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We present an effective medium theory that includes bending as well as stretching forces, and we
use it to calculate mechanical response of a diluted filamentous triangular lattice. In this lattice,
bonds are central-force springs, and there are bending forces between neighboring bonds on the
same filament. We investigate the diluted lattice in which each bond is present with a probability
p. We find a rigidity threshold pb which has the same value for all positive bending rigidity and a
crossover characterizing bending-, stretching-, and bend-stretch coupled elastic regimes controlled
by the central-force rigidity percolation point at pCF ≃ 2/3 of the lattice when fiber bending rigidity
vanishes.
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I. INTRODUCTION

Random elastic networks provide attractive and real-
istic models for the mechanical properties of materials as
diverse as randomly packed spheres [1–3], network glasses
[4–8], and biopolymer gels [9–20]. In their simplest form,
these networks consist of nodes connected by central-
force (CF) springs to on average of z neighbors. They be-
come more rigid as z increases, and they typically exhibit
a CF rigidity percolation transition [21–23] from floppy
clusters to a sample spanning-cluster endowed with non-
vanishing shear and bulk moduli at a threshold z = zCF

very close to the Maxwell isostatic limit [24, 25] of 2d,
where d is the spatial dimension, at which the number of
constraints imposed by the springs equals the number of
degrees of freedom of individual nodes. Generalized ver-
sions of these networks, appropriate for the description of
network glasses [4, 5] and biopolymer gels [13–15], include
bending forces favoring a particular angle between bonds
(springs) incident on a given node. For a given value
of z, networks with bending forces are more rigid than
their CF-only counterparts, and they exhibit a rigidity
transition at z = zb < zCF.
While numerical calculations, including the pebble

game [23, 26], have provided much of our knowledge
about the properties of random elastic networks, effec-
tive medium theories (EMTs) [27–31] have provided com-
plementary analytical descriptions of CF networks that
are simple and at minimum qualitatively correct. EMTs
[32–36] and heuristic approaches [37] that describe both
bending and stretching forces have only recently been de-
veloped. Here we present details of the derivation of a
bend-stretch EMT introduced in Ref. [35] and its applica-
tion to a bond diluted triangular lattice, whose maximum
coordination number is zmax = 6. Sets of contiguous
collinear bonds on the lattice are treated as elastic rods,
characterized by one-dimensional stretching and bending
moduli µ and κ, that provide central force springs that
connect neighboring nodes and that resist bending across
nodes. Elastic beam networks were introduced in stud-
ies of the Mikado model [14, 15] for crosslinked networks
of semi-flexible polymers with length L less than their

persistence length Lp. Replacing semi-flexible polymers,
whose stretching elasticity is purely entropic and quite
nonlinear, with elastic rods produces a purely mechanical
model that greatly simplifies simulations [16] and allows
a more detailed numerical study of the effects of the inter-
play between bending, stretching, and network architec-
ture on linear elastic response. Our EMT calculates the
effective-medium moduli µm and κm, in the regime of lin-
ear elasticity, as a function of µ and κ and the probability
p = z/6 that a bond is occupied. Both the EMT bulk and
shear moduli are proportional to µm. When κ = 0, our
EMT reduces to that considered by others [29, 30] and
successfully predicts a second-order CF rigidity threshold
at zCF ≃ 4 < zmax (pCF = 2/3 in EMT and of order 0.64
to 0.65 under various numerical estimates [35, 38, 39] )
with µm increasing linearly in p− pCF near pCF and ap-
proaching the undiluted triangular-lattice value of µ at
p = 1. When bending forces are introduced, our EMT
predicts a second-order rigidity threshold pb < pCF for all
κ > 0. This qualitatively agrees with the results of an al-
ternative EMT in Ref. [36], although our theory predicts
pb ≃ 0.56 in poorer agreement with the value pb ≃ 0.44
obtained in simulations than the value pb ≃ 0.457 pre-
dicted there. Near pb we find that µm ∼ κ(p − pb)
for κ/(µa2) ≪ c1 ≈ 0.1 and µm ∼ µ(p − pb) for
κ/(µa2) ≫ c1, where a is the lattice spacing. Near pCF,
κ is a relevant variable moving the system away from
the CF rigidity critical point to a broad crossover regime
[35, 37] in which µm ∼ κ1/2µ1/2 as shown in the phase
diagram of Fig. 1. This crossover is analogous to that
for the macroscopic conductivity in a resistor network
in which bonds are occupied with resistors with con-
ductance σ> with probability p and with conductance
σ< < σ> with probability 1− p [40].

Though the model we study has both stretching and
bending forces, it differs in important ways from previ-
ously studied models for network glasses [4–8] and for
filamentous gels [13–20]. The maximum coordination
number for both of these systems is less than or equal
2d, and thus neither has a CF rigidity transition for
p < 1 when there are no bending forces. As a result
neither exhibits the bend-stretch crossover region near
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FIG. 1. (Color online) Phase diagram of the diluted filamen-
tous triangular lattice showing the central-force and bending
rigidity thresholds, respectively, at p = pCF and p = pb, the
bending-dominated regime at small κ in the vicinity of pb,
the crossover bend-stretch regime near pCF, and the stretch-
ing dominated regime at large κ. (Adapted from Ref. [35])

pCF that our model exhibits. Network glasses are well
modeled by a randomly diluted four-fold coordinated di-
amond lattice in which there is a bending-energy cost,
characterized by a bending modulus κ, if the angle be-
tween any pair of bonds incident on a site deviates from
the tetrahedral angle of 109.5 deg. The architecture of
the undiluted diamond lattice (with zmax = 4 < 2d = 6)
is such that its shear modulus vanishes linearly with κ
[7] and elastic response is nonaffine. When diluted, it
exhibits a second-order rigidity transition from a state
with bending-dominated nonaffine shear response to a
state with no rigidity. As dilution decreases, rigidity is
still controlled by κ, but response becomes less nonaffine.
It is important to emphasize that our model, as well

as those of Refs. [12–20, 32–36, 41, 42], applies to per-
manently crosslinked networks in which collisions be-
tween segments of different filaments between crosslinks
are unimportant [15]. All elastic response is determined
by the force-extension and bending properties of individ-
ual filaments along with the topology of the network of
crosslinks. This approximation to the real world provides
a remarkably accurate description of the low-frequency
elastic response of a wide range of real crosslinked
biopolymer networks [17, 43]. In uncrosslinked solutions,
collisions between between filaments give rise to confining
tubes for individual filaments, whose relaxation controls
rheological response. There is a well defined isotropic
“tightly-entangled” regime [44] of concentration of semi-
flexible polymers (with L < Lp) in which the shape and
overall orientation of each filament are constrained by
the presence of other filaments. In this regime, the com-
plex shear modulus exhibits a complex dependence on
frequency ω [45–48] vanishing ω = 0, flat on a plateau
extending over a wide range of ω, and growing as ω3/4 at
large ω [49, 50]. In a series of papers [44, 51, 52], Morse,
building on the work of many others, has developed a
comprehensive theory, based on the Doi-Edwards tube

model [53], of the viscoelastic response of solutions of
semi-flexible polymers in the the tightly-entangled regime
that reproduces well the experimentally measured re-
sponse. These papers focus on finite-frequency behav-
ior and, in particular, on the plateau modulus which is
calculated in a type of effective medium theory. They
do not address the zero-frequency elastic response in
crosslinked systems studied here except to note that the
zero-frequency modulus that results when crosslinks are
added is identical to that calculated by MacKintosh et al.
[13] in which filaments between neighboring nodes pro-
vide a central-force entropic spring and in which affine
response is assumed.

Filamentous networks in two-dimensions are often de-
scribed by the Mikado model [14–16] in which semi-
flexible filaments of a given length L are deposited with
random center-of-mass position and random orientation
on a two-dimensional plane and in which the points where
two filaments cross are joined in frictionless crosslinks.
As in our model, there is no energy cost for the relative
rotation of two rods about a crosslink, but there is an en-
ergy cost for bending the rods at crosslinks. This model is
characterized by the ratio η ≡ L/lc of the filament length
L to the average mesh size, i.e., the average crosslink sep-
aration lc > a along a filament, where a is the shortest
distance between crosslinks. In the limit η → ∞, all fila-
ments traverse the sample, and the system has finite, κ-
independent shear and bulk moduli: There is effectively
a CF rigidity transition at z = 4 when η is decreased
from infinity. There is a transition at η = ηc ≈ 5.9 from
a floppy to a rigid state with nonaffine response [14, 54],
and there is a wide crossover region between η = ηc and
η = ∞ in which the shear modulus changes from being
bend dominated, nonaffine, and nearly independent of µ
at small η to being stretch dominated, nearly affine, and
nearly independent of κ at large η. Our EMT applied
to the kagome lattice [55], whose maximum coordination
number like that of the Mikado model is four, captures
these crossovers. Interestingly, 3d lattices composed of
straight filaments with zmax = 4 exhibit similar behav-
ior [42]. When filaments are bent, however, elastic re-
sponse in one case at least [20] is more like that of the
diluted diamond lattice with the shear modulus vanishing
with κ even at large L/lc or z near 4.

External tensile stress (i.e., negative pressure) can
cause a floppy lattice to become rigid [56]. Random in-
ternal stresses can do so as well in a phenomenon called
tensegrity [25]. Thus a lattice with internal stresses may
have a lower rigidity threshold than the same lattice with
out internal stresses [20]. Systems such as network glasses
can exhibit two rigidity transitions [8, 57]: a second-order
transition from a floppy to a rigid but unstressed state
followed closely by a first-order transition to a rigid but
stressed state. These effects are beyond the scope of
EMT and will not be treated.

The outline of our paper is as follows. Section II re-
views properties of semi-flexible polymers and defines our
model for the harmonic elasticity of crosslinked semi-
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flexible polymers on a triangular lattice; Sec. III sets up
our effective medium theory; Sec. IV presents the results
of this theory; and Sec. V compares our EMT with other
versions of bend-stretch EMTs and summarizes our re-
sults. There are three appendices: App. A derives the
energy, which is critical to our version of EMT, of a com-
posite bent rod, App. B presents the detailed form of
the dynamical matrix, and App. C provides a detailed
comparison of our EMT and that of Refs. [32, 36].

II. FILAMENTOUS POLYMERS ON A
TRIANGULAR LATTICE

A. Elastic Rods: Continuum and Discretized
Energies

Following previous work [14, 15], we model individual
filaments as homogeneous elastic rods characterized by a
stretching (or Young’s) modulus µ and a bending modu-
lus κ. We restrict out attention to two dimensions. The
filament energy is thus,

E =
1

2

∫ L

0

ds

[

µ

(

du(s)

ds

)2

+ κ

(

dθ(s)

ds

)2
]

, (2.1)

where s is the arclength coordinate, L is the unstretched
contour length of the polymer, and u(s) and θ(s) are,
respectively, the longitudinal displacement and angle of
the unit tangent to the polymer at s. We treat this
as a purely mechanical model in which µ and κ are
fixed, and we do not consider the entropic contributions
to the energy that arise from thermally induced trans-
verse fluctuations of the filaments [13, 17, 58]. Three
length scales can be identified in this elastic energy. The
first is the contour length of the polymers, L. The sec-
ond, lbend ≡

√

κ/µ, characterizes the relative strength
of stretching and bending. For an elastic rod made of
a homogeneous material, lbend is simply proportional to
the radius of the rod. A third length, the mesh size lc
characterizing the connectivity of the network, can be
identified for crosslinked polymer networks. The ratio
L/lc is a measure of the connectivity of the lattice. Fi-
nite filaments of length L with this energy act like springs
with stretching spring constant k|| = µ/L and bending

constant κ/L3.
In order to develop a model of crosslinked filaments

on a lattice with a random distribution of stretching and
bending moduli of the sort that we will encounter in our
EMTs, we need first to develop a discretized form of the
continuum beam energy [Eq. (2.1)] with inhomogeneous
stretching and bending moduli. We begin by dividing a
filament of length L into N segments (bonds) of length
a, labeled i = 1, · · · , N and terminated by nodes (sites)
i = 0 · · ·N . In equilibrium in the absence of external
forces, the filament is straight, and node i is at position
si = ia while that of the center of bond i, which lies
between sites nodes i− 1 and i, is at position si − (a/2)

i
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1i −
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0 1

1
a
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i
θ
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θ
−

FIG. 2. (color online) Schematic of a filament of length 5a
divided into 5 segments of length a (a) in the equilibrium
configuration and (b) in a distorted configuration. Circles
mark lattice nodes (located as positions ia), and crosses mark
the centers of bonds located at positions [i − (1/2)]a. The
different colors of the bonds indicate different values for the
stretching and bending moduli. The angle of the bonds i− 1
and i are indicated in (b). In the limit of slow changes in θi,
the slope of the h(s) ≡ u⊥(s) is constant in bond i, and bond
angle i is the angle of the line connecting site i− 1 with site
i for small θi.

as shown in Fig. 2. Individual stretching and bending
moduli µi and κi are associated with bond i as shown in
Fig. 2. Individual stretching an bending moduli µi and
κi are associated with bond i.
The derivation of the discretized stretching energy is

straightforward: Associated with each node i is a longi-

tudinal displacement u
||
i and with each bond i an energy

Es
i =

1

2

µi

a
(u

||
i+1 − u

||
i )

2. (2.2)

The total stretching energy of a filament is the sum of
these bond energies. The discretized equations of motion
arising from this inhomogeneous discrete model agree
with those arising from a continuum model in the con-
tinuum a → 0 limit.
The derivation of a discretized bending energy is more

subtle. Consider first a homogeneous model in which κ
is the same in each segment. Here we assign an angle θi
to each bond, and an energy (1/2)(κ/a3)(θi+1 − θi)

2 to
the node i, which lies between bonds i and i + 1. This
energy is, of course, constructed so that in the continuum
(a → 0) limit (θi−θi−1)/a → dθ/ds and the bending part
of Eq. (2.1) is retrieved. This works because the filament
segment between the center of bond i [at position sia −
(a/2)] and that of bond i + 1 [at position sia + (a/2)]
is uniform with bending modulus κ, and as a result, the
energy of that segment is the bond energy given above.
But what happens if the bending moduli in these two
segments are different, i.e., κi 6= κj? We show in App. A
that the energy of a filament segment encompassing half
of bond i with bending modulus κi and half of bond i+1
with bending modulus κi+1 is

Eb
i,i+1 =

1

2

κi

a3
(θi+1 − θi)

2 (2.3)

where

κi =
2κiκi+1

κi + κi+1
, (2.4)
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i.e., the two halves of the bending spring connecting bond
i to bond i + 1 add like springs in series. Note that κi

satisfies the required limits that it reduce to κi when
κi+1 = κi and that it vanish if either κi or κi+1 = 0. The
total bending energy of a filament is thus

Eb
fil =

1

2

N
∑

i=1

κi(θi+1 − θi)
2. (2.5)

Minimization of this energy gives a series of difference
equations for θi. We show in App. A that the solution to
these equations faithfully reproduces θ(s) calculated from
the continuum equations resulting from the minimization
of the continuum bending energy for the particular case
of κ’s having one value for 0 < s < s1 and another value
for s1 < s < L. A generalization of this calculation to
more general distributions of κ is straightforward and
yields the same results for the discrete and continuum
models.
Ultimately, we are interested in the positions of the

nodes, and we need an expression relating these posi-
tions to the bond angles. In the ground state, all of the
bonds of the filament are aligned along a common direc-
tion specified by a unit vector, e, and the ground-state
positions are ri = sie. Distortions of the filament are de-

scribed by the displacement vectors ui = u
||
i e + u⊥

i e
⊥

where e⊥ is unit vector perpendicular to e. As dis-
cussed more fully in App. A, within the linearized the-
ory we use, the angle that bond i makes with e is
then θi = (u⊥

i − u⊥
i−1)/a. Thus the bending energy

(1/2)κi(θi+1 − θi)
2 ≈ (1/2)κi(2u

⊥
i − u⊥

i+1 − u⊥
i−1)

2 cou-
ples the displacements of sites i − 1, i, and i + 1, and
it can be viewed as an interaction defined on a kind of
next-nearest-neighbor (NNN) connecting sites i− 1 and
i+ 1. This bond, however, only exists if both NN bond
i and i + 1 are occupied. In what follows, we will re-
fer to the bending NNN bonds as phantom bonds since
they do not have an independent existence. We will also
employ an alternative notation in which a bond con-
necting nodes ℓ and ℓ′ on a lattice will be denoted by
〈ℓ, ℓ′〉 and the angle that bond makes with the horizon-
tal axis by θ〈ℓ,ℓ′〉. The NNN bending energy is then

(1/2)κ(θℓ,ℓ′,ℓ′′)
2, where θℓ,ℓ′,ℓ” = θ〈ℓ,ℓ′〉 − θ〈ℓ′,ℓ′′〉 with the

understanding that sties ℓ, ℓ′, and ℓ′′ all lie on a single
filament.

B. Triangular lattice of filamentous polymers

To create a network of crosslinked semiflexible poly-
mers we randomly remove bonds on a triangular lat-
tice. Polymers correspond to lines of connected, occu-
pied collinear bonds, and crosslinks correspond to sites
at which two or three polymers cross. Each bond in the
lattice can be assigned one of the three directions desig-
nated by the unit vectors en shown in Fig. 3. All of the
bonds in a given filament are aligned along one of these
directions and the filament itself is directed. Sites on the

1

2

3

0

FIG. 3. (color online) Filamentous triangular lattice with
bonds randomly occupied with probability p. The unit vectors
e1, e2, e3 are marked by “1, 2, 3”, the 3 stretch energy vectors
Bs

n are marked by the 3 red single lines, and the 3 bending
energy vectors Bb

n are marked by the 3 green double lines.
The purple dashed double line marks the bending vector Bb

4

if the origin is marked by 0.

lattice are labeled by a two-component index ℓ = (l1, l2),
and their equilibrium positions are rℓ = a(l1e1 + l2e2).
We adopt the convention that NN bonds 〈ℓ, ℓ′〉 connect
sites with equilibrium positions rℓ and rℓ′ = rℓ + aen for
one of the directions en. Upon distortion, the position of
site ℓ changes to Rℓ = rℓ + uℓ, where uℓ is the displace-
ment vector of site ℓ. We define all bond angles to be
zero in the undistorted lattice. In the distorted lattice,
the angle of bond 〈ℓ, ℓ′〉 becomes θ〈ℓ,ℓ′〉 ≈ uℓ,ℓ′ · r̂⊥ℓ,ℓ′/a,
where uℓ,ℓ′ = uℓ′ −uℓ and r̂⊥ℓ,ℓ′ is the unit vector perpen-
dicular to the bond direction along rℓ′ − rℓ and is equal
to one of the unit vectors e⊥n perpendicular to en. We
now assign stretching energies to each bond and bending
energies to each phantom NNN bond along a lattice di-
rection in accordance with the discretized energy of an
individual filament [Eqs. (2.2) and (2.3)] to obtain the
harmonic energy on a diluted lattice

E = Es + Eb (2.6a)

Es =
1

2

µ

a

∑

〈ℓ,ℓ′〉
gℓ,ℓ′(uℓℓ′ · r̂ℓℓ′)2, (2.6b)

Eb =
1

2

κ

a

∑

ℓ′,n

gℓ,ℓ′gℓ′,ℓ′′(θℓℓ′ℓ′′)
2 (2.6c)

=
1

2

κ

a3

∑

〈ℓ,ℓ′,ℓ′′〉
gℓ,ℓ′gℓ′,ℓ′′

[

(uℓℓ′ − uℓ′ℓ′′) · r̂⊥ℓ,ℓ′
]2
,

where gℓ,ℓ′ = 1 if the bond 〈ℓ, ℓ′〉 is occupied and gℓ,ℓ′ = 0
if it is not. This is the model was introduced in references
[15] and [16] in their study of the Mikado model. A ver-
sion of this model in which there is a bond-angle energy
between all pairs of bonds sharing a common site rather
than only between pairs of parallel bonds was introduced
earlier in reference [22].
When p = 1, all bonds are occupied and E becomes

homogeneous. In this limit, the long-wavelength elastic
energy reduces to the elastic energy of an isotropic 2d
medium,

E =

∫

d2x

[

λ̄

2

(

Tru
)2

+ µ̄Tru2

]

, (2.7)
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where u is the linearized symmetric Cauchy strain tensor

with Cartesian components uij , λ̄ and µ̄ are the Lamé

coefficients, λ̄ = µ̄ = (
√
3/4)(µ/a), which depend only

on µ and not on κ. µ̄ is the macroscopic shear modu-
lus. The bending constant κ only appears in the higher-
order gradients of the displacement vector. Upon dilu-
tion, each of the bonds is present with a probability p,
and the resulting lattice corresponds to a random net-
work of semiflexible filaments of finite random lengths L,
whose average as a function of p is 〈L〉 = a/(1− p) [35].
It is a straightforward exercise to show that the average
distance lc between crosslinks (i.e. nodes with at which
two or more filaments cross) differs by at most a factor of
2 from a, and we will use treat them as the same quantity
in what follows. In EMT, µ is replaced in diluted samples
by its effective medium value µm, and the macroscopic
EMT shear modulus of these samples is

G = (
√
3/4)(µm/a). (2.8)

In the undiluted limit the shear modulus is G0 =
(
√
3/4)(µ/a), and G/G0 = µm/µ. Because our calcula-

tions are centered on the evaluation of µm rather than G,
we will in what follows use µm as a proxy for G, remind-
ing the reader where appropriate of this simple relation
between the effective medium parameter and G.

III. EFFECTIVE MEDIUM THEORY

We study the elasticity of our network using an
effective-medium approximation [27, 28] in which the
random inhomogeneous system is replaced with an ef-
fective homogeneous one constructed so that the aver-
age scattering from a bond (or chosen set of bonds) with
the probability distribution of the original random lattice
vanishes. In more technical terms, the effective medium
is chosen so that average T -matrix associated with the
bond vanishes. This approximation has been shown to be
a powerful tool for the calculation of properties of random
systems, from the electronic structure of alloys [27, 59]
to the elasticity of random networks [29, 60].

Our elastic energy is a bilinear form in the 2N -
dimensional displacement vector u determined by the
2N × 2N dynamical matrix D, where N is the num-
ber of sites in the lattice. We will represent these two
quantities in both the lattice basis and the wavenumber
basis where the components of u are, respectively, the
2-dimensional vectors uℓ and uq for each of the N lat-
tice positions ℓ or wavenumbers q and the components
of D are respectively the 2× 2 matrices Dℓ,ℓ′ and Dq,q′

for each pair (ℓ, ℓ′) or (q,q′). We use the convention in
which arbitrary vectors v or matrices M in the two bases

are related via

vq =
∑

ℓ

vℓe
−iq·rℓ , vℓ =

1

N

∑

q

vqe
iq·rℓ , (3.1)

Dq,q′ =
∑

ℓ,ℓ′

e−iq·rℓDℓ,ℓ′e
iq′·rℓ′ ,

Dℓ,ℓ′ =
1

N2

∑

q,q′

eiq·rℓDq,q′e−iq′·rℓ′ . (3.2)

The elastic energy is thus

E =
1

2
u ·D · u

=
1

2

∑

ℓ,ℓ′

uℓ ·Dℓ,ℓ′ · uℓ′ =
1

2N2

∑

q,q′

u−q ·Dq,q′ · uq′ ,

(3.3)

where here and in the following the “dot” signifies the
multiplication of a matrix and a vector or of two matrices.
The zero-frequency phonon Green’s function (which is a
2N × 2N matrix) is minus the inverse of the dynamical
matrix:

G = −D−1. (3.4)

In EMT, the inhomogeneous and random dynamical
matrix D is replaced by a homogeneous, translationally

invariant one D(m), with D
(m)
ℓ,ℓ′ = D

(m)
ℓ−ℓ′ and

D
(m)
q,q′ = Nδq,q′D(m)

q
, (3.5)

along with a perturbation matrix V, which we will spec-
ify in detail shortly:

D = D(m) +V = −(G(m))−1 +V = −G−1, (3.6)

where the superscript (m) stands for “effective medium”.
The full Green’s function can thus be expressed as

G = ((G(m))−1−V)−1 = G(m)+G(m) ·T ·G(m), (3.7)

where T is the T -matrix describing the scattering result-
ing from V:

T = V · (I−V ·G(m))−1 = (I−V ·G(m)))−1 ·V
= V +V ·G(m) ·V + · · · . (3.8)

This expresses the T -matrix in general form. Our next
step is to specify both D(m) and V.
We begin with D(m). Normally, the effective-medium

elastic energy would simply be the random one of
Eq. (2.6) with µ and κ replaced by their respective
effective-medium values µm and κm and gℓ,ℓ′ replaced
by one. It turns out, however, as we will shortly demon-
strate, that the effective-medium equations, determined
by setting the average T -matrix equal to zero, consists
of three independent equations whose solutions requires



6

three independent parameters. If the above simple proce-
dure for constructing the effective-medium energy is fol-
lowed, there are only two parameters, µm and κm, and
to solve the EMT equations, it is necessary to introduce
a new term to this energy with a new parameter, which
we denote by λm. This additional energy, whose form is
dictated, as we shall see, by the EMT equations, couples
angles on neighboring NNN phantom bonds:

Ebb(λm) =
λm

a3

∑

ℓ2

θℓ1,ℓ2,ℓ3θℓ2,ℓ3,ℓ4 , (3.9)

where it is understood that the sites ℓ,ℓ2, ℓ3, ℓ4 are se-
quential sites along a filament as shown in Fig. 4. The
total effective-medium energy is thus

E(m)(µm, κm, λm) = Es(µm) + Eb(κm) + Ebb(λm),
(3.10)

and its associated dynamical matrix is

D(m)
q

(µm, κm) =
µm

a

3
∑

n=1

Bs
n,qB

s
n,−q

+
κm

a3

3
∑

n=1

Bb
n,qB

b
n,−q

+
λm

a3

3
∑

m=1

2 cos(q · em)Bb
m,qB

b
m,−q

(3.11)

where

Bs
n,q = (1− e−iq·en)en, (3.12a)

Bb
n,q = 2[1− cos(q · en)]e⊥n , (3.12b)

are two-dimensional vectors and where a simplified nota-
tion is used in which two of these vectors in a row denotes
a direct product creating a 2× 2 matrix.
The perturbation V arises from the removal of a single

bond, whose endpoints, ℓ2 and ℓ3, we take to be contigu-
ous sites along a filament parallel to the e1 axis with ℓ2
located at the origin and ℓ3 at position e1. If there is
no bending energy (i.e., κ = 0), the energy of this bond
relative to the effective medium is thus

Es
V =

1

2

µs − µm

a
[(uℓ2 − uℓ3) · e1]2, (3.13)

where µs = µgℓ2,ℓ3 so that its probability distribution is

P (µs) = pδ(µs − µ) + (1− p)δ(µs). (3.14)

This bond stretching energy defines Vs:

Vs
q,q′ = a−1(µs − µm)Bs

1,qB
s
1,−q′ . (3.15)

Note that Vs
q,q′ factorizes into a product of a term de-

pending only on q and a term depending only on q′.
This is a property, shared by the other contributions to
V, that, as we shall see, makes the calculation of the
T -matrix from Eq. (3.8) tractable.
Replacing bond 〈ℓ2, ℓ3〉 changes the bending as well as

the stretching modulus of that bond. As discussed in

ℓ1 ℓ3ℓ2 ℓ4

µ
m

κ
m

λm

FIG. 4. (Color online) Positions of sites ℓ1, ℓ2, ℓ3, ℓ4, and in-
teractions in the effective medium, including NN stretching
term of rigidity µm, NNN bending term of rigidity κm, and
third neighbor effective coupling term of rigidity λm.

Sec. II and App. A, this leads to a change in the bending
constant of the NNN bonds 〈ℓ1, ℓ2, ℓ3〉 and 〈ℓ2, ℓ3, ℓ4〉
that share the replaced bond 〈ℓ2, ℓ3〉 along a filament
from κm to

κc = 2
( 1

κs
+

1

κm

)−1

, (3.16)

where κs ≡ κgℓ2,ℓ3 equals zero if the bond 〈ℓ2ℓ3〉 is vacant
and κ if it is occupied. The probability distribution for
κs is thus

P (κs) = pδ(κs − κ) + (1− p)δ(κs), (3.17)

and the joint probability distribution for both µs and κs

is

P (µs, κs) = pδ(µs − µ)δ(κs − κ) + (1− p)δ(µs)δ(κs).
(3.18)

If 〈ℓ2ℓ3〉 is occupied κc = 2κκm/(κ+κm) is a nonlinear
function of κ and κm. These considerations determine
the bending contribution to EV ,

Eb
V =

1

2

κc(κs)− κm

a3
[

(θℓ1,ℓ2,ℓ3)
2 + (θℓ2,ℓ3,ℓ4)

2
]

=
1

2

κc(κs)− κm

a3

{

[(2uℓ2 − uℓ3 − uℓ1) · e⊥1 ]2

+ [(2uℓ3 − uℓ4 − uℓ2) · e⊥1 ]2
}

, (3.19)

and the bending contribution to V:

Vb
q,q′ = a−3(κc(κs)− κm)Bb

1,qB
b
1,−q′

+a−3(κc(κs)− κm)Bb
4,qB

b
4,−q′, (3.20)

where the vectors Bb
1,q [Eq. (3.12b)] and Bb

4,q ≡
e−iq·e1Bb

1,q represent the bending of the bond pair con-
necting sites ℓ1, ℓ2, ℓ3 and ℓ2, ℓ3, ℓ4, respectively. Finally,
the original energy had no term corresponding the cou-
pling between θℓ1,ℓ2,ℓ3 and θℓ2,ℓ3,ℓ4 that appears in the
effective medium energy [Eq. 3.9], so that replacement
of the bond 〈ℓ2, ℓ3〉 with its form in the original energy
removes the energy associated with that bond in E(m)

and creates the contribution

Vbb
q,q′ = −λm

a3
[Bb

1,qB
b
4,−q′ +Bb

4,qB
b
1,−q′ ] (3.21)
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to V. The complete V is thus V = Vs+Vb+Vbb, which
can conveniently be expressed as

Vq,q′(µs, κs) =
∑

α,β

Ṽ αβ(µs, κs)B
α
q
B

β
−q

, (3.22)

where α = {(s, 1), (b, 1), (b, 4)} labels the three vectors
{Bs

1,q,B
b
1,q,B

b
4,q}. The scattering potential in this basis

is

Ṽ (µs, κs, λm) =





(µs − µm)/a 0 0
0 (κc(κs)− κm)/a3 −λm/a3

0 −λm/a3 (κc(κs)− κm)/a3



 , (3.23)

We are now in a position to calculate the T -matrix.
Consider first the first non-trivial term in its series ex-
pansion [Eq. (3.8)]:

V ·G ·V → 1

N

∑

q1

Vq,q1
·G(m)

q1
·Vq1,q′

=
∑

α,β,α′,β′

Bα
q
Ṽ αβ · (G̃(m))βα

′ · Ṽ α′β′

B
β′

−q′

(3.24)

where G̃ is defined as

(G̃(m))β,α
′ ≡ 1

N

∑

q1

B
β
−q1

·G(m)
q1

·Bα′

q1
. (3.25)

It is clear that subsequent terms in the Taylor series for
T decompose in a similar way and that

Tq,q′ =
∑

α,β

Bα
q
T̃αβB

β
−q′ (3.26)

where the 3× 3 matrix T̃ satisfies.

T̃ = Ṽ (Ĩ−G̃(m)Ṽ )−1 = (Ĩ−Ṽ G̃(m))−1Ṽ = (Ṽ −1−G̃)−1,
(3.27)

where Ṽ G̃(m) signifies a matrix product.

There are now a couple of points that must be at-
tended to before we present the details or our calcula-
tion. First, we show in App. B that G̃(m) is a symmetric
matrix whose 12 and 13 components vanish and whose
22 and 33 components are equal whether or not λm is
zero. Importantly, the 23 component of G̃(m) is nonzero
even if λm is zero. Thus, G̃(m) has the same structure as
Ṽ :

G̃(m) =







G
(m)
1 0 0

0 G
(m)
2 G

(m)
3

0 G
(m)
3 G

(m)
2






, (3.28)

where G
(m)
1 = (G̃(m))11, G

(m)
2 = (G̃(m))22, and G

(m)
3 =

(G̃(m))23. This implies from Eq. (3.27) that T̃ also has

the same structure as G̃(m) with three independent com-
ponents (T̃ 11, T̃ 22 = T̃ 33, and T̃ 23) even if λm = 0. Thus,
the EMT equation

〈T̃ 〉 = pT̃ (µs = µ, κs = κ)+(1−p)T̃ (µs = 0, κs = 0) = 0,
(3.29)

reduces to three independent equations whose solution
requires three independent parameters. The addition of

the energy E
(m)
bb [Eq. (3.9)] adds the needed third param-

eter, λm, to µm and κm and gives Ṽ the same structure
as T̃ and G̃.
To solve Eq. (3.29), we first write it as

pṼ (µ, κ)[Ĩ − G̃(m)Ṽ (µ, κ)]−1

+ (1− p)[Ĩ − Ṽ (0, 0)G̃(m)]−1Ṽ (0, 0) = 0, (3.30)

where we used both forms of Eq. (3.27). Multiplying this

equation on the left by [Ĩ − G̃(m)Ṽ (0, 0)]−1 and on the

right by [Ĩ − Ṽ (µ, κ)G̃(m)]−1, we obtain

pṼ (µ, κ) + (1− p)Ṽ (0, 0)− Ṽ (0, 0)G̃(m)Ṽ (µ, κ) = 0,
(3.31)

which has the advantage that it contains no inverse ma-
trices. At this point, it is convenient to introduce the
reduced Green function

H̃(bm, lm) ≡ −µm

a
G̃(m)(µm, κm, λm). (3.32)

From the definition of G̃(m) it is straightforward to see

that H̃ only depends on the ratios bm ≡ κm/µm and

lm ≡ λm/(µma2). Clearly H̃ has the same structure

as G̃(m) with Hσ = −(µm/a)G
(m)
σ , for σ = 1, 2, 3. With

these definitions, the 11 component of equation Eq. (3.31)
is

µm = µ
p−H1(bm, lm)

1−H1(bm, lm)
. (3.33)

and the 22 and 23 components are, respectively,
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2
(1

b
+

1

bm

)−1(

p− 1

2

(

1 +
bm
b

)

− bmH2 − lmH3

)

+ (b2m + l2m)H2 + 2bmlmH3 = 0, (3.34)

− lm − 2
(1

b
+

1

bm

)−1
(

lmH2 + bmH3

)

+ 2bmlmH2 + (b2m + l2m)H3 = 0, (3.35)

where b = κ/(µma2). Thus we have 3 unknowns
{µm, bm, lm} (or equivalently, {µm, κm, λm}) and 3 equa-
tions Eq. (3.33), Eq. (3.34), and Eq. (3.35). These are
our exact EMT equations.

A. Scaling Solutions near pCF

Here we solve the EMT self-consistency equations,
Eqs. (3.33) to (3.35) near pCF at small κ. When κ = 0 the
problem reduces to that of a central-force rigidity perco-
lation [21] with zeroth order solutions κ0

m = 0, λ0
m = 0 ,

and

µ(0)
m = µ

p− pCF

1− pCF
, (3.36)

where pCF = H1(0, 0) = 2/3 which can also be obtained
via symmetry arguments [29]. As κ increases from zero,
µm increases, bm and lm become nonzero, and the rigidity
threshold jumps to a lower value pb as shown in Fig. 5(b).
For small κ, we have κ/(µa2) ≪ 1, we can assume that
bm, lm ≪ 1 (which we will verify later), and we find that
to the leading order the three Eqs. (3.33), (3.34), and
(3.35) become

µm ≃ µ
p− pCF −H1,1(0, 0)κm/(µma2)

1− pCF
, (3.37a)

κm ≃ κ(2p− 1), (3.37b)

λm ≃ κH3(0, 0)
κ

µma2
1− p

p
(2p− 1)2, (3.37c)

where H1,1(0, 0) = ∂H1/∂bm|bm=0,lm=0 ≃ −2.413 and
H3(0, 0) = 1.520. For convenience we define A ≡
−H1,1(0, 0) and B ≡ H3(0, 0). From these relations, we
find that at p = pCF

µm ∼ κ1/2, (3.38a)

κm ∼ κ, (3.38b)

λm ∼ κ3/2, (3.38c)

indicating that µm ≫ κm ≫ λm and thus bm, lm ≪ 1
as we assumed. Using these relations, together with the
fact that as κ → 0, µm → p − pCF, we solve Eqs. (3.37)
to obtain

µm = µ|∆p|t1g1,±
( κ

a2µ|∆p|φ
)

, (3.39a)

κm = µa2|∆p|t2g2,±
( κ

a2µ|∆p|φ
)

, (3.39b)

λm = µa2|∆p|t3g3,±
( κ

a2µ|∆p|φ
)

, (3.39c)

where

φ = 2, (3.40a)

t1 = 1, (3.40b)

t2 = 2, (3.40c)

t3 = 3, (3.40d)

and

g1,±(x) ≃
3

2

(

±1 +

√

1− 4A
9

x

)

, (3.41a)

g2,±(x) ≃
1

3
x, (3.41b)

g3,±(x) ≃
B
27

(

±1 +

√

1− 4A
9

x

)−1

x2, (3.41c)

These scaling relations are analogous to that found in
random resistor networks with two different types of re-
sistors [40], and central force spring networks with strong
and weak springs [37].
Thus, the EMT modulus in the vicinity of pCF is

µm = µ|∆p|3
2

(

± 1 +

√

1− 4A
9

κ

a2µ|∆p|φ

)

(3.42)

≃











√
A
a µ1/2κ1/2 if κ

a2µ|∆p|φ ≫ 1,

3µ|∆p| if κ
a2µ|∆p|φ ≪ 1 and ∆p > 0,

A
3a2

κ
|∆p| if κ

a2µ|∆p|φ ≪ 1 and ∆p < 0.

.

These crossover regimes correspond exactly to those
found in Ref. [37] using known behavior of the density
of states and mode structure of systems near the CF iso-
static limit and general scaling arguments.

B. Solutions near pb

Equations (3.33) to (3.35) can also be used to solve
for the asymptotics near the rigidity threshold pb. In
particular, because lm, bm converge to constants that are
much smaller than unity and independent of κ near pb,
the asymptotic solution near pb in this section are not
limited to small κ.
Firstly, we solve for the value of the rigidity threshold

pb for the case of κ > 0 using these EMT equations. At
pb, we have µm = 0, κm = 0, λm = 0 and as a result
b → ∞. The ratios bm and lm are, however, not zero,
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and we solve for them. So the equations that determine
pb, bm = bb, lm = lb are

pb −H1(bb, lb) = 0,

2bb

(

pb −
1

2

)

+ (−b2b + l2b )H2(bb, lb) = 0,

−lb + (−b2b + l2b )H3(bb, lb) = 0, (3.43)

where bb and lb are the value of bm and lm at pb. This
set of equations is independent of κ. Numerical solutions
to these equations are given by

pb ≃ 0.5584,

bb ≃ 0.06355,

lb ≃ 0.004235, (3.44)

which agrees with the results we obtained by solving the
EMT equations numerically.
Secondly, we solve for the asymptotic behaviors near

pb. To achieve this, we suppose p = pb + δp, and to first
order we have

µm = 0 + δµm

bm = bb + δbm

lm = lb + δlm. (3.45)

We put these expansions back into Eqs. (3.33,3.34,3.35)
we get the first order perturbation equations

δµm = µ
1−pb

(δp−A1δbm −A2δlm),

(2pb − 1− 2bbH2,0)δbm = −2bbδp+ 2 δµma2

κ pbb
2
b,

δlm = −2bbH3,0δbm. (3.46)

where A1 ≡ H1,1(bb, lb) ≃ −1.371 and A2 ≡
H1,2(bb, lb) ≃ 1.474. In deriving these equations we used

the fact that lb ≪ bb ≪ 1 and bm
b = κm

κ ≪ 1 near pb.
Thus we arrive at the asymptotic solution of the effective
medium stretching stiffness

µm = µκ
c2δp

κ+ c1a2µ
(3.47)

where

c1 =
A1 − 2bbH3,0A2

2pb − 1− 2bbH2,0

2pbb
2
b

1− pb

c2 =
1

1− pb

(

1 + 2bb
A1 − 2bbH3,0A2

2pb − 1− 2bbH2,0

)

(3.48)

are constants determined by the architecture of the lat-
tice and are independent of p or κ/(µa2). In the case of
triangular lattice we have c1 = 0.1018 and c2 = 5.132.

IV. NUMERICAL RESULTS

Numerical solutions to Eqs. (3.33) to (3.35) for any
value of κ/µ are easily calculated, and the results for
the effective medium elastic parameters are plotted in
Figs. 5, 6. There are several properties of these plots
that are worthy of note:

1. µm vanishes at the CF Maxwell rigidity threshold
pCF = 2/3 when κ = 0 and at p = pb = 0.56 for
all κ > 0. Simulations of the same model yield a
slightly smaller value of pCF ≃ 0.659 [35, 61] and
a considerably smaller pb ≃ 0.445 [35]. [Using a
variation of the Maxwell floppy mode count, we
estimated the rigidity threshold in presence of fila-
ment bending stiffness and obtained pb ≃ 0.448 in
good agreement with simulation results. This cal-
culation has been reported in the Supplementary
Information of Ref. [35].]

2. µm increases with κ for all p > pb.

3. For small κ/(µa2), there is an interesting and non-
trivial crossover near pCF, which follows the ana-
lytic solution, Eq. (3.42), to the EMT equations,
whereas for large κ/(µa2), memory of the CF
threshold is effectively lost and µm rapidly reaches
value near its saturation value µ for p > pb.

4. κm vanishes as p → pb and rises smoothly to its sat-
uration value κ without any evidence of crossover
behavior near pCF.

5. λm vanishes at pb and in the undiluted lattice
(p = 1), which it must by construction. It exhibits
crossover behavior near p = pCF for small κ/(µa2).

In Figs. 7 and 8 we respectively plot our numerical
solutions to the EMT equations near pb and pCF using
the analytic scaling forms of Eqs. (3.33) and (3.42). As
required the numerical solutions agree with the analytic
ones.

V. DISCUSSION

Two other approaches, one by Das et al. [32, 36] and
one by Wyart et al. [37], produce results similar to ours,
and below we briefly review compare them to ours. Ref-
erences [33] and [34], which develop an EMT for fiber
networks like the Mikado model with a maximum coor-
dination number of four, do not consider rigidity develop-
ment on a triangular lattice with a maximum coordina-
tion number of six, and we will not discuss them further.
Stretching forces are easily described by CF springs,

which reside on bonds, each of which can have a dis-
tinct spring constant. Bending forces, on the other hand,
couple angles on neighboring NN bonds, or equivalently
NNN sites along a filament to the site between them
via phantom NNN bonds. Because removing one NN
bond from a pair defining a phantom NNN bending
bond effectively removes that phantom bond, bending
and stretching are not independent in the diluted lattice.
This presents real challenges for the development of a
consistent bend-stretch EMT.
Our approach to this problem appeals to the under-

lying polymer nature of our model in which constituent
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FIG. 5. (color online) (a) Semi-log plot for the EMT so-
lution µm/µ = G/G0 as a function of p for µ = 1 and
κ = 1, 10−1, 10−2, 10−3, 10−4, 10−5, 10−6 from top to bottom,
as indicated in the legend. (b) Linear plot of µm/µ as a func-
tion of p, with parameters and color code the same as in (a).
The red solid line indicates µm for the case of a central force
triangular lattice (κ = 0). Here and in Figs. 6 to 8, we have
set a = 1. The contents of (a) appeared in a different form in
Ref. [35].

polymers are endowed with local stretching and bend-
ing moduli µ and κ. We can modify these moduli along
any bond. Different stretch moduli lead to indepen-
dent effective CF stretch force constants k|| = µ/a for
each bond. Modification of the bending modulus κ on a
given NN bond, however, modifies the bend force con-
stant k⊥ = κ/a3 for both phantom NNN bonds that
that NN bond partially defines in the manner described
above. With this approach, we develop a consistent EMT
that includes the statistical correlation between bend and
stretch.

Das et al. begin by ignoring the correlation between
real NN bonds and phantom NNN bonds and assume
that a stretch spring on a given NN bond can be re-
moved without affecting the bending energy on the phan-
tom NNN bonds that include that NN bond and that
bending springs on the phantom NNN bonds can be re-
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FIG. 6. (color online) The EMT solution for κm expressed in
terms of the dimensionless combination κ̂m = κm/(µa2) (a)
and λm expressed in terms of the dimensionless combination
λ̂m = λm/(µa2)(b). Parameters and color code are the same
as in Fig. 5.
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FIG. 7. (Color online) Asymptotic solution (dashed lines) and
numerical solutions (data points) of µm/µ = G/G0 near pb.
Parameters and color code are the same as in Fig. 5.

moved without affecting the stretch springs on the two
bonds that define the NNN bond. In other words, the
phantom bond is effectively elevated to a real bond with
existence independent of the underlying NN bonds. In
general, the NNN bonds can be present with an arbi-
trary probability q and absent with probability 1 − q.
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FIG. 8. (color online) (a), (b), and (c) show rescaled plots
of the EMT solutions µm/µ, κm and λm using the scaling
forms (3.39a) for µ = 1 and κ = 10−2, 10−3, 10−4, 10−5, 10−6,
with color code the same as in Fig. 5, and exponents tak-
ing the value as in Eq. (3.40a). The thin black lines repre-
sent the asymptotic forms of Eq. (3.41a) for small κ. The
brown dash-dotted lines, the thick blue solid lines, and the
purple dashed lines plot the functional form of µm obtained
in the crossover, the stretching-dominated, and the bending-
dominated regimes of Eq. (3.42), respectively. The contents
of (a) appeared in a different from in Ref. ([35])

To provide an approximate description of the constraint
that the phantom bond does not exist unless both of the
NN bonds defining it are present, Das et al. assign a
probability q = p2 (p is the probability that a NN bond
is occupied) to the occupancy of a NNN bending bond,
but continue to treat the NN and NNN bonds as sta-
tistically independent. Again the result is a set of closed
self-consistent equations for µm and κm, which we ana-
lyze in our formulation of EMT in App. C.

Both approaches yield pCF = 2/3 in good agreement
with numerical estimates [35, 38, 39], which yield pCF

of order 0.64 or 0.65. Our approach yields a value for
pb (0.56) that is well above that (0.445) observed in
simulations [35] whereas that of Ref. [36] yields a value
(pb = 0.457) in good agreement with simulations. The
latter method produces results in better agreement with
simulations over the entire range of values of p than does
ours if no approximations to the EMT equations are used
in the numerical evaluation of the shear modulus [See
App. C]. It is not clear to us why this is so. Both ap-
proaches yield a nontrivial bend-stretch crossover, with
the same algebraic form but with slightly different pa-
rameters [See App. C] in the vicinity of pCF in qualitative
agreement with simulations.

In Ref. [37], Wyart et al. consider random off-lattice
elastic networks derived from two-dimensional packings
of spheres [62] with a coordination number above the
Maxwell CF isostatic limit of z = 4 in which CF springs
are assigned to each sphere-sphere contact. They use
numerical simulations to study the nonlinear relation be-
tween shear stress σ and shear strain γ as springs are
cut, thereby reducing z, and they find a scaling relation
σ = γ|δz|f(γ/|δz|), where δz = z − 4, f(x) → const. for
x → 0+, f(x) → 0 for x → 0−, and f(x) ∼ x for x → ∞.
This scaling form predicts σ ∼ γ for δz ≫ γ > 0, σ = 0
for δz ≪ −γ < 0, and σ ∼ γ2 for γ ≫ δz. Reference [37]
then provides a theoretical justification for this behavior
based upon the existence of a plateau in the density of
states [63] above ω∗ ∼ δz and reasonable assumptions
about statistical independence of eigenvectors associated
with different normal modes in the isostatic network [64]
and about the nature of nonaffine response of nearly iso-
static systems. Finally, they extend this line of reasoning
to nearly isostatic systems with extra weak bonds and
find three regimes of elastic response that are identical
to those we identify in Eqs. (3.39a) to (3.41a) if the weak
bonds are of a bending type.

To summarize we developed an effective-medium the-
ory that can include bending energy of filaments, and we
used it to study the development of rigidity of a randomly
diluted triangular lattice with central force springs on oc-
cupied bonds and bending forces between occupied bond
pairs along a straight line. We obtained a rigidity thresh-
old for positive bending stiffness and a crossover, con-
trolled by the isostatic point of the central force triangu-
lar lattice, characterizing bending-dominated, stretching-
dominated, and stretch-bend coupled elastic regimes.
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Appendix A: Discretization of a continuous rod

In this appendix, we will derive the discretized bend-
ing energy for an inhomogeneous rod from the continuous
bending energy in of Eq. (2.1). We divide the rod into
bonds of length a whose endpoints are at nodes i (which
coincide with vertices of our lattice) as shown in Fig. 2.
Segment i, which lies between nodes i − 1 and i, is en-
dowed with a bending modulus κi, and the angle at its
center is constrained to be θi. Within each segment i, the
angle θi(t) with −a/2 < t < a/2 ]i.e., within segment i,
t = s− ia] minimizes the bending energy in that segment
and satisfies the equation d2θi(t)/dt

2 = 0 subject to the
boundary conditions (BCs) for each i

(1) θi(t = 0) =θi,

(2) θi+1(−a/2) =θi(a/2),

(3) κi
dθi
ds

∣

∣

∣

∣

t=a/2

=κi+1
dθi+1

ds

∣

∣

∣

∣

ts=−a/2

. (A1)

BC (1) is the constraint that θ(t) take on the value θi
at the center of bond i; BC(2) is the condition that θ(t)
be continuous at node i; and BC(3) is the condition that
the torque on node i be zero. Thus, within segment i,

θi(t) =

{

θi +A−
i s if − a/2 < t < 0

θi +A+
i s if 0 < t < a/2.

(A2)

This form immediately satisfies boundary condition (1).
Boundary condition (2) requires

θi +
a

2
A+

i = θi+1 −
a

2
A−

i+1, (A3)

and boundary condition (3) requires

κiA
+
i = κi+1A

−
i+1. (A4)

The solution of Eq. (A3) and (A4) for A+
i and A−

i+1 is

A+
i =

2

a

κi+1

κi + κi+1
(θi+1 − θi) =

κi+1

κi
A−

i+1. (A5)

With this result, we can calculate the bending energy of
the segment running from the midpoint of bond i to the
midpoint of bond i+ 1:

Ei =
1

2
κi

∫ a/2

0

(

dθi
ds

)2

+
1

2
κi+1

∫ 0

−a/2

(

dθi+1

ds

)2

=
1

2

a

2

[

κi(A
+
i )

2 + κi+1(A
−
i+1)

2
]

=
1

2a
κeff
i (∆θi)

2, (A6)

where ∆θi = θi+1 − θi and

κi =
2κi+1κi

κi+1 + κi
. (A7)

When κi = κi+1, this reduces to κi. The total energy,
apart from boundary terms, which we ignore, is then E =
∑

i Ei. When all κi are equal, this is indeed exactly the
discretized form that we use. If the bending modulus κi

on segment (bond) i differs from the modulus κ on all
of the other bonds, then the bending energies associated
with site i − 1 and i will have an “effective” modulus
2κiκ/(κi + κ) in agreement with our EMT treatment.
It is instructive to verify that the continuum and the

discretized theory give the same result for a particular
inhomogeneous κ. For simplicity, we consider a filament
of length L whose left and right ends coincide with bond
centers (rather than nodes) at positions t = 0 and t = L,
respectively. There are thus N − 1 contiguous bonds of
length a terminated by two half bonds of length a/2. We
assume that the bending modulus is equal to κ1 in regions
I defined by 0 ≤ t < tp = [p−(1/2)]a and to κ2 in regions
II defined by tp < s <≤ L, and we assign boundary
conditions that θ(0) = 0 and θ(L) = Θ. Consider first
the continuum case. d2θ(t)/dt2 = 0 in both regions I and
II, and as a result the solutions for θ in these two regions
that satisfy the boundary conditions are, respectively,
θ1 = B1(t/a) and θ2 = Θ+B2[(t−L)/a]. The additional
boundary conditions are that θ and κdθ/dt be continuous
at t = tp, implying

(B1/a)tp = Θ+ (B2/a)(tp − L),

κ1B1/a = κ2B2/a. (A8)

These equations are easily solved for B1 and B2:

κ1 =
κ2Θ

(κ2 − κ1)(t/a) + κ1(L/a)
=

κ2

κ1
B2. (A9)

In the discrete case, nodes i = 1 to p− 1 have bending
energy (1/2)κ1(θi+1 − θi)

2, nodes i = p + 1 to (N − 1)
have bending energy (1/2)κ2(θi+1 − θi)

2, and site p has
bending energy (1/2)κ(θp+1−θp)

2. The equations for θi,
i = 1, · · ·N − 1 are thus,

dE

dθi
= κb(2θi − θi+1 − θi−1) = 0; 1 < i < p− 1

dE

dθp−1
= κb(θp−1 − θp−2) + κ(θp−1 − θp) = 0;

dE

dθp
= κ(θp − θp−1) + κa(θp − θp+1) = 0;

dE

dθi
= κa(2θi − θi+1 − θi−1) = 0; p < i ≤ N − 2.

(A10)

These linear difference equations subject to the boundary
conditions, θ0 = 0 and θN = Θ are solved by setting
θi = D1i in region I (0 ≤ i ≤ p) and θi = Θ+D2(i−N)
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in region II (p < i ≤ N). The equilibrium equations for
θp and θp−1 are

[κ1 + κ(p− 1)]D1 − κ(p− n)D2 = κΘ,

−κ(p− 1)D1 + [κ(p−N)− κ2]D2 = −κΘ. (A11)

These equations, along with the relation κ = 2κ1κ2/(κ1+
κ2), yield D1 = B1 and D2 = B2 verifying that the
discrete and continuum solutions agree.
Finally, we need to specify the relation between angles

θi and the vertical displacements hi (i.e., u⊥
i ). Let h′

i

be the height at the center of bond i. To linear order in
continuum theory, dh(t)/ds = θ(t). Integration of this
equation [using Eq. (A2)] then yields

hi − h′
i =

∫ a/2

0

θi(t)dt = (a/2)θi +
a2

8
A+

i

h′
i − hi−1 =

∫ 0

−a/2

θi(t)dt = (a/2)θi +
a2

8
A−

i (A12)

with the same convention as that of Eqs. (A1) and

(A2). From Eq.(A5), A+
i ∝ (θi+1 − θi)/a and A−

i ∝
(θi − θi−1)/a. Thus for slowly varying θ and small a,
a2A+

i and a2A−
i can be ignored relative to aθi. This is

true whether or not κ changes from bond to bond. The
result is that the slope of h(s) within bond i is simply θi,
and

hi − hi−1

a
≈ θi +

1

8
a(A+

i −A−
i ). (A13)

Appendix B: The dynamical matrix and the phonon
Green’s function of the effective medium

From Eq. (3.11), it is straightforward to calculate the
components of the dynamical matrix of the effective
medium:

D(m) =

(

Dxx Dxy

Dyx Dyy

)

, (B1)

where

Dxx =µm

[

3− 2 cos qx − cos(qx/2) cos(
√
3qy/2)

]

+ 3κm

[

3− 4 cos(qx/2) cos(
√
3qy/2) + cos(qx) cos(

√
3qy)

]

+ 3λm

[

−4 + 7 cos(qx/2) cos(
√
3qy/2)− 4 cos(qx) cos(

√
3qy) + cos(3qx/2) cos(3

√
3qy/2)

]

Dxy =
√
3(µm − 4κm + 7λm) sin(qx/2) sin(

√
3qy/2) +

√
3(µm − 4λm) sin qx sin(

√
3qy)

+
√
3λm sin(3qx/2) sin(3

√
3qy/2)

Dyx =Dxy

Dyy =3µm

[

1− cos(qx/2) cos(
√
3qy/2)

]

+ κm

[

9− 8 cos qx + 2 cos(2qx)− 4 cos(qx/2) cos(
√
3qy/2) + cos(qx) cos(

√
3qy)

]

+ λm

[

− 12 + 14 cos qx − 8 cos(2qx) + 2 cos(3qx) + 7 cos(qx/2) cos(
√
3qy/2)

− 4 cos(qx) cos(
√
3qy) + cos(3qx/2) cos(3

√
3qy/2)

]

. (B2)

The symmetry properties of the above components of
D(m) will determine which components of G̃(m) are
nonzero. D11(qx, qy) and D22(qx, qy) are even under
qx → −qx and under qy → −qy whereas D12(qx, qy) is
odd under the same operations.
The effective medium phonon Green’s function is the

negative of the inverse of D(m)

G(m) =− (D(m))−1

=(DetD(m))−1

(

Dyy −Dxy

−Dyx Dyy

)

. (B3)

The determinant DetD(m) = DxxDyy −DxyDyx is even
under qx → −qx and under qy → −qy, and thus xx

and yy components of G(m) are both even and the xy

component of G(m) is odd under qx → −qx and under
qy → −qy. With this information and the properties of

Bs
n,q and Bb

n,q, we can infer which components of G̃(m)

are zero and which are equal to each other. First con-
sider the 12 and 13 components, which from Eq. (3.25)
are given by

(G̃(m))12 =
1

N

∑

q

Bs
1,−q

G(m)
q

Bb
1,q (B4)

(G̃(m))13 =
1

N

∑

q

Bs
1,−q

G(m)
q

Bb
4,q. (B5)

Bs
1,−q

is a vector parallel to the x-axis (i.e., to e1),

whereas both Bb
1,q and Bb

4,q are parallel to the y-axis

(i.e. to e⊥1 ). In addition, Bs
1,−q

, Bb
1,q, and Bb

4,q are all
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even under qy → −qy. Thus the integrands in Eq. (3.25)
are equal to Gxy times a function even under qy → −qy.
Since Gxy is odd under this operation, both integrals

vanish, and the 12 and 13 components of G̃(m) vanish by
symmetry. There are no symmetry operations that make
the other components of G̃(m) vanish, but the relation
Bb

1,−q
Bb

1,q = Bb
4,−q

Bb
4,q sets the 22 and 33 component

of G̃(m) equal to each other and leads to Eq. (3.28) for

G̃(m).

Appendix C: Comparison with EMT results
obtained using methods in Ref. [32, 36]

In this section we derive the Das’ EMT equations from
our approach (by changing some assumption as detailed
below) and calculate it for the triangular lattice. We also
compare it to both our EMT and simulation results.
We start from the same effective medium dynamical

matrix D(m) as we defined in the main text (D(m) with
µm, κm but λm = 0), but we make different assumptions
about the changed bond in the EMT. In particular, the
perturbative potential is now

EV,Das =
1

2

µs − µm

a
(uℓ1ℓ2 · r̂ℓ1ℓ2)2

+
1

2

κs − κm

a3
θ2ℓ1ℓ2ℓ3 , (C1)

and the differences comparing with our version are: (i)
there is only 1 bending energy term θ2ℓ1ℓ2ℓ3 and the other

term θ2ℓ0ℓ1ℓ2 is not included, (ii) the bending stiffness is
directly κs instead of our composite one κc(κs), and (iii)
there is no λm term.
The matrix form of V in the space of {Bs

1,B
b
1} is then

(now Bb
4 is not relevant)

ṼDas =

(

(µs − µm)/a 0
0 (κs − κm)/a3

)

(C2)

Thus it is clear that

T̃Das = (Ṽ−1
Das − G̃(m))−1 (C3)

is also a diagonal matrix (we have already proved in the

text that G̃(m) is diagonal due to symmetry).
Correspondingly the probability distribution is now

PDas(µs, κs) =
[

pδ(µs − µ) + (1− p)δ(µs)
]

×
[

p2δ(κs − κ) + (1 − p2)δ(κs)
]

, (C4)

with the distribution of µs and κs factorized.
Therefore the EMT matrix equation

∫

dµsdκsPDas(µs, κs)T̃Das(µs, κs) = 0 (C5)

decouples to two equations of the two diagonal elements
(they still share the same variables) that

µm

µ
=

p− a∗

1− a∗

κm

κ
=

p2 − b∗

1− b∗
(C6)

where

a∗ =
µm

a

1

N

∑

q

Bs
1,−q

·D(m)
q

·Bs
1,q

b∗ =
κm

a

1

N

∑

q

Bb
1,−q

·D(m)
q

·Bb
1,q. (C7)

which is exactly the equations from Ref. [36].
In contrast the distribution in our EMT is

P (µs, κs) = pδ(µs − µ)δ(κs − κ) + (1− p)δ(µs)δ(κs)
(C8)

with the distribution of µs and κs correlated. This is
more reasonable because they describe the same replaced
bond. Furthermore, κs affects two bending terms.
To summarize, the stretching bonds and “bending

bonds”are treated as independent in the Das’ EMT,
whereas we model them as describing filament proper-
ties and thus correlated.
From the definition of D(m) it is clear that

a∗ + b∗ =
2

z
tr
{ 1

N

∑

q

[

D(m)
q

]−1
D(m)

q

}

=
2d

z
= 2/3 (C9)

The self-consistency equation (C6) can be solved numeri-
cally for any given p, µ, and κ. In particular, the rigidity
threshold pb can be solved analytically from

0 = p− a∗

0 = p2 − b∗ (C10)

which leads to

pb =
1

2

(

−1 +

√

1 +
8d

z

)

(C11)

and for the triangular lattice it gives

pb ≃ 0.4574. (C12)

The EMT self-consistency equation (C6) can be solved
numerically, and we plot the results along with ours and
the simulation data from Ref. [35] in Fig. 9. The curves
calculated from Eq. (C6) differ in detail from those pre-
sented in Ref. [36] because the latter reference used ap-
proximate forms for a∗ and b∗ in its numerical evaluations
[65]
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FIG. 9. Comparison between the shear modulus (normalized
by the shear modulus at p = 1, so it is equivalent to µm/µ) ob-
tained from numerical simulations from Ref. [35](data points),
Das’ EMT (solid lines), and our EMT (dashed lines). Differ-
ent colors mark different values of κ with the same color code
as in Fig. 5, and from top to bottom the corresponding values
of κ are 1, 10−1, 10−2, · · · , 10−6.

Near pCF we can also expand the Das’ EMT solution
to get the asymptotic behaviors. The functions a∗ and
b∗ are related to the integrals we defined via

a∗ = H1(bm, 0)

b∗ = bmH2 (bm, 0) . (C13)

At κ = 0, because

H1(0, 0) = pCF, H2(0, 0) = 0 (C14)

it is straightforward to see that the Das’ EMT lead to
the same central force solution as our EMT

µm = µ(p− pCF)Θ̃(p− pCF),

κm = 0, (C15)

where Θ̃ is the Heaviside step function. For small κ > 0
we expand around small bm = κm/(µma2). We have
already discussed the expansion of H1 and H2 at this
limit, and thus

a∗ = pCF +H1,1bm,

b∗ = H1,1bm. (C16)

Because H1,1 is of order unity, b∗ ∼ bm is very small.
Therefore we can ignore the b∗ terms in the equation of
κm and get

κm ≃ κp2, (C17)

which differs from our EMT solution

κm ≃ κ(2p− 1) (C18)

by the dependence on p, but this difference is small and
does not show singularity near pCF. We can then plug
this solution back into the equation for µm, which turns
into a quadratic equation similar to the equation for µm

in our EMT, with the only difference being the different
p dependence of κm. We thus arrive at

µm = µ|∆p|3
2

(

±1 +

√

1− 16A
27

κ

a2µ|∆p|2

)

(C19)

which takes a very similar form to Eq. (3.42) just with a
different constant factor before κ/(a2µ|∆p|2). Therefore
the two EMTs produce the same scaling behavior near
pCF.
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