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Abstract

We present a study of the existence, stability and bifurcation structure of families of dark

breathers in a one-dimensional uniform chain of spherical beads under static load. A defocus-

ing nonlinear Schrödinger equation (NLS) is derived for frequencies that are close to the edge of

the phonon band and is used to construct targeted initial conditions for numerical computations.

Salient features of the system include the existence of large amplitude solutions that bifurcate with

the small amplitude solutions described by the NLS equation, and the presence of a nonlinear

instability that, to the best of the authors knowledge, has not been observed in classical Fermi-

Pasta-Ulam lattices. Finally, it is also demonstrated that these dark breathers can be detected in

a physically realistic way by merely actuating the ends of an initially at rest chain of beads and

inducing destructive interference between their signals.
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I. INTRODUCTION

Granular crystals, which consist of closely packed arrays of elastically interacting parti-

cles, have sparked recent theoretical and experimental interest. On one hand, the relevant

mathematical model is difficult to analyze due to, among other things, the lack of smooth-

ness of the corresponding potential function, calling for new ideas to study this nonlinear

lattice problem [1, 2]. On the other hand, the ability to conduct experiments for a wide range

of setups, including chains consisting of beads of various geometries and masses, nonlinear-

ity strength, and even dimension [3–6], make the subject of granular crystals exciting for

its potential relevance in applications including shock and energy absorbing layers [7–10],

actuating devices [11], acoustic lenses [12], acoustic diodes [13, 14] and sound scramblers

[15, 16], to name a few.

One fundamental structure known to exist in granular crystals is the so-called intrinsic

localized mode, or discrete breather. Discrete breathers are time-periodic solutions of the

underlying equations of motion which are localized in space. Generally speaking, they are

well studied, and are known to exist in a host of nonlinear lattice models [17]. The most

commonly studied breather is one with tails decaying to zero, which is often referred to as

a bright breather. The term “bright” is used, as the solution can be viewed as a discrete

carrier wave with amplitudes modulated by a bright soliton. It is then natural to consider

a discrete wave modulated by a dark soliton, which is then in turn called a dark breather,

see Fig. 1 for an example. Although bright discrete breathers are known to exist in granular

crystals (in dimer or higher periodic configurations, and in monomer chains with defects for

example [18–21]), the properties of dark discrete breathers remains an open question, and

is the subject of this work.

It should be highlighted here that in monomer i.e., homogeneous chains (for which,

there is purely an acoustic band), the conditions established for the bifurcation of discrete

breathers [17] do not allow the bifurcation of bright breathers. For that reason the latter

have only been identified in heterogeneous configurations with different periodicities [19–21],

or in monomer settings bearing defects [18], where the localization is not intrinsic to the

chain but rather is supported as an impurity mode by the defect. The only possibility that

exists in the homogeneous chain, under static load (i.e., in the linearizable limit) for intrinsic

localization may arise in the form of the dark breathers proposed herein. For this reason, we

2



believe that such states are fundamental ones in the study of granular systems and merit an

investigation of their existence properties, linear and nonlinear stability, as well as of their

dynamics. These topics form the focus of the present work. Although the homogeneous chain

is the sole configuration considered here, it is important to note that dark breathers may

exist in other configurations, such as the defect [18] and periodic chains [19–21] mentioned

above.

The paper is structured as follows. In section 2, we present the general properties of the

model. In section 3, we analyze the model near the band edge of its linear acoustic spectrum,

and derive a defocusing nonlinear Schrödinger equation characterizing its envelope dynamics.

In section 4, we specify the finite dimensional lattice dynamical system to be studied and

its bifurcation analysis is carried out in section 5. While sections 6 and 8 consider variants

of the center position of the breather and of the associated boundary conditions, section 7

focuses on the linear stability properties of the states. Section 9 analyzes the validity of

the analytical approximation, while section 10 makes connections with current experimental

settings, presenting a scheme for the potential realization of the dark breathers. Finally,

section 11 presents our conclusions and some challenges for future work.

II. MODEL

The model describing the dynamics of a one dimensional (1D) homogeneous chain of

spherical beads is given by [3, 6]:

Mün = V ′

GC(un − un−1)− V ′

GC(un+1 − un), (1)

with,

V ′

GC(x) = A [δ0 − x]3/2+ , (2)

where n ∈ I, with I a countable index set, un = un(t) ∈ R is the displacement of the n-th

bead from equilibrium position at time t, A is a material parameter (depending on the elastic

properties of the material and the geometric characteristics of the beads [3]), M is the bead

mass and δ0 is an equilibrium displacement induced by a static load F0 = Aδ
3/2
0 . The bracket

is defined by [x]+ = max(0, x). The effect of the nonlinearity will be more significant for

solutions with large amplitude relative to the precompression, and thus, such solutions will

be considered as “strongly nonlinear”. Likewise, solutions with small amplitude relative to
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FIG. 1. Top: A site-centered dark breather solution with ωb = 1.9 in the strain variable yn =

un+1 − un (left), renormalized strain variable µ− |yn|, where µ is the breather amplitude (middle)

and in displacement variables un (right). The markers indicate where the solution takes values on

the lattice. The solid line is shown for clarity. Bottom: Same as top row but for the bond-centered

solution.

the precompression will be called “weakly nonlinear” and will be more proximal to the linear

regime. The purely nonlinear case (i.e. with δ0 = 0) cannot be addressed with the techniques

developed in this paper. In fact, the absence of a linear limit in the latter suggests that the

dark breather waveforms considered herein are unlikely to exist as such in that limit.

Equation (1) with I = Z has the Hamiltonian,

H =
∑

n∈N

1

2
Mv2n + VGC(un+1 − un),

where vn = u̇n. Considering small amplitude solutions, i.e.,

|un−1 − un|
δ0

≪ 1,

implies that we can Taylor expand V ′

GC(x) . Keeping terms up to fourth order yields an

approximate model,

Mün = V ′

FPU(un+1 − un)− V ′

FPU(un − un−1), (3)

where

V ′

FPU(x) = K2x+K3x
2 +K4x

3,
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and

K2 =
3

2
Aδ

1/2
0 , K3 = −A3

8
δ
−1/2
0 , K4 = −A 3

48
δ
−3/2
0 . (4)

Equation (3) is an example of the well studied Fermi-Pasta-Ulam (FPU) model. It is has

been shown by James [22, 23] (see also the discussion in [17]) that small amplitude bright

breathers exist in the FPU model for frequencies above the phonon band if and only if

B := 3K2K4 − 4K2
3 > 0. For coefficients such that B < 0, small amplitude dark breathers

were shown to exist for frequencies within the phonon band. The coefficients (4) associated

to the granular crystal model correspond to B < 0, and thus the existence results for dark

breathers can be carried over for sufficiently small amplitudes (see e.g. Theorem 5 of [23]).

In this paper, we begin with small amplitude solutions, where the phenomenology of the

FPU lattice and granular crystal lattice are very similar. However, we will see that as we

depart from the familiar small amplitude limit, a host of new phenomena will emerge that

are particular to the monomer granular crystal model and its rather special nonlinearity

bearing the unusual 3/2 power, but also the tensionless characteristic (namely, that there is

only force between the beads when they are in contact).

III. DERIVATION OF THE DEFOCUSING NLS EQUATION IN THE STRAIN

VARIABLE FORMULATION

It is more natural to derive the nonlinear Schrödinger equation in terms of the strain

variable yn = un+1 − un. We note that for a finite chain, a displacement variable solution

can be recovered using the relation,

un = u1 +

n−1
∑

j=1

yj, (5)

where an arbitrary choice for the first node must be made. Equation (1) has the following

form in the strain variables,

Mÿn = −V ′

GC(yn+1) + 2V ′

GC(yn)− V ′

GC(yn−1). (6)

The FPU equation can again be derived, yielding,

Mÿn = V ′

FPU(yn+1)− 2V ′

FPU(yn) + V ′

FPU(yn−1). (7)
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The linear problem (i.e. when K3 = K4 = 0) is solved by,

yn(t) = ynoe
i(kn+ωt),

for all k ∈ R where ω and k are related through the dispersion relation,

ω(k)2 = 4K2/M sin2(k/2),

such that the cutoff point of the phonon band is 2
√

K2/M .

Consider the standard NLS multiple scale ansatz, which up to first order has the form,

yn(t) ≈ ψn(t) := εA(X, T )ei(k0n+ω0t) + c.c. , X = ε(n+ ct), T = ε2t, (8)

where ε ≪ 1 is a small parameter, effectively parameterizing the solution amplitude (and

also its inverse width). The substitution of this ansatz into (7) and equation of the various

orders of ε leads to the dispersion relation ω0 = ω(k0), the group velocity relation c = ω′(k0),

and the nonlinear Schrödinger equation,

i∂TA(X, T ) + ν2∂
2
XA(X, T ) + ν3A(X, T )|A(X, T )|2 = 0, (9)

where ν2 = −ω′′(k0)/2 > 0 and

ν3 =
K2

3

K2
2

γ̃ +
3K4

2K2
ω(k0), (10)

while

γ̃ =
ω(k0)

2

(

ω(2k0)

2ω(k0)− ω(2k0)
− ω(2k0)

2ω(k0) + ω(2k0)
(11)

+
2ω′(0)

ω′(k0)− ω′(0)
− 2ω′(0)

ω′(k0) + ω′(0)

)

.

Full details of the derivation of the NLS equation starting from the homogeneous FPU

equation, including the higher order terms of the ansatz, can be found e.g. in [24]. Since we

seek standing wave solutions, we choose the wavenumber to be at the edge of the phonon

band k0 = π, such that the group velocity vanishes, ω0 = 2
√

K2/M , and

ν3|k0=π = 3K2K4 − 4K2
3 = B.

We already noted that B < 0 (and hence ν3 < 0) for coefficients defined in (4). Thus, the

NLS equation (9) is defocusing. Steady states of (9) have the form,

A(X, T ) = Ã(X)eiκT ,
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where κ ∈ R and Ã(X) satisfies the Duffing equation,

∂2XÃ = − 1

ν2

(

|κ|Ã− |ν3|Ã3
)

, (12)

where κ < 0. Equation (12) possesses heteroclinic solutions which have the form,

Ã(X) =
√

κ/ν3 tanh

(
√

−κ
2ν2

(X −X0)

)

.

Reconstructing the original solution from our ansatz of Eq. (8), we have the following ap-

proximation,

yn(t) ≈ εÃeiκT ei(k0n+ω0t) + c.c.

= 2ε(−1)n
√

κ

ν3
tanh

(
√

−κ
2ν2

ε(n− x0)

)

cos(ωbt) (for k0 = π)

where ωb = ω0+κε
2 is the frequency of the breather, κ < 0 is a fixed but arbitrary parameter

and X0 = εx0 is an arbitrary spatial translation. When κ < 0, the frequency of the breather

lies within the phonon band. We note that the same approximation (up to first order) can

be obtained by performing a center manifold reduction (see e.g. [22, 26] with κ = −ν2,
ε =

√−µ and A =M = 1 such that ν2 = 1/4). It is relevant to mention that the defocusing

NLS equation can also be derived in the displacement variable formulation [27].

If ν3 > 0 (which is not possible here), then one would need κ > 0, which, in turn, would

result in the existence of homoclinic solutions and thus of bright breathers with frequencies

above the phonon band.

IV. THE FINITE DIMENSIONAL SYSTEM AND ITS CONSERVATION LAWS

The boundary conditions (BCs) of the finite dimensional system used for the numerical

simulations will play an important role since the dark breathers have non-decaying tails.

In terms of the strain variable, a logical choice is a periodic boundary condition y0 = yN ,

yN+1 = y1. To check our numerical results, we also carry out simulations in the displacement

variables. The following system of N+1 equations is consistent with the system in the strain

variable representation and periodic boundary conditions,

Mü1 = A(δ0 − (uN+1 − uN))
3/2
+ − A(δ0 − (u2 − u1))

3/2
+ ,

Mün = A(δ0 − (un − un−1))
3/2
+ −A(δ0 − (un+1 − un))

3/2
+ , n ∈ {2, N}

MüN+1 = A(δ0 − (uN+1 − uN))
3/2
+ − A(δ0 − (u2 − u1))

3/2
+ ,
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The redundancy of the last equation implies üN+1 = ü1, such that the above may be written

as a system of N equations,

Mü1 = A(δ0 − (u1 + c1t+ c2 − uN))
3/2
+ − A(δ0 − (u2 − u1))

3/2
+ ,

Mün = A(δ0 − (un − un−1))
3/2
+ − A(δ0 − (un+1 − un))

3/2
+ , n ∈ {2, N − 1}

MüN = A(δ0 − (uN − uN−1))
3/2
+ −A(δ0 − (u1 + c1t + c2 − uN))

3/2
+ ,

where c1 = u̇N+1(0) − u̇1(0) and c2 = uN+1(0) − u1(0). This system maintains the con-

served quantities of the infinite system. For example, if c1 = 0, then the Hamiltonian and

mechanical momentum,

H =
N−1
∑

n=1

[

1

2
Mv2n + VGC(un+1 − un)

]

+ VGC(u1 + c2 − uN), P =
N
∑

n=1

Mvn,

are conserved respectively. The conservation of the Hamiltonian is connected to the temporal

translation invariance t→ t+δt and the conservation of momentum is a result of the vertical

translation invariance u = u+ δu. An interesting feature is the invariance,

un → αun + cn, t→ α−1/4t, α = (δ0 − c)/δ0, (13)

which holds in the infinite and finite lattice using the above mentioned boundary conditions.

This last invariance is connected with the existence of a marginal mode and it has important

consequences in the linear stability analysis described in Sec. VII.

V. BIFURCATIONS

We compute numerically exact dark breather solutions using a Newton-type solver for

time-periodic solutions (see e.g. [17] for details). We carry out the computations in the strain

variables with periodic boundary conditions with a lattice size of N = 51. The associated

Jacobian matrix is rank deficient due to the invariances of the system, and therefore an

additional constraint is needed. It is sufficient to fix the vertical center of the solution,

c :=
supt∈[0,Tb]

y1(t) + inft∈[0,Tb] y1(t)

2
,

where Tb = 2π/ωb is the breather period. For all reported results we used the parameter

values M = δ0 = 1 and A = 2/3 such that ω0 = 2. After a rescaling of time and amplitude,

solutions for arbitrary parameter values can be recovered. The l2 norm and energy of the
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FIG. 2. (Color online). Left: Renormalized l2 norm of the site-centered solution versus ωb with a

vertical center of c = 0. The vertical line shows the edge of the phonon band ω = 2. The upper

branch of the curve reaches past the edge of the phonon band and increases indefinitely. Right:

Same as left, but for the bond-centered solution. Regions where a real instability is present are

indicated by a dashed red line (see Sec. VII for details).

dark breathers will depend on the nonzero background of the solutions. Thus, to measure

the solutions we consider the renormalization [28],

ỹn = µ− |yn − c| ‖yn‖l̃2 =
∑

n∈I

µ2 − |yn − c|2,

where µ is defined as the amplitude of the breather,

µ :=
supt∈[0,Tb]

y1(t)− inft∈[0,Tb] y1(t)

2
.

The renormalized profiles can be seen in the middle panels of Fig. 1. We use the analytical

approximation (8) to seed the numerical solver. Ansatz (8) with x0 = 0 represents a so-

called site-centered solution (see Fig. 1 top) whereas the bond-centered solution corresponds

to x0 = 0.5 (see Fig. 1 bottom).

In the finite lattice, eigenvectors of the equations of motion linearized about the trivial

solution also provide an option for an initial seed. The largest computed eigenvalue ω of

the linear spectrum serves as the numerical cutoff value of the frequency (which is slightly

smaller than the exact value of ω0 but approaches it as N → ∞). The eigenvector of the

N − 1 eigenvalue has the profile of a dark breather. The drawback of using the linearized

solution is that there is no information regarding the correct amplitude. For this reason,
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FIG. 3. (Color online). Left: A site-centered dark breather solution with ωb = 1.9 and a nonzero

center c = 0.13 in the strain variable yn. Middle: The same solution but in the displacement

variables un. Right: Renormalized l2 norm of the site-centered solution versus ωb with a vertical

center of c = 0.13. The vertical line shows the edge of the phonon band ω = 2. In contrast to the

c = 0 case shown in Fig. 2, the bottom branch terminates at a value below the edge of the phonon

band.

we use (8) for the initial seed, which approximates both the shape and amplitude of the

solution.

In the left panel of Fig. 2, we show the renormalized l2 norm of the numerically exact

site-centered dark breathers. The solutions do not exist for arbitrarily small ωb but rather,

there is a fold at ωb ≈ 1.87. However, we note here that this is a fold in the particular

parameters which does not constitute a point of change in the spectral stability of the

observed states. The top branch persists past the edge of the phonon band ω0 = 2, with

indefinitely increasing amplitude. For this reason, the solutions making up the top branch

in the figure can be thought of as strongly nonlinear solutions, and those making up the

bottom branch as weakly nonlinear solutions. A red dashed line indicates that the solution

possesses a real instability, a blue solid line indicates the solution does not (see Sec. VII for

more details).

VI. DARK BREATHERS WITH A NONZERO CENTER

The equations of motion for both the infinite system and the finite system with periodic

BCs are invariant under the transformation

yn → ynα + c, t→ α−1/4t, α = (δ0 − c)/δ0, (14)
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where (14) is merely the strain variable equivalent of (13). Thus, there is an entire family

of solutions associated with the vertical shift c. We note that a similar transformation

has been introduced in [26] for the case of FPU lattices. Figure 3 shows an example of a

dark breather with c = 0.13 in the strain (left) and displacement variables (middle). The

bifurcation diagram (right) is similar to its c = 0 counterpart, but is shifted in the ω axis

where the cutoff point is ω0α
1/4 = 2α1/4. The invariance (14) can also be used as another

accuracy check for the numerical simulations. We can choose the value of the constraint

c in the Newton method and test if it converges to the appropriate solution as predicted

by (14), assuming we have computed the c = 0 solution. Naturally, the stability of the two

solutions also has the same structural characteristics, as regards intervals with real Floquet

multipliers.

Note that a constant vertical shift y → y + c is the same as leaving y unchanged and

changing the precompression δ0 → δ0 − c. Thus, all forthcoming discussions of changes in

vertical center can be thought of as changes in precompression. For this reason it is clear

that both the strongly and weakly nonlinear branch go toward the zero solution as the

precompression goes to zero, since α→ 0 as c→ δ0.

VII. LINEAR STABILITY ANALYSIS

There is a rich theory for the stability properties of breathers in Hamiltonian systems

[17, 30, 31]. Here, linear stability is determined in the standard way: A perturbation Vn(t)

is added to a breather solution and (6) is used to derive an equation describing the evolution

of V . Keeping only linear terms in V will result in a Hills’ equation with a time periodic

coefficient of period Tb. Thus, the eigenvalues (or Floquet multipliers) of the associated

variational matrix at t = Tb determine the linear stability of the breather solution. Due to

the Hamiltonian structure of the system, all Floquet multipliers must lie on the unit circle

for the solution to be (marginally) stable, otherwise, the solution is unstable.

There are continuous arcs of spectrum on the unit circle (in the infinite lattice limit),

which can be computed from the phonon band of (6). Although, in contrast to the bright

breather case, these arcs are not simply exp(iω Tb), where ω ∈ [−ω0, ω0]. This is due to the

nonzero background of the solutions we are linearizing about. The isolated (point spectrum)

multipliers must be computed numerically. If an isolated one is real and lies off the unit circle,

11
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FIG. 4. Floquet multipliers of the strongly (left) and weakly (right) nonlinear solutions with c = 0

versus frequency ω for the site-centered (top) and bond-centered (bottom) types. The Floquet

multipliers for ωb = 1.95 in the complex plane are shown in the respective insets.

then the solution possess a so-called real-instability (see Fig. 4, top left for an example).

Oscillatory instabilities are also possible, where the multiplier has both real and imaginary

parts (and the corresponding multipliers come in quartets). In FPU lattices, it is known

that numerically computed eigenvalues may lie off the unit circle due to the truncation of

the infinite lattice to a finite lattice [17, 30]. To determine if the instability is a finite size

effect, a band analysis can be carried out [17]. Such a computation is outside the scope of

this work, but we did carry out numerical simulations for larger values of the lattice size N .

We found that the oscillatory multipliers do approach the unit circle, but level off before

reaching it. In other words, the oscillatory instabilities seem to be genuine, albeit weak.

Examples of the numerically computed Floquet spectrum of the site-centered and bond-

centered solutions, for both strongly and weakly nonlinear types, are shown in the insets
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FIG. 5. (Color online). Manifestation of the real-instability of the strongly nonlinear bond-centered

solution for ωb = 2.5. The left panel shows the evolution of the n = 6 node. The right panel is

a contour plot of the time evolution of the entire solution. The color intensity corresponds to

the value of the strain yn. The checkered pattern is a consequence of the time periodicity of the

solution. Notice the density dip of the solution near n = 0, and how this structure re-arranges

itself in a way reminiscent of a moving (dark breather) pattern after t ≈ 25.

of Fig. 4 for ωb = 1.95. The moduli of the Floquet multipliers are also shown for various

frequencies where real and oscillatory instabilities are present. The real instabilities are the

larger arcs in the figure. For each solution type, there is an intricate cascade of oscillatory

instabilities, which can be best seen for the strongly nonlinear site-centered solution. The

magnitude of the oscillatory instabilities is small relative to that of the real instabilities.

Therefore, in the bifurcation diagram of Fig. 2 only real instabilities are indicated, although

oscillatory instabilities may be present. In Fig. 5 the manifestation of an instability of the

strongly nonlinear bond-centered solution for ωb = 2.5 is shown, which is characteristic of

the simulations carried out for the perturbed unstable solutions. It can be clearly seen that

the instability essentially sets the dark breather state in motion, although it does not appear

to correspond to a genuinely traveling breather.

The linear stability analysis (LSA) described above can fail to describe instabilities that

grow slower than exponentially [30]. Such ”nonlinear” instabilities can emerge even if the

linear stability analysis predicts the solution to be marginally stable. They are associated

with degenerate eigenvalues (i.e. unit Floquet multipliers), although the presence of de-

generate eigenvalues does not, in turn, guarantee the existence of a nonlinear instability.
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For solutions with |yn| < δ0 there are, up to machine precision, six degenerate eigenvalues.

One pair, corresponding to the phase mode Vp = {ẏ(0), ÿ(0)}, is associated with the energy

conservation/time reversal invariance of the system. The second pair associated to a pair of

degenerate eigenvalues seems to be of the form Vt = {∂y/∂x0, ∂ẏ/∂x0} which corresponds

to continuous spatial translation invariance. This mode, called also ”translational” or ”pin-

ning” mode, is of particular interest since it suggests that (exact) traveling dark breathers

may exist in this model. Indeed for frequencies very close to the band edge, we found sev-

eral intermediate solutions, which seem to be spatial translations of the same solution (i.e.

solutions with various values of x0 in Eq. (8)). For solutions with |yn| ≥ δ0 this invariance

is lost, and there are only four degenerate eigenvalues in the linear stability problem.

The last pair of modes has the form Vc = {∂y/∂c, ∂ẏ/∂c} where c is the vertical center.

To the best of the authors knowledge, these modes have never been found/examined in

FPU lattices. Perturbing along the direction of these modes results in algebraic growth

in the perturbation. Thus, we conjecture that there is a nonlinear instability associated

with this marginal mode, (which in turn is connected to the shift invariance (14)). The

heuristic argument for the presence of such an instability is as follows: if one chooses a

small perturbation of the form εn + c, the dynamics of the solution with a vertical center

of c may emerge, which will have a lower frequency, due to (14). This is precisely what

we observe in the numerical simulations with such perturbations. For example, the weakly

nonlinear site-centered solution at ωb = 1.97 is linearly stable. However a perturbation with

initial value Vn(0) = .01max(y(0))(rn + c), where rn is a random perturbation centered at

0 with |rn| < 1, will grow even though the LSA predicts that it should not. Moreover,

the projection p(t) =< yexact(·, t) − yperturbed(·, t), Vc > grows algebraically and is several

orders of magnitude greater than the projections to the other linearization eigenvectors.

This phenomenon is not observed when the above perturbation has c = 0 for the identical

timescale. Lastly, if the invariance (14) is absent, the nonlinear instability vanishes (see

Sec. VIII for a relevant example).

We note in passing, that working on the equivalent displacement representation, see Sec.4,

a fourth pair of Floquet multipliers is located at (1, 0) in the complex plane. This pair arises

from the conservation of the total mechanical momentum.
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FIG. 6. Left: A site-centered dark breather solution with ωb = 1.99 in the strain variable yn with

fixed boundary conditions y0 = yN+1 = 0 with N = 101. Right: The same solution but in the

displacement variables un.

VIII. OTHER BOUNDARY CONDITIONS

Periodic boundary conditions are advantageous since the solution profiles closely resemble

those of the infinite system, and invariances of the infinite system carry over to the finite

case. However, other boundary conditions are also relevant and interesting to examine from

an experimental point of view. The free boundary conditions u0 := u1 and uN+1 := uN

constitute such an example. In terms of strain variables, these become fixed boundary

conditions y0 = yN+1 = 0. The resulting profile resembles a multi-breather, see Fig. 6.

This solution is no longer centered at zero. Unlike the periodic BC situation, one cannot

normalize the solution to have a zero center, since the vertical shift invariance (14) is broken

in the fixed BC system. Consequently, the corresponding marginal mode discussed in Sec.VII

vanishes, along with the eigenvector Vc and hence the nonlinear instability is absent in this

case. Thus, choosing a strictly positive perturbation will no longer cause the integrator to

shift towards a solution of a different frequency, since the corresponding family of vertically

shifted solutions no longer exists. Indeed, in the simulations a perturbation of the form εn+c

induces the nonlinear instability in the periodic BC system, but the exact same perturbation

in the fixed BC system does not lead to any instability and the corresponding dark breather

is found to be structurally robust (where appropriate), in agreement with the perturbations

of the linear stability analysis presented above.
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FIG. 7. Left: Analytical approximation (solid line) with an envelope function that is the NLS dark

soliton (dashed line), and a numerically exact dark breather (markers) for ωb = 1.9 and c = 0.

Right: The amplitude of the NLS approximation (solid line), numerical breather with fixed c = 0

(dashed-dot line) and numerical breather with varying c (dashed line).

IX. ACCURACY OF THE NLS APPROXIMATION

Although the NLS approximation (13) was sufficiently accurate to provide an initial seed

for our numerical solver, it is relevant to investigate the extent to which the NLS approx-

imation represents actual solutions to (6). Figure 7 shows a numerically exact solution in

the strain variable (markers), the corresponding approximation (solid line) and the enve-

lope (dashed line), which is defined by the NLS equation. From a visual inspection, the

structure is quite proximal to the exact one, although the amplitude is underestimated. We

also directly compared the amplitudes of the analytical prediction with the numerical solu-

tions (right panel) for various ωb, where it can be seen that NLS approximation becomes

irrelevant as ωb moves away from the cutoff point ω = 2. It can perhaps be understood at

an intuitive level, by inspecting Figure 7, that the NLS approximation is likely to be less

successful for the dark breather states considered herein than the more standard case of the

bright breathers [17]. In the latter case, the solutions bifurcate from vanishing amplitude,

on top of a vanishing background, while for the solutions considered herein the amplitude of

the background is finite even close to the to the cutoff limit. Hence, the cubic nonlinearity

approximation is expected to be less adequate even in the vicinity of that limit. Moreover,

the fold bifurcation is not predicted by the NLS approximation and there is no approxima-

tion for the strongly nonlinear modes. Thus, the NLS approximation is only relevant for the
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weakly nonlinear solutions near the edge of the phonon band, as expected. It is interesting

to point out that the amplitude of the dark breather with fixed c = 0 is not the closest one

to that of the NLS approximation.

The NLS approximation has been rigorously justified in the context of the FPU lattice

in [24], and more recently for an FPU equation with an arbitrary periodic configuration in

[25]. There, it can be shown that solutions with initial data defined by the NLS equation

will remain close to an actual solution on long, but finite time scales, where the wavenumber

k can be arbitrarily chosen. However, those results do not apply to dark breathers, the issue

being, as highlighted also above, the nonzero background. The results presented in this

work suggest that the justification considered in these works may be an interesting topic

to investigate in the context of granular crystals, but also perhaps more generally (even for

smoother potentials) for dark breather states existing on a finite amplitude background.

X. EXCITING THE DARK BREATHERS AND DISSIPATIVE EFFECTS

In an experimental setting, it is difficult to impose an initial displacement and velocity

to an arbitrary number of beads, and thus the exact solutions described above cannot be

prescribed as an initial condition to the lattice. Hence, we have to resort to alternative

approaches taking into consideration the somewhat limited actuation of the finite chain

which is currently available experimentally. In that light, we propose an approach which

relies solely on exciting (or actuating) the ends of a finite chain, and taking advantage of

the resulting interference effect, in order to produce a time-periodic solution with a density

dip (i.e., a dark breather).

To verify theoretically the presence of dark breathers when only the boundaries of a chain

are excited, we integrate Eq. (1) numerically with a chain of beads at rest. We integrate the

displacement variant of the equation since this corresponds directly to the physical situation.

The numerically exact dark breathers which are in the strain variables yn, can be converted

by using the relation (5). Since Eq. (1) is invariant under the transformation un → un + s,

with s ∈ R, we can vertically shift the resulting displacement dark breather by an amount

s such that the center node of the solution has zero amplitude (umiddle = 0). The actuators

are represented by applying out of phase boundary conditions uleft(t) = a(t) cos(ωbt)+s and

uright = a(t) cos(ωbt + π)− s, where a(t) is a slowly monotonically increasing function that
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FIG. 8. (Color online). Top: contour plots of the space-time evolution of an exact weakly nonlinear,

bond-centered dark breather with a vertical shift of c = 0 and frequency ωb = 1.99 (left) and an

initially zero chain actuated out of phase at the boundaries with frequency ωb = 1.99 (right). The

color intensity corresponds to the strain yn. Bottom: A zoom of the corresponding top panels

between times 90 and 130.

satisfies sup a = µ, where µ is the amplitude of the exact dark breather solution of interest

with frequency ωb. By driving the chain in this way, the (resulting plane) waves propagating

from the left boundary and the right boundary will cancel out at the center bead resulting

in a solution with umiddle = 0, as desired. Thus, the resulting symmetry in the displacement

variables (see bottom right panel of Fig. 1) corresponds to a bond-centered solution in the

strain-variables (see bottom left panel of Fig. 1). Since this is an interference experiment,

we chose an actuating frequency that lies within the phonon band such that linear waves

will propagate through the chain.

The left panels of Fig. 8 show contour plots of the space-time evolution of a weakly
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FIG. 9. Left: The driven chain at t ≈ 110 (markers) and an exact dark breather (solid line) for

ωb = 1.99. Top Right: Evolution of the middle bead for the driven chain (dashed line) and exact

dark breather (solid line). Bottom Right: The l∞ norm of the difference between the driven chain

and exact dark breather for time points such that ymiddle(t) is at a maximum.

nonlinear, bond-centered dark breather with a vertical shift of c = 0 in the strains. The

amplitude in this case is µ ≈ 0.8. The checkered pattern is a result of the time periodicity.

Notice the density dip at the center of the structure. The right panel shows the contour plot

of the space-time evolution of the actuated chain. There is a strong resemblance to a dark

breather for time sufficiently large (here for t > 90).

To measure the proximity of the interference to an exact dark breather solution we com-

pared the two directly. First, we compared the difference of the time evolution of the center

nodes ymiddle(t) of the exact and approximate breathers (top right panel of Fig. 9). It was

also useful to compare the entire solution at one time slice per period of oscillation (the slice

that corresponds to a maximum of ymiddle(t) ). We used the l∞ norm to measure difference

of the two structures (bottom right panel of Fig. 9 ). The most “dark breather like” state

during the propagation (using these measures) is shown in the left panel of Fig. 9. Here,

the presence of the dark breather is clear, albeit slightly disturbed by presence of the linear

waves. Essentially here, we employ linear waves to produce the destructive interference pat-

tern associated with the dark breathers and rely on the nonlinearity to subsequently produce

the fundamental nonlinear state associated with such a setting.

The timescale which is required for the dark breathers to manifest via the actuation is

crucial, as the physical system will have dissipative effects, which may be detrimental to the
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emergence of the dark breathers. Dissipation can be modeled [14] by modifying Eq. (1) as

Mün = A[δ0 + un−1 − un]
3/2
+ − A[δ0 + un − un+1]

3/2
+ − M

τ
u̇n. (15)

For small values of the dissipation coefficient (i.e. for large τ), dark breathers can still emerge

(see Fig. 10 left), however for larger values, the dissipative effects are indeed detrimental to

the emergence of the dark breathers (see Fig. 10 right). Thus, it is important to consider

physical values of the parameters. The scaling,

un = δ0 ũn, t = β t̃, τ = β τ̃ , β =

√

2M

3Aδ
1/2
0

,

can be used to recover the physically relevant solutions, where the variables with the tilde

represent solutions in the idealized case of δ0 =M = 1 and A = 2/3 used above. For a chain

of 316-stainless steel beads we have,

A =
E
√
2R

3(1− ν2)
, M = 4πR3ρ/3, δ0 = (F0/A)

2/3,

where E = 193 ·109 (N/m2) is the Young’s Modulus, R = 9.525 ·10−3 (m) is the bead radius,

ν = 0.3 is the Poisson Ratio, ρ = 8027.17 (kg/m3) is the bead density, and F0 = 20 (N) is

a typical precompression force which results in physical parameter values of A ≈ 9.7576 ·
109 (N/m3/2), M ≈ 0.0029 (kg) and δ0 ≈ 1.6136 · 10−6 (m). The scaling parameter in this

case becomes β ≈ 3.9533 · 10−5. Thus, a breather appearing at approximately t̃ ≈ 90 would

correspond to t = 90β ≈ 3.6 (ms) in physical time. The tested dissipation coefficients of

τ̃ = 100 and τ̃ = 10 would become τ = 100β ≈ 4 (ms) and τ = 10β ≈ 0.4 (ms) respectively

in the physical scaling. Thus, if one were able to carry out experiments where the dissipation

constant is on the order of τ = 4 (ms), dark breathers should be detectable. We note that the

experimentally relevant dissipation constant in Ref. [14] corresponds to τ = 2 (ms), which

demonstrates the feasibility of detecting dark breathers in currently available experimental

settings of granular chains.

XI. DISCUSSION AND FUTURE DIRECTIONS

We have demonstrated that dark breathers are not only an interesting entity of the granu-

lar crystal model from a theoretical point of view, but are also within the reach of currently

available experimental technology, given the ability to actuate both ends of the chain of
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FIG. 10. (Color online). Top: Contour plots of the space-time evolution of the driven chain with

the same parameters as in Fig. 8 and with a dissipation coefficient of τ = 100 (left) and τ = 10

(right). Bottom: Comparison between the driven chain (markers) and exact breather solution

(solid line) for τ = 100 (left) and τ = 10 (right). Here the times were chosen to yield the closest

resemblance.

beads. On the theoretical side, a useful qualitative (although only approximate) approach

towards the understanding of such states arises through the use of the NLS reduction. On

the other hand, their detailed numerical study illustrates the existence of a small amplitude

branch arising from one of the linear eigenmodes of the system, but also of a large amplitude

branch which cannot be captured from our analytical considerations. The destructive inter-

ference of the signals (at the appropriate frequency inside the pass band) induced by the two

actuators produces a waveform proximal to the exact dark breathers, and this observation is

found to persist even in the presence of realistic values of the dissipation within the system.

Besides the realization of such experiments which would be of particular value, our study
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also raises several interesting open problems from the mathematical/theoretical point of

view. Among these, we highlight a band analysis of the Floquet multipliers in order to cap-

ture the continuous spectrum of the infinite lattice problem; also, a proof of the numerically

observed nonlinear instability, apparently present due to a non-trivial scale invariance that

we identified; finally, the rigorous justification of the NLS equation for dark breathers and

especially of its regime of validity (which in our case appears to be relatively limited at least

in a quantitative sense).

The readiness of the solutions to move, via random perturbations of the unstable solu-

tions, and the apparent spatial translation invariance of the system render also plausible the

potential existence of traveling breathers. In that light, a computational study of such states

along the lines of earlier similar studies in the realm of the discrete NLS equation [32–34]

would be of particular interest. The potential emergence of dark breathers in inhomogeneous

chains, such as dimers [19, 20] or trimers [35] or in defect chains [18] may be another issue to

computationally consider in detail, since bright breathers have been identified as relatively

robust nonlinear states in such settings [19–21].

Such studies are currently in progress and will be reported in future publications.
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