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1Department of Applied Physics, Chalmers University of Technology,
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Abstract

Attachment of lytic peptides to the lipid membrane of virions or bacte-

ria is often accompanied by their aggregation and pore formation, resulting

eventually in membrane rupture and pathogen neutralization. The membrane

rupture may occur gradually via formation of many pores or abruptly after

the formation of the first pore. In academic studies, this process is observed

during interaction of peptides with lipid vesicles. We present an analytical

model and the corresponding Monte Carlo simulations focused on the pore

formation in such situations. Specifically, we calculate the time of the first

nucleation-limited pore-formation event and show the distribution of this time

in the regime when the fluctuations of the number of peptides attached to a

vesicle are appreciable. The results obtained are used to clarify the mecha-

nism of the pore formation and membrane destabilization observed recently

during interaction of highly active α-helical peptide with sub-100 nm lipid

vesicles that mimic enveloped viruses with nanoscale membrane curvature.

The model proposed and the analysis presented are generic and may be ap-

plicable to other meso- and nanosystems.
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I. INTRODUCTION

Nucleation of a new phase, occurring under thermodynamically favourable con-

ditions, is a basic physicochemical phenomenon. It is observed in very different

systems and accordingly plays an important role in numerous applications. For

these reasons, the studies of this process have a long history spanning over 280

years (reviewed in Ref. [1]). The classical nucleation theory (CNT) was developed

back over 80 years by Volmer, Weber, Becker, Doering, and Zeldovich (reviewed in

Ref. [2]). At present, this area continues to attract attention in efforts to clarify

the mechanistic details (in addition to reviews [1, 2], see, e.g., the nucleation theo-

rems discussed by Ford [3], more recent general studies [4], a review of the kinetics

of protein aggregation [5], and references therein). The corresponding treatments

usually imply that a medium is macroscopic, nucleation occurs under steady-state

conditions, the subcritical nuclei of a new phase are at equilibrium with an original

metastable phase, and the number of atoms or molecules in a critical nucleus is

large. Under such conditions, the nucleation rate is expressed via the free energy of

formation of the critical nuclei.

During the past decade, the focus of studies in natural sciences has appreciably

shifted to physicochemical and biological meso- and nanosystems. In such systems,

nucleation often also may play an important role (see, e.g., the analysis of melting

and freezing of metal nanoparticles [6], protein folding [7], and lipid self-assembly

[8]). The interpretation of the corresponding experimental results is often possible in

the framework of the general CNT concepts (for the shortcoming of CNT, see, e.g.,

the review by Ford [2]). The practical realization of these concepts should however

as a rule include novel ingredients taking the specifics of meso- or nanosystems into

account.

To motivate our work, we refer to the experimental studies of interaction of lytic

peptides with lipid vesicles, viral membranes or bacteria (see reviews [9], recent
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experiments [10, 11], related molecular dynamics simulations [12], and references

therein). In these systems, the attachment of peptides to the membrane is accom-

panied by their aggregation, pore formation and, sometimes, membrane rupture,

which in the case of bacteria and virions leads to pathogen neutralization. The pro-

cess may occur gradually via formation of many pores or abruptly via membrane

rupture followed the formation of the first pore. These two scenarios can experi-

mentally be distinguished and tracked by using single-vesicle imaging as shown in

recent experiments [11] with highly active α-helical peptide and sub-100 nm vesi-

cles. Theoretically, the corresponding kinetics or at least the pore-formation events

can be described in the terms of nucleation theory. Direct application of CNT may,

however, be hampered here because (i) the nucleation resulting in pore formation

occurs under transient peptide-attachment conditions, (ii) the number of peptides

(per vesicle or virion) is relatively small (from a few hundreds to a few thousands),

(iii) there may be only a few precritical nuclei, and (iv) the critical nucleus may

include only a few peptides. For the first scenario implying the vesicle rupture

following the formation of many pores, the reservations of this type are often not

crucial (especially if one is primarily interested in rupture), and the corresponding

models have already been proposed and correlated with experimental results (see,

e.g., Refs. [13]). For the second scenario with the rupture following the formation

of the first pore, the reservations indicated are more restrictive and, in addition,

some of the questions raised are different compared to those customarily addressed

by CNT. For example, the nucleation rate is not central in this case. What is often

more interesting and practically important is the time of the first nucleation event,

referred below as the first passage time, tfp, and the distribution of this time related

to fluctuations of the number of peptides associated with a vesicle.

Employing a generic kinetic model of peptide-induced and nucleation-limited

pore formation in vesicles, we have recently derived an analytical expression for tfp
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[11]. In our present work, using the same model, we briefly describe and extend

the earlier analysis [Eqs. (1)-(11) in Sec. II], derive analytical expressions allowing

one to estimate the role of fluctuations in the distribution of tfp [Eqs. (12)-(14) in

Sec. II], present Monte Carlo (MC) simulations (Sec. III) focused on these aspects

of the kinetics, and illustrate how the results obtained may help to interpret the

experiment (Sec. IV).

II. ANALYTICAL RESULTS

Let us consider attachment of peptides to a vesicle. This process is assumed to

be irreversible and schematically represented as

Ps → Pa, (1)

where Ps and Pa are peptides in the solution and on the membrane. The pore

formation is considered to be limited by nucleation including n sequential steps of

association of Pa and i-mers,

Pa + Pa ⇀↽ C2, (2)

Pa + Ci ⇀↽ Ci+1 (2 ≤ i ≤ n− 2), (3)

Pa + Cn−1 → Cn, (4)

where Ci (2 ≤ i ≤ n − 1) is i-mer containing i monomers. Step (4) is assumed to

be slow compared to steps (2) and (3). After step (4), the pore-formation process

may include association of additional peptides. The latter steps are considered to

be rapid and not treated explicitly.

Initially (at t = 0), a vesicle is set to be free of peptides. The nucleation is

assumed to occur when the number of peptides attached to a vesicle becomes appre-

ciable, N ≫ n (note that a critical nucleus typically includes only a few peptides,

i.e., n is usually smaller than 10, which makes N ≫ n a valid assumption even if N

is relatively small). In analogy with CNT, we consider that the attached peptides
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are primarily monomers. In other words, this means that the peptide uptake is

approximately equal to the number of monomers, N ≃ N1. With this condition, the

peptide uptake [step (1)] is described phenomenologically as

N1 = Atα, (5)

where A is a constant, and α is the corresponding exponent. For example, α = 1

corresponds to the simplest kinetically limited attachment kinetics or to the diffusion

limited kinetics under the flow conditions, while α = 1/2 may describe the diffusion-

limited case under no flow conditions.

In analogy with CNT, we consider that steps (2) and (3) are close to equilibrium.

In this case, the number of Cn−1 is given by

Nn−1 = KNn−1
1 , (6)

where K is the equilibrium constant for the formation of Cn−1. Substituting (5) into

(6) yields

Nn−1 = KAn−1tα(n−1). (7)

The equation for the number of Cn is read as

dNn/dt = knNn−1N1, (8)

where kn is the rate constant of step (4). Substituting (5) and (7) into (8) results in

dNn/dt = knKAntαn. (9)

Integrating the latter equation, we obtain

Nn = knKAntαn+1/(αn+ 1). (10)

The time of the first nucleation event or, in other words, the first passage time can

be identified with reaching Nn = 1. Using this condition and Eq. (10), we have

tfp =
(

αn+ 1

knKAn

)1/(αn+1)

. (11)
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In fact, this expression represents to the average mean-field (MF) first passage time.

In an ensemble of identical vesicles, tfp is distributed due to fluctuations of the

number of peptides attached to a vesicle. The important point is that the nucleation

occurs primarily near the average first passage time, 〈tfp〉, because the nucleation

rate [Eq. (8)] becomes appreciable when t ≃ 〈tfp〉. According to Eq. (8), the time

scale of nucleation is equal to 1/(knNn−1N1). At t ≃ 〈tfp〉, N1 is much larger than

Nn−1, and accordingly the fluctuations of N1 are negligible, i.e., one can replace N1

by 〈N1〉. The fluctuations of 1/Nn−1 can be estimated by expanding this ratio and

taking into account the part related to fluctuations, i.e., ∆Nn−1/〈Nn−1〉
2. Following

this line, we represent the deviation of tfp as ∆tfp = ∆Nn−1/(kn〈N1〉〈Nn−1〉
2). The

standard deviation of tfp is accordingly given by

〈(∆tfp)
2〉1/2 =

〈(∆Nn−1)
2〉1/2

kn〈N1〉〈Nn−1〉2
. (12)

Dividing the left and right parts of this expression by 〈tfp〉 and using Eqs. (5), (7)

and (11), one can rewrite it as

〈(∆tfp)
2〉1/2

〈tfp〉
=

〈(∆Nn−1)
2〉1/2

(αn+ 1)〈Nn−1〉
. (13)

The latter expression indicates that the normalized standard deviation of tfp is

smaller than that of Nn−1 by a factor of αn+ 1.

The analysis above implies that the variance 〈(∆Nn−1)
2〉 should be calculated

by employing the Nn−1 values corresponding to the nucleation events. Thus, the

distribution of Nn−1 is expected to be slightly different compared to the equilibrium

distribution, because the nucleation events are more probable for larger Nn−1 and

there may be deviations from equilibrium. This difference is, however, expected to

be minor, and 〈(∆Nn−1)
2〉 can be calculated by using the Poissonian distribution

corresponding to equilibrium, i.e.,

〈(∆Nn−1)
2〉 = 〈Nn−1〉. (14)
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The formulae derived above allow one to calculate the average time of the first

nucleation event, resulting in the pore formation, and its standard deviation. If the

vesicle rupture occurs just after the formation of the first pore, the formulae can

also be directly used to interpret rupture.

III. MONTE CARLO SIMULATIONS

The accuracy of some of the steps in our analysis above can be debated. For

example, the number of subcritical nuclei, Nn−1, during the nucleation event may

be low (from one to a few copies), and one may doubt whether the MF equations

are accurate in this limit. To scrutinize such aspects, we have performed MC simu-

lations of the kinetics under consideration in the case when Nn−1 is indeed low. The

advantage of the MC technique is that it allows us to simulate steps (1)-(4) exactly

without the simplifications inherent to the MF treatment.

For example, we analyze nucleation with n = 4 (this value of n was used to

interpret the experiments in Ref. [11]). The peptide attachment to a vesicle is

considered to be kinetically limited, i.e., α = 1. The corresponding MF equations

for the i-mer populations are as follows

dN1/dt = ra − 2k2N
2
1 + 2d2N2, (15)

dN2/dt = k2N
2
1 − d2N2 − k3N2N1 + d3N3, (16)

dN3/dt = k3N2N1 − d3N3 − k4N3N1, (17)

dN4/dt = k4N3N1, (18)

where ra is the attachment rate, ki and di are the peptide association and dissociation

rate constants. Employing these equations and following the prescriptions described

in Sec. II, we have

N1 = rat, (19)
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N2 = k2(rat)
2/d2, (20)

N3 = k2k3(rat)
3/(d2d3), (21)

N4 = k2k3k4r
4
at

5/(5d2d3), (22)

tfp =

(

5d2d3
k2k3k4r4a

)1/5

, (23)

where ra ≡ A and K ≡ k2k3/(d2d3).

Our MC simulations are based on the standard Gillespie algorithm including the

calculation of the total rate of all the possible steps, wt =
∑

i wi, realization of one

of the steps chosen with probability wi/wt, and the increment of time by | ln(ρ)|/wt,

where ρ (0 < ρ ≤ 1) is a random number. In our case, we have six steps occurring

with the rates w1 = ra, w2 = k2N1(N1 − 1), w3 = d2N2, w4 = k3N2N1, w5 = d3N3,

and w6 = k4N3N1. To obtain the kinetics on the biologically reasonable time scale,

the corresponding rate constants were set as k2 = k3 = 10−5 s−1, k4 = 10−6 s−1, and

d2 = d3 = 1 s−1. ra was chosen as a governing parameter and varied in the range

from 1 to 10 s−1.

The MC and MF kinetics calculated with the specification above are in good

agreement (Fig. 1) despite the stochastic behaviour of N3. The MC and MF de-

pendences of 〈tfp〉 on ra are in good agreement as well (Fig. 2). For the standard

deviation of tfp, as expected, the agreement between the MC and MF results is

somewhat worse (Fig. 2). Specifically, the MC deviation is larger by a factor of

1.1-2. The average value of N3 is slightly larger in the MC case as well (Fig. 3).

The distribution of tfp is Gaussian (Fig. 4, upper panels), while the distribution of

N3 exhibits, as expected (because the Pa association with C3 is irreversible), devia-

tions from the Poissonian one (Fig. 4, lower panels). The deviations are, however,

modest.
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IV. APPLICATION

Our present study was initiated by the experiments performed in our group

[11] with the aim to clarify the mechanism of the pore formation and membrane

destabilization observed during interaction of highly active α-helical peptide with

sub-100 nm lipid vesicles that mimic enveloped viruses with nanoscale membrane

curvature. The distributions of the time of the first-pore formation, F (tfp) [Fig.

5(a,b)], were obtained from single vesicle imaging for vesicles with the average radius

of 100 and 40 nm. The distributions of vesicles over radius, f(r), were relatively

narrow [Fig. 5(c)]. With decreasing the average vesicle radius from 100 nm to 40

nm, 〈tfp〉 is found to become appreciably shorter, i.e., tfp depends on r and becomes

shorter with decreasing r. The ratio 〈(∆tfp)
2〉1/2/〈tfp〉 is slightly larger for smaller

vesicles. In addition, the distribution of tfp for smaller vesicles exhibits a tail, while

the distribution for larger vesicles is nearly symmetric.

Due to the dependence of tfp on r, the experimentally observed distributions

F (tfp) depend not only on the kinetics of pore formation (as discussed in Secs. II

and III) but also on f(r). If the latter dependence dominate, F (tfp) can be expressed

via f(r) as

F (tfp) = f [r(tfp)]
dr(tfp)

dtfp
, (24)

where r(tfp) is the function inverse to tfp(r).

Physically, the dependence of tfp on r may be related to two factors. The first

one is that the pore formation rate is proportional to the vesicle area. The second

one is that the activation energy for this process may decrease with decreasing r

due to curvature-related membrane strain (as discussed in the other context in Ref.

[14]). With decreasing r, tfp is expected to increase according to the former factor

and to decrease according to the latter factor. In the case under consideration, as

already noted, the experiment indicates that tfp decreases with decreasing r, and

accordingly the curvature-related membrane strain seems to dominate. Taking only
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this factor into account, we represent the dependence of tfp on r as [14]

tfp(r) = t◦ exp(−Ba/r), (25)

where t◦ is the value at r → ∞, a = 2.5 nm is the thickness of the lipid layer, and

B is a dimensionless parameter related to expansion of the activation energy with

respect to the lipid-bilayer curvature.

To reproduce the position of peaks in the distributions of tfp for vesicles with

〈r〉 = 100 and 40 nm [Fig. 5(a,b)], we have used Eqs. (24) and (25) with t◦ =

15 min, B = 30 and the experimentally measured vesicle size distributions [Fig.

5(c)]. The distributions F (tfp) calculated with these parameters are shown in Fig.

5(a,b). Comparing the experimental and theoretical results, one can notice that

for smaller vesicles [with 〈r〉 = 40 nm; Fig. 5(a)] the calculated full width at half

maximum (FWHM) of F (tfp) is comparable to that observed experimentally (in both

cases, FWHM ≃ 1.1 min). In addition, the model reproduces the experimentally

observed asymmetry (tail) in the distribution of tfp, which appears to be related to

the corresponding asymmetry of the size distribution of smaller vesicles. For larger

vesicles [Fig. 5(b)], the calculated FWHM (≃ 2.5 min) is appreciably smaller than

in the experiment (≃ 7 min). The latter seems to indicate that for these vesicles

the contribution of fluctuations of the number of attached peptides to FWHM is

comparable or slightly larger that that related to the vesicle size distribution. This

conclusion is confirmed by our MC simulations (Fig. 4) showing that the fluctuation-

related scale of the ratio 〈(∆tfp)
2〉1/2/〈tfp〉 may be comparable with that observed

for larger vesicles [Fig. 5(b)].

V. CONCLUSION

Motivated by the experimental studies of interaction of lytic peptides with lipid

vesicles, virions or bacteria, we have analyzed in detail the generic model describ-

ing peptide attachment and peptide-induced and nucleation-limited pore formation.

The dependences of the corresponding first passage time, tfp, and its standard devia-
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tion on the model parameters have been calculated analytically [expressions (11) and

(13)] by using the MF equations and also by employing MC simulations. The MC

simulations indicate that the MF predictions for tfp are fairly accurate even in the

situations when there are only a few precritical nuclei. The analytical predictions for

the standard deviation of tfp are less accurate. In particular, the standard deviation

calculated analytically may be smaller compared to the MC one by a factor of 1.1-2.

Our analysis of the standard deviation of tfp has been focused on the role of

fluctuations of the number of peptides attached to a vesicle. The corresponding

expression (13) can be used to describe pore formation in an ensemble of vesicles

provided that they are of the same size. In real experiments, vesicles always have

some variation in size. Taking into account that tfp depends on the vesicle size,

the standard deviation of tfp should contain the related contribution. For a given

dependence of tfp on the vesicle size, the latter contribution to the standard deviation

of tfp can be calculated by employing Eq. (24) provided that the vesicle distribution

is known.

The results obtained have been used to interpret the recent experiments [11]

with highly active α-helical peptide and sub-100 nm vesicles. In particular, our

analysis indicates that the contribution of fluctuations of the number of peptides,

attached to a vesicle, to the ratio 〈(∆tfp)
2〉1/2/〈tfp〉 can be comparable with that

observed experimentally. Thus, the fluctuations appear to be manifested in the

kinetics despite the effects related to the vesicle-size distribution.
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V.P. Zhdanov, I. Zorić, and B. Kasemo, Nano Lett. 10, 931 (2010); V.P. Zh-
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Figure captions

Fig. 1. Typical dependences of N1, N2, and N3 on time for ra = 1 (a) and 10

s−1 (b). The MC kinetics (circles) were calculated up to the first pore-formation

event. The interval between the MC data point is 10 s. The MF kinetics (lines)

were calculated by using Eqs. (19)-(22) up to N4 = 1.

Fig. 2. Average first passage time and its standard deviation as a function of the

attachment rate. The MC and MF data are shown by circles and lines, respectively.

Each MC data point was obtained by using 5 × 103 MC runs. In the MF case,

〈tfp〉 was calculated by using Eq. (23), and its standard deviation was obtained by

employing Eqs. (12), (14) and (21).

Fig. 3. Average number of precritical nuclei and its standard deviation as a

function of the attachment rate. Each MC data point was obtained by using 5×103

MC runs. The MF curves were constructed by employing Eqs. (21) and (14).

Fig. 4. Distributions of tfp and N3 for ra = 1 (a) and 10 s−1 (b). The MC

distribution of tfp (circles) is shown together with the Gaussian distribution (lines),

f(x) = (2π〈∆x〉2)−1/2 exp[−(∆x)2/(2〈∆x〉2)], calculated by using the same average

and variance as in the MC case. The MC distribution ofN3 (filled circles) is exhibited

together with the Poissonian distribution (open circles), f(N) = 〈N〉 exp(−〈N〉)/N !,

calculated by employing the same average as in the MC case.

Fig. 5. Distribution of the time of formation of the first pore by α-helical peptide

in vesicles with the average radius of 100 (a) and 40 nm (b). The columns show

the experimental data (reproduced from Fig. 3 in Ref. [11]). The solid lines were

obtained by taking the dependence of tfp on the vesicle radius into account [Eqs.

(24) and (25)]. The distributions of vesicles over radius, exhibited in panel (c), were

obtained by the nanoparticle tracking analysis.
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