provided by this mapping
derives from the fact that the number of mRNAs, which
is unbounded in the original model, is effectively replaced
by a 2-state system in the reduced model.

Using Eq.4, we can readily connect expressions for the
mean and Fano factor of the original model to the cor-
responding expressions for the reduced model (Appendix
A). In particular, we show that the Fano factors for the
original and reduced models are identical (in the limit
N → ∞). This is a useful result since it is generally
easier to obtain the Fano factor for the reduced model.

IV. EXACT DISTRIBUTIONS FOR THE
2-STAGE MODEL

We now show how the PPA mapping directly leads
to exact results for protein distributions in the 2-stage
model (Fig. 1C). The 2-stage model is the simplest model
of stochastic gene expression and has been widely ana-
lyzed in both theoretical and experimental studies. While
exact results for steady-state distributions have been de-
rived recently (20), the corresponding results for time-
dependent distributions have not been obtained so far.

Using the PPA mapping (Fig. 1C), we see that the re-
duced model (obtained by replacing each type of mRNA
by a 2-state system) for proteins is equivalent to a model
for mRNAs with promoter switching. An explicit deriva-
tion of the reduced model, starting from the Master equa-
tion, is provided in Appendix C. The reduced model has
been studied in previous work and analytical results for
the corresponding mRNA distributions have been ob-
tained (13, 14). Using these results, the generating func-
tion for the steady-state distribution of proteins in the
reduced model is given by

g∗(z) = 1F1

(
km/N

µp
;
µm
µp

;
kp
µp

(z − 1)

)
. (5)

Now, using Eq.4, we obtain that the protein steady-state
distribution for the 2-stage model is given by

G∗(z) = (6)

limN→∞ exp
{
N
[
1F1

(
km/N
µp

; µm
µp

;
kp
µp

(z − 1)
)
− 1
]}

.

Eq. 7, derived directly from known results, is equiva-
lent to the exact result derived recently using a differ-
ent approach (Appendix C). The concise derivation pre-
sented above highlights a general point: the PPA map-
ping approach leads to protein distributions using results
for mRNA distributions for models with promoter-based
regulation.

We now apply the PPA mapping to obtain the time-
dependent joint distribution of mRNAs and proteins in
the original model (with generating function G(y, z, t))
using the time-dependent distribution of proteins in the
reduced model (with generating function g(z, t)). As
noted, the reduced model is equivalent to a model for
mRNAs with promoter-based regulation and the corre-
sponding result for the time-dependent generating func-
tion of the mRNA distribution has been derived in pre-
vious work (15). Using this result to obtain g(z, t), we
derive (Appendix C) that the time-dependent joint dis-
tibution of mRNAs and proteins is given by

G(y, z, t) = lim
N→∞

exp

{
N

[
g(z, t) + (y − 1)

µp
kp
∂zg(z, t)

+
y − 1

kp(z − 1)
∂tg(z, t)− 1

]}
. (7)

Eq 7 is the most general exact result for the 2-stage model
of gene expression and all the previously derived results
can be obtained from it by taking appropriate limits.

V. EXACT RESULTS FOR EXTENSIONS OF
2-STAGE MODEL

A. A Model with multi-step mRNA processing

We now show how the partitioning of Poisson processes
leads to exact results for some biologically motivated ex-
tensions of the 2-stage model. Fig 2 presents an extension
that allows for an arbitrary number of processing steps
for mRNAs. For example, in eukaryotes, these process-
ing steps can represent reactions such as polyadenylation
and transport to the cytoplasm which are required for
production of a processed mRNA that is competent for
translation. We will call such a processed mRNA a ma-
ture mRNA (whereas the unprocessed initial transcript
will simply be referred to as a mRNA). Let us now con-
sider the arrival process of a mature mRNA.

The kinetic scheme for the model with r pre-processing
steps leading to mature mRNAs is shown in Fig. 2A. In
the following, we invoke the partitioning property of Pois-
son processes to show that the arrival process of a mature
mRNA, in the steady-state limit, is a Poisson process. At
any time t, we partition the transcribed mRNAs into 2
types: Type 1 corresponds to a transcribed mRNA that
is converted to a mature mRNA by time t and Type 2
includes all the remaining transcribed mRNAs. Let us
denote the probability that a transcribed mRNA is clas-
sified as Type 1 at time t by q(t). Thus q = limt→∞ q(t)
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FIG. 2. (A) In this model mRNAs undergo multi-step pre-
processing before being competent to produce proteins. Pro-
teins can be created only from the mature mRNA created in
the final processing step. (B) Arrival of mature mRNAs is
shown to be a Poisson process in steady-state leading to the
reduced model shown.

is the probability that an mRNA transcribed at t = 0
is eventually converted into a mature mRNA. Given an
mRNA in the ith state (1 ≤ i ≤ r − 1), the probabil-
ity that it is converted into the (i + 1)th intermediate

state without being degraded is
(

ki
ki+µi

)
. Thus, in the

long-time limit, we have

q =

r∏
i=1

(
ki

ki + µi

)
(8)

Note that the arrival process of transcribed mRNAs
(Type 1 or Type 2) is a Poisson process with rate km. In
the steady-state limit, the probability that a transcribed
mRNA is labeled as Type 1 is q. Thus, invoking the par-
titioning theorem for Poisson processes, we obtain that
the arrival process for a Type 1 mRNA (in the steady-
state limit) is a Poisson process occuring with rate

keq = km

(
k1

k1 + µ1

)
. . .

(
kr

kr + µr

)
. (9)

Since an mRNA is classified at Type 1 once it becomes
a mature mRNA, it follows that the arrival process of
mature mRNAs, in the steady-state limit, is a Poisson
process with rate keq. Some interesting results follow
from the preceding observation. First, in the steady-
state limit, since mature mRNAs arrive according to a
Poisson process, the corresponding reduced model is a
2-state model (as in Fig. 1B). Thus the steady-state dis-
tribution of mature mRNAs is a Poisson distribution with
mean keq/µm. Furthermore, the model for proteins is the
same as the basic 2-stage model (Fig. 1C), but with km
replaced by keq (Fig. 2A). Correspondingly, the exact
protein steady-state distribution is given by Eq. 7, with
the substitution km → keq. Thus, we obtain that the
exact steady-state distribution of proteins for the model
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FIG. 3. (A) Kinetic scheme for model with a fixed-time delay
in the degradation of proteins. Protein molecules after being
tagged (with rate γ) are degraded after a fixed time delay
τ . (B) Mapping of the original model (A) to N independent,
identical reduced models (N → ∞)

in Fig. 2 is given by

G(z) = lim
N→∞

exp

{
N

[
1F1

(
keq/N

µp
;
µm
µp

;
kp
µp

(z − 1)

)
− 1

]}
(10)

B. B Model with delayed degradation

The PPA mapping approach can also be applied to
models that include non-Markovian processes. An ex-
ample involving post-translational regulation leading to
a constant delay in the degradation of proteins is illus-
trated in Fig. 3. The degradation of proteins typically
occurs via complex proteolytic pathways involving mul-
tiple steps of tagging and binding of auxiliary proteins.
A simplified assumption that is commonly used is to re-
place multi-step degradation by a fixed time delay, which
motivates the model outlined in Fig. 3. Recent work
has analyzed protein steady-state distributions for mod-
els with a constant time delay in protein degradation (22–
24). However the processes of transcription and transla-
tion are generally lumped together and it is assumed that
proteins are produced in a single step from the DNA in
these models. The PPA mapping approach allows us to
obtain the exact steady-state protein distributions for a
simplified model which includes both mRNAs and pro-
teins. A detailed derivation (Appendix D) leads to the
generating function for arbitrary values of τ . For sim-
plicity, we present here the results in the limit τ � 1

G∗(z) = exp
(
kmkpτ(z−1)
µm−kp(z−1)

)
× (11)

limN→∞ exp
{
N
[
1F1

(
km/N
γ ; µm

γ ;
kp
γ (z − 1)

)
− 1
]}

.
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VI. DISCUSSION

Several recent experiments have focused on quantifying
variations in gene expression and on inference of the un-
derlying mechanisms based on observations of noise (25).
Correspondingly there is a clear need for theoretical tools
to complement such experimental efforts to understand
the role of noise in gene expression in diverse cellular
processes. The current work addresses this need by de-
veloping an analytical framework for obtaining protein
distributions for stochastic models of gene expression.

We have shown how the partitioning of Poisson ar-
rival processes can lead to equivalent reduced models that
are, in general, simpler to analyze. This mapping can be
used to derive exact results for protein distributions us-
ing mRNA distributions for models with promoter-based
regulation. In recent work, analytical results have been
derived for mRNA distributions for a general class of
models with promoter-based regulation (16, 17). These
results, in combination with the PPA mapping approach
developed in this work, can be used to obtain exact pro-
tein distributions for a broad class of gene expression
models. Furthermore, previous work (26) has shown
how a representation using generating functions can be
used in developing a variational approach for modeling
stochastic cellular processes. Thus the results obtained
in this work, in combination with such variational ap-
proaches, can be used to provide quantitative insights
into the role of different kinetic schemes in regulating
the noise in gene expression.

Noise in gene expression has been shown to play a crit-
ical role in diverse cellular processes (1). It is increas-
ingly becoming clear that quantifying and modeling gene
expression variations among single cells in a population
can lead to fundamental new insights into old problems.
The approach developed in this work can be used to ob-
tain analytical results for multiple extensions of the basic
gene expression models. It can be generalized to analyze
models including promoter-based regulation, in particu-
lar the so-called standard model of gene expression (27).
As more cellular processes are studied using single-cell
approaches, the results obtained can guide analysis and
interpretation of such experiments. As currently formu-
lated, the approach cannot be used for models with feed-
back effects (i.e with rates that depend on protein num-
bers), however it is hoped that future work will address
this issue building on current insights. It will also be of
interest to extend the PPA mapping approach developed
in this work to a broader range of cellular processes for
which stochastic effects are critical.
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VII. APPENDIX

VIII. A. CONNECTING ORIGINAL AND
REDUCED MODELS

In this section we discuss the relations between the
generating functions of the original and reduced models.
To begin, we note that the number of mRNAs (M) and
proteins (P ) in the original process are respectively given
by the sum of the number of mRNA (m) and protein (p)
in the N independent and identical reduced processes.
We define ΦM (P, t) (φm(p, t)) as the joint probability to
find M (m) mRNA and P (p) proteins in the original
(reduced) process at time t. The probability distributions
of the original and reduced processes are related via

ΦM (P, t) = (12)∑
mi,pi

δ (M −
∑
imi) δ (P −

∑
i pi)

∏N
i=0 φmi(pi, t)

where δ(X − Y ) = 1 for X = Y and zero otherwise. It
follows that the generating functions, defined by

G(y, z, t) =
∑
M,P

yMzPΦM (P, t) (13)

g(y, z, t) =
∑
m,p

ymzpφm(p, t) (14)

are related by

G(y, z, t) = [g(y, z, t)]N (15)

as expected for sums of independent and identically dis-
tributed random variables. For large N values, successive
differentiation shows that the averages in both models are
related via

m̄ =
M̄

N
m̄2 =

M̄2 − M̄2

N
(16)

p̄ =
P̄

N
p̄2 =

P̄ 2 − P̄ 2

N
(17)

Correspondingly the Fano factors for the protein distri-
butions are related by: Fg = FG − P̄ /N , so that in the
limit N →∞ Fg = FG, as presented in the main text.

Focussing our attention on the protein distributions,
we choose to write G(z, t) = G(1, z, t) and g(z, t) =
g(1, z, t). In the following, we consider the limit N →∞.
In this case, upto any time t, the production of more than
one mRNA by the reduced process is highly unlikely (of
second order in kmt/N) as shown in the main text. In
the reduced model, one can therefore neglect all states
with more than one mRNA. Thus we have

g(y, z, t) = g0(z, t) + yg1(z, t) (18)

with gm(z, t) =
∑
p z

pφm(p, t). It follows that

g(y, z, t) = g(z, t) + (y − 1)g1(z, t) (19)

In the following we show that, at the lowest order, the
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generating function is such that g(z, t) − 1 ∝ kmt/N .
Let us denote by φm(p, t|m′, p′, s) the probability distri-
bution at time t with the following condition φm(p, t =
s|m′, p′, s) = δm,m′δp,p′ . Since the transition rate from
the 0 mRNA state to the 1 mRNA state can be made ar-
bitrarily small (km/N), we can assume that the system
has, at maximum, one transition from the state 0 to 1 (in
a given time t). Neglecting all events that include more
than one transition 0 → 1, it follows that φ(p, t|0, 0, 0)
defined by φ0(p, t|0, 0, 0) + φ1(p, t|0, 0, 0) can be written
has

φ(p, t|0, 0, 0) = δ(p)e−tkm/N (20)

+

∫ t

0

ds
km
N
e−skm/N φ̃(p, t|1, 0, s)

where exp(−tkm/N) is the probability that we ob-
serve no 0 → 1 transitions in a time t, while
exp(−skm/N)km/Nds is the probability of a transition

between time s and s+ds. The distribution φ̃(p, t|1, 0, s)
describes the probability to find p proteins in a pro-
cess where all transitions 0 → 1 are now neglected, and
with the condition m = 1 and p = 0 at time t = s.
The latter distribution φ̃, and its generating function g̃,
are therefore independent of the ratio km/N . It fol-
lows that the generating function g(z, t) (in our case
g(z, t) = g(z, t|0, 0, 0)) is

g(z, t) = e−(km/N)t (21)

+

∫ t

0

ds
km
N
e−(km/N)sg̃(z, t|1, 0, s)

which at the first order in km/N leads to

g(z, t) = 1 +
km
N

∫ t

0

ds [g̃(z, t|1, 0, s)− 1] (22)

Using the fact that g̃(z, t|1, 0, s) = g̃(z, t − s|1, 0, 0) and
defining the dimensionless variable α = 1−s/t we obtain

g(z, t) = 1 +
kmt

N

∫ 1

0

dα [g̃(z, αt|1, 0, 0)− 1] (23)

and thus g(z, t)− 1 ∝ kmt
N as claimed in the main text.

IX. B. 2-STAGE MODEL OF GENE
EXPRESSION: MRNA DISTRIBUTION

In this section, we show how the Partitioning of Pois-
son Arrivals (PPA) mapping leads to the distribution of
mRNA levels for the 2-stage model. In section (A), we
write down the master equation and define the associated
generating function G(z, t). The mapping is then intro-
duced in section (B) by defining the generating function
g(z, t) of the reduced model. The time dependent solu-
tion of the reduced process is given in section (C) and
finally the full generating function G(z, t) is given in sec-
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NAs in (A) is identical to the probability distribution of the
number of systems in the ON state in (B).

tion (D).

A. A) Master Equation and Generating function

The master equation for ΦM (t), the probability distri-
bution of mRNAs in the Fig. 4A, is given by

∂tΦM (t) = km[ΦM−1(t)− ΦM (t)] (24)

+ µm[(M + 1)ΦM+1(t)−MΦM (t)]

The equation for the generating function G(z, t) =∑
M zMΦM (t) is

∂tG = km(z − 1)G− µm(z − 1)∂zG (25)

The exact solution can be obtained by directly solving
Eq. 25. However, this problem also provides an ideal
example to illustrate the PPA mapping approach.

B. B) Mapping

The PPA mapping connects the original model to N
independent, identical reduced models (Fig 4B). To ex-
plicitly derive it from the Master equation, let us write
the generating function as G = (g)N . Substituting in Eq.
25, we see that g and G obey the same equation with the
rescaling km → km/N

∂tg =
km
N

(z − 1)g − µm(z − 1)∂zg (26)

For the reduced model, defining φm(t) as the probabil-
ity to have m mRNAs at time t, we can write the gener-
ating function as g(z, t) = φ0(t) + zφ1(t) + z2φ2(t).... As
discussed, for large N , it is unlikely to find more than one
mRNA in the reduced model. In the stationary state, we
have φ∗0 ' 1 −O (1/N) and φ∗m ' O (1/Nm) for m ≥ 1.
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Keeping the first order term in 1/N , the dynamics of
the reduced model is effectively described by the kinetic
scheme of an ON-OFF model presented in Fig. 4B.

C. C) The reduced model: its time dependent
solution

Let us now consider the initial condition φm(t = 0) =
δm,0 so that we have φm(t) ' O (1/Nm) for m ≥ 1 and
all time t. To first order in 1/N , the generating function
of the reduced model is g(z, t) = φ0(t) + zφ1(t), where
φ0(t) and φ1(t) obey the master equation of the 2-state
model

∂tφ0(t) = −∂tφ1(t) = −km
N
φ0(t) + µmφ1(t) (27)

with solution

φ1(t) = 1− φ0(t) =
(

1− e−(µm+km/N)t
)
φ∗1 (28)

where φ∗1 = (km/N)/(µm + km/N).

D. D) The full generating function

The full generating function, is given by G =
limN→∞(g)N = limN→∞ exp [N(g − 1)] and leads to

G(z, t) = exp

[
km
µm

(z − 1)(1− e−µmt)
]

(29)

which corresponds to the well know Poisson distribution
of mRNA, with mean (km/µm)(1− e−µmt).

X. C. 2-STAGE MODEL OF GENE
EXPRESSION: PROTEIN DISTRIBUTION

In this section we show how the PPA mapping allows us
to obtain the protein distribution and the joint mRNA-
protein distribution for the 2-Stage model (Fig. 5A). In
section (A), we write down the master equation and de-
fine the associated generating function G(y, z, t). Details
of the mapping are presented in section (B) by defining
the generating function g(y, z, t) of the reduced model.
The time dependent solution of g(y, z, t) is given in sec-
tion (C) and finally the full generating function G(y, z, t)
is obtained in section (D).

A. A) Master Equation and Generating function

Let us now consider the full probability distribution
of the 2-stage model by writing ΦM (P, t) the time-
dependent probability distribution with the master equa-

B
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FIG. 5. (A) The kinetic scheme for protein production in the
2-stage model. (B) Reduced model emerging from the PPA
mapping.

tion:

∂tΦM (P, t) = km[ΦM−1(P, t)− ΦM (P, t)] (30)

+ µm[(M + 1)ΦM+1(P, t)−MΦM (P, t)]

+ kpM [ΦM (P − 1, t)− ΦM (P, t)]

+ µp[(P + 1)ΦM (P + 1, t)− PΦM (P, t)]

The generating function

G(y, z, t) =
∑
M,P

yMzPΦM (P, t) (31)

obeys to

∂tG = km(y − 1)G− µm(y − 1)∂yG (32)

+ kp(z − 1)y∂yG− µp(z − 1)∂zG

B. B) Mapping

Following the steps presented in the previous section,
we define g(y, z, t) such that G = (g)N . We see that g is
governed by

∂tg =
km
N

(y − 1)g − µm(y − 1)∂yg (33)

+ kp(z − 1)y∂yg − µp(z − 1)∂zg

Again, we see that g corresponds to the generating func-
tion of the 2-stage model under the rescaling km →
km/N . For large N values, the production of two or more
mRNA in the reduced model is unlikely and can be ne-
glected. In the limit N →∞ the generating function can
be written as g(y, z, t) =

∑
p z

p[φ0(p, t) + yφ1(p, t)]. Its
dynamics is effectively described by the kinetic scheme
presented in Fig. 5B. Starting with the initial condition
φm(p, t = 0) = δm,0δp,0, we have φm(p, t) ' 1/Nm for
m ≥ 1 and ∀t.
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C. C) The reduced model: its time dependent
solution

Let us write g in the form g(y, z, t) = g0(z, t)+yg1(z, t),
where g0(z, t) and g1(z, t) are the generating functions
defined by gm(z, t) =

∑
p z

pφm(p, t) (m = 0, 1). The
latter quantities obey the coupled equations

∂tg0 = −µp(z − 1)∂zg0 −
km
N
g0 + µmg1 (34)

∂tg1 = −µp(z − 1)∂zg1 + kp(z − 1)g1

− µmg1 +
km
N
g0 (35)

Summing these two equations and writing g(z, t) =
g(1, z, t), we get

g1(z, t) =
1

kp(z − 1)
∂tg(z, t) +

µp
kp
∂zg(z, t) (36)

which allows us to write g(y, z, t) as

g(y, z, t) = g(z, t) + (y − 1)
µp
kp
∂zg(z, t) +

(y − 1)

kp(z − 1)
∂tg(z, t)

(37)

Let us first consider the result for protein distributions
in the stationary state. Based on previous work ([13–15]),
we obtain the stationary solution of the reduced model

g∗(z, t) = 1F1

(
km/N

µp
;
µm
µp

;
kp
µp

(z − 1)

)
(38)

where 1F1 is the confluent hypergeometric function. Fur-
thermore, the time-dependent solution for the protein
distribution in the reduced model has been obtained in
previous work ([15])

g(z, t) = Fs(t) 1F1

(
km/N

µp
;
µm
µp

;
kp
µp

(z − 1)

)
(39)

+ Fns(t) 1F1

(
1− µm

µp
; 2− µm

µp
;
kp
µp

(z − 1)

)
with

Fs(t) = 1F1

(
−km/N

µp
; 1− µm

µp
; − kp

µp
e−µmt(z − 1)

)
(40)

Fns(t) =
kmkp(z − 1)

Nµm(µp − µm)
e−µmt (41)

× 1F1

(
µm
µp

; 1 +
µm
µp

; − kp
µp
e−µmt(z − 1)

)

D. D) The full generating function

From G = (g)N , it is readily shown that the original
generating function is given by

G(y, z, t) = lim
N→∞

eNF [g(z,t)] (42)

with

F [g(z, t)] = g(z, t) + (y − 1)
µp
kp
∂zg(z, t)

+
y − 1

kp(z − 1)
∂tg(z, t)− 1 (43)

and in the steady-state

G∗(y, z) = (44)

limN→∞ exp
{
N
[
1F1

(
km/N
µp

; µmµp ;
kp
µp

(z − 1)
)
− 1
]

+ (y − 1) kmµm 1F1

(
1; 1 + µm

µp
;
kp
µp

(z − 1)
)}

In the following, we show that the steady-state dis-
tribution derived above is equivalent to the exact re-
sult derived in recent work ([20]). By the definition of
the hypergeometric functions we have d

dx 1F1(α;β; γx) =
α
β γ 1F1(α + 1;β + 1; γx) or 1F1(α;β; γx) = 1 +
α
β γ
∫ x
0 1F1(α + 1;β + 1; γs) ds. Using this relation in

the preceding equation for G∗(z)(= G∗(1, z)), we obtain:

G∗(z) = (45)

exp
{
kmkp
µmµp

∫ z
1 1F1

(
1; 1 + µm

µp
;
kp
µp

(s− 1)
)

ds
}

which is exactly the result derived in previous work ([20]).

XI. D. MODEL WITH DELAYED
DEGRADATION

We consider an extension of the 2-stage model in which
the proteins degrade in two steps. First proteins are
tagged (with rate γ) and after being tagged they are
degraded with a fixed time delay of τ (Fig. 3A). The
corresponding reduced model, obtained using the PPA
mapping approach, is shown in Fig. 3B.

To obtain the exact solution for the steady-state pro-
tein distribution, we catergorize the proteins at a given
time t (with t large enough such that the system is in
steady-state) into two groups: tagged and untagged pro-
teins. Then, at time t + τ , all the tagged proteins will
have degraded and the untagged proteins will survive.
During the time-interval τ , mRNAs give rise to new pro-
teins that are added to the system. These new proteins
will also surive upto time t+τ . Thus, the random variable
corresponding to the number of proteins in the system at
time t + τ is the sum of two indepedent random vari-
ables: the number of untagged proteins at time t and the
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number of proteins created in the time interval [t, t+ τ ].
Let us denote the corresponding generating functions as
follows: total proteins (Q(z)), proteins untagged at time
t (U(z)) and proteins created in the time interval [t, t+τ ]
(W (z)). Since the total number of proteins is the sum
of the other two independent random variables, we have
Q(z) = U(z)W (z)

The distribution of untagged proteins at time t is the
same as the steady-state distribution of proteins in the
basic two-stage model (with degradation rate in the basic
two-stage model set equal to the tagging rate γ). The
corresponding generating function has been obtained in
previous work [13]) and is given by

U(z) = lim
N→∞

1F1

(
km
Nγ

;
µm
γ

;
kp
γ

(z − 1)

)
(46)

Now, we consider the proteins created in the time inter-
val τ . For the reduced model, let W0(z) and W1(z) be
the generating functions for the protein distribution cor-
responding to the system being in OFF and ON states
respectively. The following master equations govern the
evolution of W0(z) and W1(z) :

∂W0

∂t
= −km

N
W0 + µmW1 (47)

∂W1

∂t
= −km

N
W0 + µmW1 + kp(z − 1)W1 (48)

therefore:

W1 =
1

kp(z − 1)

∂W

∂t
(49)

W0 =
−1

kp(z − 1)

∂W

∂t
+W (50)

where W (z) = W0(z) +W1(z). Correspondingly, we ob-
tain the following equation for W (z):

∂2W

∂t2
+ (

km
N

+µm− kp(z− 1))
∂W

∂t
− km
N
kp(z− 1)W = 0

(51)
The solution of this ordinary differential equation is given

by [13]:

W (z, t) = C1 e
(α(z)−β(z))t + C2 e

(α(z)+β(z))t (52)

where α(z) and β(z) are:

2α(z) = kp(z − 1)− µm −
km
N

(53)

(2β(z))2 = k2p(z − 1)2 + 2(
km
N
− µm)kp(z − 1) + (µm +

km
N

)2

(54)

To obtain C1 and C2 we use the initial conditions. Since
we are in the steady-state limit, the initial conditions are:

W0(z, 0) =
µm

km
N + µm

= 1− km
Nµm

, W1(z, 0) =
km
Nµm

(55)
Using the above, we get:

C1 =
(β(z) + α(z))− kp(z − 1)W1(0)

2β(z)
(56)

C2 =
(β(z)− α(z)) + kp(z − 1)W1(0)

2β(z)
(57)

For N →∞ and t = τ

W (z, τ) = 1 +
1

N

kmkp
µ2
m

(z − 1)

1− kp
µm

(z − 1)

[
µmτ −

kp
µm

× (z − 1)

1− kp
µm

(z − 1)

(
1− e−µm(1− kp

µm
(z−1))τ

)]
(58)

The generating function of the original model is G(z) =
limN→∞QN :

G(z) = (59)

exp
{
km
µm

kp(z−1)
s(z)

(
µmτ − kp(z−1)

s(z) (1− e−s(z)τ )
)}

× limN→∞ exp
{
N
(
1F1

[
km/N
γ ; µm

γ ;
kp
γ (z − 1)

]
− 1
)}

where s(z) = µm − kp(z − 1).
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Stochastic models of gene expression with delayed degra-
dation. Bulletin of Mathematical Biology 73(9): 2231–
2247

[25] Munsky B, Neuert G, van Oudenaarden A (2012) Us-
ing gene expression noise to understand gene regulation.
Science 336(6078): 183–187

[26] Lan Y., Wolynes P. G., Papoian G. A. (2006) A varia-
tional approach to the stochastic aspects of cellular signal
transduction. The Journal of chemical physics 125(12):
124106-124106.

[27] Larson D (2011) What do expression dynamics tell us
about the mechanism of transcription? Current opinion
in genetics development 21(5): 591–599

[28] Hornos J. E. M., Schultz D., Innocentini G. C. P., Wang
J. A. M. W., Walczak A. M., Onuchic J. N., Wolynes P.
G. (2005) Self-regulating gene: An exact solution. Phys-
ical Review E , 72(5), 051907.

[29] Ramos, A. F., Innocentini, G. C. P., Hornos, J. E.
M. (2011) Exact time-dependent solutions for a self-
regulating gene. Physical Review E , 83(6), 062902.


