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We utilize the tools of persistent homology to analyze features of force networks in dense granular
matter, modeled as a collection of circular, inelastic frictional particles. The proposed approach
describes these networks in a precise and tractable manner, allowing to identify novel features
which are difficult or impossible to characterize by other means. In contrast to other techniques
that consider each force threshold level separately, persistent homology allows us to consider all
threshold levels at once to describe the force network in a complete and insightful manner. We
consider continuously compressed system of particles characterized by varied polydispersity and
friction in two spatial dimensions. We find significant differences between the force networks in
these systems, suggesting that their mechanical response may differ considerably as well.

PACS numbers: 45.70.Qj, 45.7-.Vn, 45.70.-n, 83.80.Fg

I. INTRODUCTION

Force networks play a key role in determining mechani-
cal properties of static and dynamic dense granular media
(DGM). The networks of particles connected by strong
(larger than average) forces form a backbone of so-called
‘force chains’ that are considered to be responsible for
load bearing [1]. These networks are frequently studied.
The analysis of associated force distributions is the most
common treatment, see e.g. [2]. Force network ensem-
ble approach has been put forward recently; see [3] for
a review. Also, first attempts have been made towards
quantifying the structure of force networks. In [4] an ef-
fort was made to define the force chains from a local,
particle-scaled point of view. More globally, the force
networks were claimed to be universal and characterized
by a set of critical parameters [5]. A complex network
type of analysis, exploring stability of the force networks
has been considered as well recently, see [6–8] and the
references therein.

Despite significant progress, the analysis of the force
network is still limited by the complexity of the prob-
lem, and the need to answer a particular set of questions
of relevance to DGM. We note that in numerical simu-
lations [9] and in principle in controlled experiments [2],
complete information about the forces at the contacts be-
tween the particles is available. However, this informa-
tion is too voluminous to be of direct use. The network-
type of analysis provides useful information about sta-
bility [8], but it does not provide detailed information
about force network structure. Probability density func-
tion tells us what is the probability of having large forces
in a system, see, e.g., [1, 2, 10–12], but not about connec-
tivity of the force network. While the suggestion about
universal properties of the force networks is intriguing, it
is known that their properties (distribution of forces for
example) is strongly influenced by the particle friction
and polydispersity [13]. This information is not encoded
in the critical parameters. Therefore, it is necessary to
consider alternative approaches to describe the force net-

works in the manner which is concise, but insightful, and
accounts for both similarities and differences between the
systems considered. Furthermore, it is of interest to de-
velop an approach which is applicable to both static and
dynamic settings, which in principle could be applied to
particles of irregular shapes, and which is not limited by
physical dimensionality of the system.

In this paper we present a novel approach that pro-
vides a simple set of measures describing properties of
force networks in a selected set of granular systems. This
proposed set of measures allows to distinguish between
different systems and can be used to identify and predict
their properties. In addition, we show that the informa-
tion obtained using this set of measures may be difficult
or impossible to obtain using some of the standard mea-
sures for analyzing granular systems.

To introduce the proposed approach consider the mag-
nitude of the force field as a continuous scalar field
f : X → [0,∞). [In this work we concentrate only on
the normal forces between particles; additional informa-
tion that may be obtained based on tangential forces will
be discussed elsewhere.] The space X is the union of the
granular particles. A threshold θ ∈ [0,∞) is chosen and
the force network FN is defined to be the set of points
on which the magnitude of the force exceeds the thresh-
old, FN(f, θ) = {xi | f(xi) ≥ θ}. The general goal is to
describe the geometry of FN(f, θ).

The choice of a particular threshold level θ is somewhat
arbitrary and thus it is desirable to describe the geom-
etry of FN(f, θ) for all thresholds. Persistent homology
[14, 15], described below, is a relatively new mathemat-
ical tool that allows to consistently relate the geometry
of force networks over ranges of thresholds. This pro-
vides deeper insight than looking only at the number of
clusters/components described by Betti numbers [13], or,
more commonly by the tools of percolation theory.

The rest of this paper is described as follows. Section II
describes the methods used, with a significant amount
of information given in Appendices A and B regarding
discrete element simulation and persistence techniques,
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FIG. 1: (Color online)(a) An example of scalar field. Geomet-
ric features are indicated by the arrows. (b) The associated
persistence diagram. Points correspond to the features indi-
cated by the arrows of the same length and color.

respectively. The main results obtained using persistence
analysis are given in Sec. III A, while the results obtained
using more classical approaches are in Sec. III B. We
conclude in Sec. IV.

II. METHODS

A. Discrete Element Simulations (DES)

The simulations are of the type utilized in [13]; for
completeness, a brief outline is given in Appendix A.

We consider a square domain in 2D where N ≈ 2000
granular particles are constrained between four rough
walls made out of monodisperse particles. The walls
move with constant prescribed speed, allowing to con-
sider packing fractions, ρ, in the range [0.6 : 0.9]. The
particles are inelastic frictional polydisperse discs, with
the radii varying randomly in some range 1 ± rp/2 in
units of average particle diameter. All the results are
obtained as averages over 20 realizations characterized
by different initial conditions. In addition to the aver-
ages, we calculated standard deviations, and found them
to be at least an order of magnitude smaller, suggesting
that 20 realizations are sufficient to obtain statistically
significant results.

B. Algebraic Topology

Homology provides an easily computable, rigorous,
systematic, dimension independent means of character-
izing geometric structures of spaces via a few integers β∗
called Betti numbers; in 2D only β0, the number of dis-
tinct components, and β1, the number of closed loops,
are relevant; β0 and β1 are related to the metrics used in
[5] and [7].

Our first goal is to understand the structure of FN(f, θ)
as a function of the force field f and the threshold θ. Per-
sistent homology quantifies how this structure changes as
one moves from high to low thresholds.

Figure 1 illustrates the approach using an one dimen-
sional (1D) example. The set FN(f, θ) = ∅ for θ > θ6 and

µ = 0.0
rp 0.0 0.1 0.2 0.4
ρc 0.8615 0.8448 0.8282 0.8140

rp = 0.4
µ 0.0 0.2 0.5
ρc 0.8140 0.7962 0.7884

TABLE I: ρc determined by the average number of contacts
Z(ρc) = 3. Similar values are found if inflection points of the
Z(ρ) curves are used [13].

it consists of one connected component for θ ∈ (θ5, θ6].
Another connected component appears at the level θ5.
This component merges with the first one at θ4. In lan-
guage of persistent homology a geometric feature indi-
cated by the green arrow between θ4 and θ5 in Fig. 1(a)
was born at θ5 and died at θ4. This event is captured
by the green point (θ5, θ4) in Fig. 1(b). Analogously the
other two features indicated by the purple (θ3, θ4) and red
(θ1, θ2) arrow are captured by the corresponding points
in Fig. 1(b). The first connected component which ap-
peared at θ6 persists f or all θ < θ6 and is represented
by the brown point with the birth coordinate θ6 and a
negative death coordinate. The negative value indicates
that the feature persisted for all θ < θ6.

Note that in our 1D example β0(f, θ) = 2 for θ ∈
(θ3, θ5]. However, significant geometric change occurred
at θ4. Two components merged – equivalently one com-
ponent died – and a new component appeared – was born.
Persistent homology makes precise the notion of birth
and death of geometric features; in particular it asso-
ciates a birth threshold θb for which the feature appears
in the set FN(f, θb), and a death threshold θd, θb > θd,
for which the feature disappears in the set FN(f, θd). The
collections of these points (θb, θd) ∈ R2, one for β0 and
the other for β1 (in 2D), form the persistence diagrams.
More detailed description is given in Appendix B.

C. Binning of Forces

We will see in the following section that the persis-
tence diagrams computed from the DES results are sig-
nificantly more complex than the 1D example considered
above, and some approach to quantifying the informa-
tion contained in the diagrams is needed. The approach
that we will consider here is based on ‘binning’ the forces
in the separate parts of the persistence diagrams. This
approach is described next.

Let F̄ denote the average contact force, and consider
the region [0, 5F̄ ]. If the force is larger than 5F̄ we re-
define it to be 5F̄ (this occurs rarely). We ignore the
loops which arise from three particles coming into con-
tact. Alternative approaches that consider loops made
out of three or more particles have been considered re-
cently [7, 16]. For the purpose of discussion that follows,
we define a defect to be a minimal loop defined by four or
more particles (the number of defects describes departure
from a perfect crystal).

Using the DES results, at each time (corresponding to
a given packing fraction, ρ), we compute two persistence
diagrams using Perseus [18, 19]. In order to help the



3

(b)

Birth

Death

(c)

(b)(b)

(d)(e)

(a)

1

0

2.5

Force

Contact network

(b)

1

0

2.5

Force

Contact network
(c)

1

0

2.5

Force

Contact network
(d)

1

0

2.5

Force

Contact network
(e)

FIG. 2: (Color online) (a) Bins in persistence diagram. (b)-(e)
Examples of geometric features corresponding to the points
in the (b) rough, (c) strong, (d) medium and (e) weak b0 bins.

interpretation, we bin the points (θb, θd) into four disjoint
regions: Rough: (θb − θd) < 0.1F̄ ; Strong: θb ≥ 2.5F̄ ;
Medium: F̄ ≤ θb < 2.5F̄ ; Weak: 0.1F̄ ≤ θb < F̄ , which
can be briefly interpreted as follows (see also Fig. 2).
• β0 Rough: This is generated by a contact of a force θb
that is a local maximum of the force field. The associated
component contains the contact of a force θd which is
a saddle or a local minimum of the force field. Since
θb − θd < 0.1 is small, this suggests that this geometric
feature represents local, fine structure of the force field
(roughness).
• β0 Strong (and similarly for medium, weak): θb ≥ 2.5F̄
and (θb − θd) ≥ 0.1F̄ . This is generated by a contact
of a strong force and the associated component extends
through a reasonable range of values.
• β1 Rough: (θb−θd) < 0.1F̄ . This is generated by a loop
of adjacent particles for which the contact experiences the
force θb. If θb > 0.1F̄ , then within the loop there are no
defects and the contact with the lowest force within the
loop experiences the force θd.
• β1 Strong (and similarly for medium, weak): θb ≥ 2.5F̄
and (θb − θd) ≥ 0.1F̄ . A loop for which the weakest
contact experiences an exceptionally strong force. If θd >
0, then there are no defects within the loop.

III. RESULTS

A. Persistence Analysis of the Force Field in DGM

Figure 3 shows two examples of force networks (normal
forces only) that we consider. The snapshots are taken
just before jamming. Figure 3(a) documents the emer-
gence of organized structure for the frictionless monodis-
perse system at ρ ∼ 0.86. The hexagonal structure
clearly visible in the lower left part of the domain extends
to a large part of the domain and forms an imperfect crys-
tal as ρ increases. On the other hand the polydisperse
system (rp = 0.4) with the friction coefficient µ = 0.5
displays no ordering; see also [13] for further discussion
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FIG. 3: (Color online) Force field near jamming for a)
monodisperse frictionless system at packing fraction ρ ∼ 0.86
and b) polydispersity rp = 0.4 with friction coefficient µ = 0.5
at packing fraction ρ ∼ 0.78. Animations that include corre-
sponding persistence diagrams are available [17].

of this point. Figure 4 shows the persistence diagrams
for the two examples shown in Fig. 3. The evolution of
the force networks and of persistence diagrams as sys-
tems are being compressed can be also seen in the linked
animations [17].

For the persistence analysis, we consider 20 realiza-
tions for each considered system, and extract normal
contact forces at ≈ 100 values of ρ and compute eight
functions N∗i (ρ) which indicate the number of βi persis-
tence points in bin ∗, where ∗ ∈ {R,S,M,W} (denoting
Rough, Strong, Medium and Weak). The results that
follow are robust with respect to the exact definitions of
the binning regions. The effects of the compression speed
turn out to be minor and will be discussed elsewhere, as
well as the influence of system size.

Figure 5 shows N∗i (ρ) for frictionless particles and ρ
in the interval [0.73, 0.9]. [For ρ ∈ [0.6, 0.73] the systems
are indistinguishable and characterized by large values of

NR
0 (Figure 5(a)) and relatively small values of NS,M,W

0 .
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FIG. 4: (Color online) Persistence diagrams for the examples
shown in Fig. 3.

Since NR
0 ≈ N , this suggests that particles are typically

separated with occasional interactions, as expected.] The
leftward shift of N∗i as rp is increased is due to the fact
that ρc, the packing fraction at which jamming occurs
(see Table I), is a decreasing function of rp. Observe that
as a function of ρ, NW

0 (Figure 5(d)) gradually increases
and then sharply decreases. This can be explained as
follows: as the system is compressed there is less freedom
for movement of particles and thus contacts develop into
weak components. However, there is still enough freedom
for rearrangement of the contacts, thus over this range
the number of weak components dominates the number
of strong or medium ones. As the system approaches
jamming and the freedom disappears, the structure of
the force networks changes dramatically. First there is

a rapid rise in NS,M,W
0 followed by the collapse of NW

0

and the continued rise of NS,M
0 for a range or ρ’s beyond

ρc. The latter occurs due to transfer of components from
weak to medium and strong, suggesting that the force
network continues to steepen even after jamming.

Figure 5 shows also N∗1 curves, which give informa-
tion about the loops that form in force networks. These
curves show that the loop formation is closely related to

jamming, with a rapid increase in NM,W
1 beginning just

before and continuing shortly after ρc.

There is additional, less expected information provided
by persistent homology. That NR

0 (ρ) decreases to rather
low values for ρ > ρc indicates that in a jammed state
the force field is ’smooth,’ that is there are relatively
few small variations in the magnitude of force even in

the presence of significant fluctuations as measured by
NM

0 . Similarly, there are very few strong loops, NS
1 , and

these loops are essentially expected only in monodisperse
systems. Recall that slowly compressed frictionless sys-
tems of monodisperse particles crystallize (see [13] for
discussion regarding influence of crystallization on Betti

numbers). We conjecture that the maximum of NS,W
1

for rp = 0 characterizes the value of ρ at which crystal-
lization occurs. This is supported by measurement of the
bond orientation factor, ψ6, discussed later in the text,
and by visual inspection of force networks, see Fig. 3. The
latter shows that these strong loops form at the fault lines
between crystalline zones. Furthermore, the sharp global

maxima in NS,W
1 and a change in slope to a steeper rise

in NM
1 after crystallization suggests a ’balancing’ of the

load of the system and hence the decrease in the variance
in the magnitude of the force. The observation that NS

0

attains a maximum after ρc while NM
0 is ever increas-

ing is consistent with this concept of balancing. It also
provides an explanation for the fact that NS

0 is larger for
rp = 0.1 than rp = 0; the lack of broad perfect crystalline
regions allows for larger variation in the force field. This
‘perturbative’ explanation does not extend to larger rp
since the crystalline structure no longer exists. This sug-
gests that there is a critical rcritp 6= 0 at which the number
of strong maxima in the force network is the largest.

Next, we proceed to discuss the influence of friction.
Figure 6 compares three polydisperse systems, rp = 0.4,
characterized by different Coulomb threshold, µ, and
demonstrates that persistent homology provides a mean
of measuring the strong influence of friction on the geom-
etry of force networks. The most pronounced and cru-

cial feature is that NS,W
0 (ρc)|µ=0 � NS,W

0 (ρc)|µ>0. This
finding says that the force network features in frictionless
systems around jamming point are extreme, compared to
frictional systems. This observation should be contrasted
with the ones of [13] which were based purely on Betti
number computations (thus measuring the contact net-
work) and did not capture this difference. The conclusion
is that force networks’ properties are not simply slaved to
the contact network.

B. Classical Approaches to Analysis of the Force
Field in DGM

We now turn to the question of how the findings for-
mulated so far relate to the ones obtained by other well
established measures. Let us first consider the measures
based on particles’ spatial distribution. Figure 7 shows
the pair correlation, g(d), as a function of distance in
units of average particle diameter for a large packing
fraction, ρ = 0.9. The results are again obtained by
averaging over 20 simulations for each given set of phys-
ical parameters. The pair correlation function for fric-
tionless systems with several polydispersities, rp, is de-
picted in Fig. 7(a). The results for monodisperse fric-
tionless system suggest a well defined crystal structure
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FIG. 5: (Color online) Number of generators, N0 (left y-axes, solid lines) and N1 (right y-axes, dashed lines) as a function
of ρ for the systems characterized by zero friction (µ = 0) and polydispersities rp = 0 (thin, black), rp = 0.1 (thicker, blue),
rp = 0.2 (even thicker, green), and rp = 0.4 (thickest, magenta).
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the polydisperse (rp = 0.4) systems characterized by different Coulomb friction coefficient: µ = 0 (thickest, magenta) µ = 0.2
(thiner, purple), µ = 0.5 (thinest, green). Note different ranges in the y-axes compared to Figure 5.

for ρ = 0.9. Fig. 7(a) implies that the system becomes
disordered with no distinctive features for rp > 0.1. Fur-
thermore, Fig. 7(b) suggests lack of long-range order for
polydisperse systems with rp = 0.4 regardless of the fric-
tion coefficient, µ.
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for a) frictionless system as polydispersity, rp, is varied, and
b) polydisperse, rp = 0.4 system, as friction coefficient, µ,
is varied. Here the distance is measured in average particle
diameters, and g is in arbitrary units.

Additional information can be obtained by consider-
ing bond orientational order parameter, ψ6, defined by

ψ6 =
〈
N−1

∑N
j=1 (Nb − 1)−1

∑Nb−1
k=1 cos (6θk)

〉
, where

Nb is the number of contacts/bonds for a particle j,
and θk is the angle between two consecutive bonds. We
denote by

〈
.
〉

the average over 20 simulations. For a
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FIG. 8: (Color online) Bond orientational order parameter,
ψ6, for a) frictionless system with different polydispersity rp,
and b) different friction coefficient, µ, for polydispersity rp =
0.4.

perfect crystal with a hexagonal structure, ψ6 = 1, and
ψ6 ∼ 1/N for a disordered system or gas phase. Figure 8
shows that for small ρ’s, ψ6 is small, and then it increases
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for larger ρ’s. The transitional zone occurs at different
values of ρ for different systems, and, in particular, the
transitional value of ρ decreases as rp and µ increase. By
comparison with the values for jamming transition, ρc,
given in Table I, we see that the transition in ψ6 occurs
at or very close to ρc. As expected, ψ6 indicates the
highest level of ordering for the monodisperse frictionless
system.

Note that ψ6 provides slightly different information
from g(d). Figure 8(a) indicates a similar amount of order
for the frictionless systems with rp = 0.0 and rp = 0.1,
consistently with g(d). However, rp = 0.2 still contains a
high level of order which was not clearly apparent from
g(d), shown in Fig. 7(a). In any case, neither of the mea-
sures captures the non-monotonous dependence of the
force network properties on rp, as found using persis-
tence. Furthermore, Fig. 7(b) shows that g(d) is not in-
fluenced by µ for rp = 0.4 and for the considered range of
µ’s. On the other hand, Fig. 8(b) shows that ψ6 reaches
somewhat lower value as µ increases. Therefore, in this
case the information obtained from ψ6 appears to be
more insightful, since it suggests some difference between
frictionless and frictional systems for large polydispersity,
consistently with the persistence results.

Based on the above, the bond orientation factor and
pair correlation function turn out to provide only lim-
ited and to a certain degree inconsistent information, and
clearly do not correlate with many of the features of the
force networks found using persistence, suggesting that
the properties of the force network are not necessarily
related to the spatial organization of the particles.

We proceed to discuss a standard measure used to de-
scribe global properties of force networks, P (F̄ ), measur-
ing the probability that a particle experiences a (normal)
force of a given magnitude. This measure has been ex-
plored extensively, see, e.g., [1, 2, 10–12]. In this paper we
do not attempt to discuss the influence of order, friction,
or other parameters on P (F̄ ) in any depth: we only ask
whether the insight reached by the persistence goes fur-
ther than the one that can be developed based on P (F̄ ),
and also whether the corresponding insights are consis-
tent.

Figure 9 shows the evolution of P (F̄ ) for different ρ’s,
and for the four frictionless systems shown in Fig. 5.
As systems are compressed, we see the transition to a
Gaussian-like behavior of P (F̄ ). The results are consis-
tent with the other works that explored the properties
of force networks, see e.g. [2]. One observation of inter-
est is that this transition is more pronounced for larger
polydispersities; in particular for the monodisperse sys-
tem the decay of P (F̄ ) appears exponential at large F̄
for all considered ρ’s, at least in the considered range
(see [12] for much more in-depth discussion of the behav-
ior of P (F̄ ) for very large F̄ ). To connect now to the ear-
lier discussion, we find that for the systems considered,
P (F̄ ) does not capture the features of the force network
obtained using persistence. In particular, the evolution
of the force network properties that is captured by P (F̄ )

is monotonous as rp is modified, in contrast to the one
found based on persistence. This observation shows that
the persistence provides additional information that is
not captured by the commonly used measure for quanti-
fying force networks.

Figure 10 shows P (F̄ ) for systems characterized by the
same polydispersity, rp = 0.4, but with varied friction
(see Fig. 9(d) for µ = 0 case). The results show in-
creased Gaussian-like features of the forces as friction is
increased. By careful inspection of P (F̄ ) we see that for
large F̄ , P (F̄ ) for µ = 0 is large compared to µ > 0 sys-
tems. This finding is consistent with the results obtained
using persistence diagrams and given in Fig. 6, although
the result is not as obvious.

IV. CONCLUSIONS

This work illustrates the utility of computational ho-
mology in describing complex features of the force net-
works in DGM in a clear and concise manner. Use of
persistence diagrams to quantify the landscape defined
by the contact forces leads to new conclusions regarding
the properties of these networks, which may be difficult or
impossible to reach by other existing measures. One key
feature is the ability to reduce the information encoded
by the force network at a particular packing fraction ρ to
eight numbers, N∗i (ρ). The evolution of N∗i (ρ) as a gran-
ular system is compressed provides significant and in the
same time tractable information about the evolution of
force networks. We find that friction has a crucial role in
determining force network landscape: the number of ex-
treme features for µ = 0 is significantly larger compared
to µ > 0 case: in other words, the force landscape for
µ = 0 is characterized by much larger number of isolated
‘mountain peaks’; these peaks are smoothened by fric-
tion. The dependence of the force network properties on
polydispersity is not less interesting: we find that small
polydispersity leads to significantly larger number of ex-
treme features than the systems that are either mono
disperse or strongly polydisperse. This finding cannot
be seen when considering other measures, such as force
probability density function.

We consider in this work a simple 2D system of com-
pressed disks, but the potential of the described approach
is much wider since it is not limited by the physical di-
mension, by the shape or other properties of the par-
ticulate media, or by the type of the flow (compression,
shear). We expect that computational homology will pro-
vide a significant insight to the force network structure in
more complex granular settings, as well as in other soft
matter systems, such as colloids, emulsions, or foams.
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FIG. 9: (Color online) Probability density function, P (F̄ ) for the four systems shown in Fig. 5 (µ = 0). The P (F̄ ) are plotted
in ρ = 0.02 intervals in the range [0.76 : 0.90], with the results for lowest and highest ρ shown by thick dotted and solid lines,
respectively; the arrows show the direction of increased ρ. Note the transition to Gaussian-like form visible in particular for
larger rp as ρ increases.
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FIG. 10: (Color online) Probability density function, P (F̄ )
for the systems shown in Fig. 6 (µ = 0 is given in Fig. 9(d)).
The P (F̄ ) are plotted in ρ = 0.02 intervals in the range [0.76 :
0.90]. The arrows show the direction of increased ρ. Note that
the transition to Gaussian-like form as ρ increases is much
stronger compared to µ = 0 cases shown in Fig. 9.

Appendix A: Discrete Element Simulations (DES)

In the simulations, which are two-dimensional, circu-
lar grains are confined to a square domain with rough
walls composed of monodisperse particles. The walls
move inward at constant speed vc, which yields pack-
ing fractions in the range 0.6 to 0.9. No annealing of
the system is carried out, and gravity is neglected. The
disk sizes are chosen from a flat distribution with width
rp = (rmax − rmin)/rave, where rave is the mean parti-
cle radius. The particle-particle (and particle-wall) in-
teractions include normal and tangential components.
The normal force between particles i and j is Fni,j =
knxn − γnm̄vni,j , where ri,j = |ri,j |, ri,j = ri − rj ,
n = ri,j/ri,j , and vni,j is the relative normal velocity.
The amount of compression is x = di,j − ri,j , where
di,j = (di + dj)/2, di and dj are the diameters of the
particles i and j. All quantities are expressed using the
average particle diameter, dave, as the lengthscale, the
binary particle collision time τc = π

√
dave/(2gkn) as the

time scale, and the average particle mass, m, as the mass

scale. m̄ is the reduced mass, kn (in units of mg/dave)
is the spring constant set to a value that corresponds to
that for photoelastic disks [20], and γn is the damping
coefficient [21]. The parameters entering the linear force
model can be connected to physical properties (Young
modulus, Poisson ratio) as described e.g. in [21].

We implement the commonly used Cundall-Strack
model for static friction [22], where a tangential spring
is introduced between particles for each new contact
that forms at time t = t0. Due to the relative mo-
tion of the particles, the spring length, ξ evolves as ξ =∫ t
t0
vti,j (t′) dt′, where vti,j = vi,j − vni,j . For long lasting

contacts, ξ may not remain parallel to the current tan-
gential direction defined by t = vt

i,j/|vt
i,j| (see, e.g,. [23]);

we therefore define the corrected ξ′ = ξ − n(n · ξ)
and introduce the test force Ft∗ = −ktξ′ − γtm̄vti,j ,
where γt is the coefficient of viscous damping in the
tangential direction (with γt = γn). To ensure that
the magnitude of the tangential force remains below the
Coulomb threshold, we constrain the tangential force to
be Ft = min(µs|Fn|, |Ft∗|)Ft∗/|Ft∗|, and redefine ξ if
appropriate.

For the initial configuration, particles are placed on
a square lattice and given random initial velocities; we
have verified that the results are independent of the dis-
tribution and magnitude of these initial velocities. The
wall particles move at a uniform (small) inward veloc-
ity vc = 2.5 · 10−5. We integrate Newton’s equations of
motion for both the translation and rotational degrees
of freedom using a 4th order predictor-corrector method
with time step ∆t = 0.02. We consider system sizes from
N = 2000 to 40000 particles with kn = 4 · 103, en = 0.5,
µs = 0.5, and kt = 0.8kn [24].

Appendix B: Persistence

A complete description of persistent homology is be-
yond the scope of this paper. For the mathematical de-
tails we refer the reader to [14, 15, 25]. Here we restrict
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ourselves to a description of our construction of the scalar
field, the force network FN, and chain complexes used for
the persistent homology computations.

The spatial information about the particle arrange-
ment is represented by means of a graph called the con-
tact network that is constructed as follows. Suppose that
the system consists of N particles {pi}Ni=1 where the ra-
dius of the particle pi is ri and the position of the center
of the particle is given by (xi, yi). The contact network
CN is a graph with vertices {ui}Ni=1. The edge 〈ui, uj〉
belongs to CN if and only if the particles pi, pj are in con-
tact , that is (xi−xj)2+(yi−yj)2 ≤ r2i +r2j . Figure 11(a)
shows a typical contact network arising from a collection
of 15 particles.

The associated scalar field is a function f : CN → R
that takes constant values on the vertices and the interi-
ors of the edges. The value of f on an edge 〈ui, uj〉 ∈ CN
is defined to be the magnitude of the normal force be-
tween the particles pi and pj . The value of f on a vertex
ui ∈ CN is defined to be the maximum of f(〈ui, uj〉) over
all edges 〈ui, uj〉 ∈ CN. A simple example of such a func-
tion f is shown at Fig. 12. Observe that f is piecewise
constant but not continuous. Figure 11(b) shows a pos-
sible scalar field for the contact network CN shown in
Figure 11(a) .

(a) (b)

FIG. 11: (Color online) (a) Contact network CN. (b) A scalar
field f : CN → R. There are only four different values of f
coded by thickness and color. Red (the thickest) line rep-
resents the largest value and blue (the thinest) the smallest
one.

Observe that on the level of topology the union of par-
ticles in Fig. 11(a) is homotopic to the contact network
CN. In particular, this implies that the homology of the
set of particles is isomorphic to the homology of CN. In a
similar spirit, the dashed lines in Fig. 12 show a continu-
ous function defined on CN which produces the same per-
sistence diagram as that derived from the discontinuous
scalar field. This is indicative of the power of homology
in the context of data analysis; finite data points provide
sufficient information to compute homological invariants
for the underlying, but unknown, continuous objects.

In principle we could perform the persistent homology
computations beginning with the above mentioned force

CN

force

FIG. 12: (Color online) The function f defined on the contact
network CN is shown in black. The dashed red line represents
the continuous perturbation of f .

(a) (b)

(c) (d)

FIG. 13: Four filtrations of the flag complex.

field f . However, we perform two more modifications mo-
tivated by the physical application. (1) Force chains are
defined in terms of average force. Therefore we normalize
the function f by the average force which is computed as
a sum of the magnitudes of all forces acting between the
particles divided by the number of forces. (2) Because of
the finite size of the particles, three adjacent particles al-
ways form a loop. We are not interested in counting these
loops and are more interested in what we called defects,
loops that are generated by n-gons where n ≥ 4. Thus we
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form the flag complex of CN, that is every triangular hole
in CN is filled in with a two simplex σ. The function f is
extended to this simplex by assigning it the smallest value
that f assumes on the edges of σ. This extension ensures
that the force network FN(f, θ) is a filtration and we can
apply persistence homology. We recall that FN(f, θ) is
a filtration if FN(f, θ) is a complex for every θ (bound-
ary of each simplex in FN(f, θ) belongs to FN(f, θ)) and
FN(f, θ1) ⊆ FN(f, θ2) for θ2 ≤ θ1. Figure 13(d) indicates
the flag complex of the contact network CN of Fig. 11.

Since in our example the force field f takes on only four
values, there are only four different values θ1 < θ2 < θ3 <
θ4 for which the force network FN(f, θ) changes. The as-
sociated force networks FN(f, θi) are shown in Fig. 13.
In our applications to DGM the function f can have as
many different values as the number of forces acting be-
tween the particles. These forces are used to determine
the filtration on which the persistence diagram is com-
puted. This is the filtration which is taken as the input
to program Perseus [18].
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(1979).
[23] L. Brendel and S. Dippel, in Physics of Dry Granular Me-

dia, edited by H. J. Herrmann, J.-P. Hovi, and S. Luding
(Kluwer Academic Publishers, Dordrecht, 1998), p. 313.

[24] C. Goldenberg and I. Goldhirsch, Nature 435, 188
(2005).

[25] S. Weinberger, Notices Amer. Math. Soc. 58, 36 (2011),
ISSN 0002-9920.


