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We report large-scale computer simulations of the hard-disk system at high densities in the region
of the melting transition. Our simulations reproduce the equation of state, previously obtained using
the event-chain Monte Carlo algorithm, with a massively parallel implementation of the local Monte
Carlo method and with event-driven molecular dynamics. We analyze the relative performance of
these simulation methods to sample configuration space and approach equilibrium. Our results
confirm the first-order nature of the melting phase transition in hard disks. Phase coexistence is
visualized for individual configurations via the orientational order parameter field. The analysis of
positional order confirms the existence of the hexatic phase.
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I. INTRODUCTION

The phase behavior of hard disks is one of the oldest
and most studied problems in statistical mechanics. It
inspired the use of Markov-chain Monte Carlo [1] as well
as molecular dynamics [2]. Important progress in under-
standing hard-disk melting [3–5] was made recently. Us-
ing the event-chain Monte Carlo algorithm (ECMC) [6],
a first-order liquid–hexatic transition was identified [7].
This transition from the low-density phase to an inter-
mediate phase precedes a continuous hexatic–solid tran-
sition, and thus the liquid transforms to a solid through
an intermediate hexatic phase.

Controversy concerning the nature of hard-disk melt-
ing has persisted for decades. Indeed, the recently discov-
ered first-order liquid–hexatic melting transition differs
from the standard KTHNY scenario [8–13], which pre-
dicts continuous transitions both from the liquid to the
hexatic and from the hexatic to the solid. It is also at
variance with the first-order liquid–solid transition sce-
nario, which exhibits no intermediate hexatic phase and
has been much discussed [3, 13–18]. Near the critical den-
sity, the system is correlated across roughly a hundred
disk radii, and the hard-disk liquid–hexatic transition is
thus weakly first-order [7], with only a small discontinuity
in density at the transition.

For several decades, the algorithms used for this prob-
lem [12, 13, 18–20] were unable to equilibrate systems
sufficiently larger than the spatial correlation length to
reliably investigate the existence and the nature of the
hexatic phase. This was one origin for the controversy
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surrounding this problem. Another reason was that the
manifestation of a first-order transition in the NV T en-
semble, and in particular the fundamental difference be-
tween a van der Waals loop and a Mayer-Wood loop in-
dicating equilibrium phase coexistence, was not univer-
sally accepted in the hard-disk community, although it
had been clearly discussed in the literature [21–23].

Here, we complement and compare the recent event-
chain results with a massively parallel implementation of
the local Monte Carlo algorithm (MPMC) [24], and with
event-driven molecular dynamics (EDMD) [25]. These
methods provide us with by far the largest independent
data sets ever acquired for the hard-disk melting transi-
tion. Our simulations reproduce to very high precision
the equation of state of Ref. [7], illustrating phase sepa-
ration. To characterize the nature of the two hard-disk
phase transitions, we graphically represent the orienta-
tional and positional order parameter fields and analyze
positional correlation functions.

II. SIMULATION METHODS

A. System definition

We consider a system of N hard disks of radius σ in
a square box of size L × L. The phase diagram of the
system depends only on the density (packing fraction)
η = Nπσ2/L2, as the pressure is proportional to the
temperature T . The dimensionless pressure is given by

P ∗ =
(2σ)2

m〈v2x〉
P = βP (2σ)2 (1)

with the inverse temperature β, mass m, and the ve-
locity along one axis vx. All simulations are conducted
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in the NV T ensemble and, although our algorithms dif-
fer in the way they evolve the system, they all sample
the same equilibrium probability distribution in configu-
ration space. At finite N , the equilibrium phase coexis-
tence that we will observe is specific to this ensemble and
absent, for example, in the NPT ensemble. As for any
model with short-range interactions, the thermodynamic
limit is independent of the ensemble.

B. Algorithms and implementations

Local Monte Carlo (LMC) has been a popular simula-
tion method for hard disks [1, 13, 18, 20]. At each time
step, one random disk is selected and a trial move is ap-
plied to it. The move is accepted unless it results in an
overlap with another disk. LMC is both relatively ineffi-
cient in sampling configuration space and inherently se-
rial, limiting the size for which the system can be brought
to equilibrium at high densities η ∼ 0.7 to about N ∼ 105

particles (see [26] for a basic discussion). Our alternative
approaches utilize modern computer resources more ef-
ficiently and equilibrate the system faster. They also
provide independent checks of the equilibrium phase be-
havior. LMC is used for comparison and as a reference
to previous work.

Massively parallel Monte Carlo (MPMC) [24] is a par-
allel extension of LMC. It again applies a local trial move,
but maximizes the number of simultaneous updates.
MPMC extends the stripe decomposition method [27] to
a massive number of threads using a four-color checker-
board scheme [28]. By placing disks into cells of width
w & 2σ, concurrent threads execute over one out of four
subsets of cells in parallel. Within each cell, particles
are chosen for trial moves in a shuffled order. The num-
ber of trial moves is fixed independent of cell occupancy.
Trial moves that would displace disks across cell bound-
aries are rejected. The order of the four checkerboard
sub-sweeps is also sampled as a random permutation. In
this manner, an entire sweep over N particles satisfies
detailed balance. The reverse sweep corresponds to an
inverse shuffling and cell sequences with opposite trial
moves and occurs with equal probability. To ensure er-
godicity, the cell system is randomly shifted after each
sweep. We implement MPMC on a graphics processing
unit (GPU) using CUDA. Details are found in Ref. [24].
The MPMC simulations execute simultaneously on all
1536 cores of a NVIDIA GeForce GTX 680.

In event-driven molecular dynamics (EDMD), individ-
ual simulation events correspond to collisions between
pairs of disks [2]. The simulation is advanced sequentially
from one collision event to the next. Between collisions,
disks move at constant velocity (see [26] for a basic dis-
cussion). The computation of future collisions and the
update of the event schedule are performed efficiently
using a binary tree and relating searching schemes [29–
32]. As a result, one collision event in EDMD costs only
about ten to twenty times more CPU time than a LMC

trial move, even for large system sizes. EDMD drives
the system quite efficiently through configuration space
and clearly outperforms LMC. The simulations with this
algorithm use an Intel Xeon E5-1660 CPU with a clock
speed of 3.30GHz.

Event-chain Monte Carlo (ECMC) [6] replaces indi-
vidual trial moves by a chain of collective moves that all
translate particles in the same direction. At the begin-
ning of each Monte Carlo move, a random starting disk
and a move direction are selected. The starting disk is
displaced in the chosen direction until it collides with an-
other disk. This new disk is then displaced in the same di-
rection until another collision occurs or until the lengths
of all displacements add up to a total distance, an inter-
nal parameter of the algorithm which is typically chosen
such that the chain consists of ∼

√
N disks. With pe-

riodic boundary conditions, ECMC is free of rejections.
Global balance and ergodicity are preserved by moving
in two directions only, for example to the right and up.
ECMC is faster than LMC and EDMD [6]. The simu-
lations with this algorithm were performed on an Intel
Xeon E5620 CPU with a clock speed of 2.40GHz.

For the large systems considered in this study, the ratio
between the large absolute particle coordinates and the
potentially small inter-particle distances becomes com-
parable to the accuracy of single floating point preci-
sion, so that cancellation errors become critical. Differ-
ent strategies allow us to cope with this problem. MPMC
performs all computations in single-precision because to-
day’s GPUs run significantly slower in double-precision.
We mitigate floating-point cancellation errors by plac-
ing each particle in a coordinate system local to its cell.
In this way, differences of relative positions are less af-
fected by floating point precision than absolute positions.
This strategy was also applied in [7]. EDMD calcula-
tions are performed in double-precision to fully resolve
multiple coincident collisions and to span the entire time
domain from individual collision times to total simula-
tion time. The ECMC algorithm is implemented for this
work in double-precision. We use this implementation to
derive high-precision numbers at the density η = 0.698.
Data points for ECMC at other densities are taken from
Ref. [7], which employs single-precision. The compari-
son of single-precision and double-precision calculations
at η = 0.698 indicates that the two versions of ECMC
yield the same result for the pressure.

C. Pressure computation

The complete statistical behavior of hard disks is con-
tained in the equation of state (pressure vs. volume or
density), which requires the precise evaluation of the in-
ternal pressure of the system. The equation of state al-
lows computing the interfacial free energy and tracking
the changes in the geometry of coexisting phase regions
in a finite system (see [7, 21–23]).

In the NV T ensemble, the pressure is a dependent ob-
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servable. In Monte Carlo, it has to be computed from
static configurations while, in EDMD, it may in addi-
tion be derived from the collision rate. The disparity
of our approaches to calculate pressure constitutes one
more check for the implementations of our algorithms.

1. Pressure from static configurations

In systems of isotropic particles with pairwise inter-
actions, the pressure can be computed from static con-
figurations through the pair-correlation function g(r) [1].
The function g(r) is defined as the distribution of parti-
cle pairs at distance r = |xi − xj |, normalized such that
g(r →∞) = 1. In practice, particle distances are binned
into a histogram with bin size δr. If n out of p pair dis-
tances are found to lie in the interval [r− δr/2, r+ δr/2],
then we have

g(r) =
n/p

2πrδr/V
. (2)

The pressure P = −(∂F/∂V )T,N is calculated from the
free energy F = −β−1 lnZ and the partition function

Z =
1

N !

∫ L

0

. . .

∫ L

0

dx1....dx2Nθ(x1 . . . x2N )

=
V N

N !

∫ 1

0

. . .

∫ 1

0

dα1 . . . dα2Nθ(α1 . . . α2N ), (3)

where αj = xj/L are the particle coordinates relative
to the simulation box. The Boltzmann weight θ is the
characteristic function for overlap, i.e. zero if the config-
uration contains overlaps and one otherwise. A change of
volume leaves the α unchanged, but rescales the positions
and the pair distances. θ(α1 . . . α2N ) is only affected if
one of the pair distances is at contact, hence

βP =
N

V
+
σ

V

〈
∂θ

∂r

〉∣∣∣∣
r=2σ+

=
N

V
(1 + 2η g(2σ+)). (4)

To access the contact value of g(r), we fit the histogram
of pair distances obtained from LMC by a polynomial as
shown in Fig. 1 and then extrapolate the fit to r = 2σ
from the right. We choose the bin size as δr = 10−3σ.
The histogram is limited to r ∈ [2σ, 2.1σ], and the fit is
performed with a fourth-order polynomial. These param-
eters are sufficient to obtain a relative systematic error
of less than 10−5. In the single-precision version of the
algorithm, g(r) shows correlated fluctuations which lead
to systematic errors in the value of g(r) for any single bin
(see Fig. 1(b,c)). These errors are only due to floating
point round-off of the pair-correlation function (the sam-
pled configurations are essentially the same). However,
they are periodic with zero mean and do not affect the fit
significantly. We verified that single-precision rounding
induces a relative systematic error smaller than 10−5 on
the estimated value of g(2σ+).
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FIG. 1: (Color online) (a) Pair-correlation function g(r) close
to contact for N = 5122 at density η = 0.698 using LMC. Er-
ror bars are computed through 64 independent simulations.
g(r) is fitted with a fourth-order polynomial. Difference be-
tween g(r) and the polynomial fit with the single-precision
data (b) and double-precision data (c) for the histogram.

2. Dynamic pressure computation

In molecular dynamics, static configurations can be an-
alyzed as before, but the pressure is computed directly
and more efficiently from the collision rate via the virial
theorem [33–35]. This avoids binning and extrapolations.
The non-dimensional virial pressure in two dimensions is
given by

βP =
N

V

[
1− βm

2ttot

1

N

∑
collisions

bij

]
(5)

where ttot is the total simulation time. The collision force
bij = rij · vij is defined between the relative positions
and relative velocities of the collision partners. In equi-
librium, the average virial for hard disks equals [36]

〈bij〉 = −2σ

√
π

βm
. (6)

Therefore, the pressure is simply given by the collision
rate Λ = 1/t0, the reciprocal of the mean free time t0, as

βP =
N

V

[
1 +

σ
√
πβm

2
Λ

]
. (7)

To test the pressure computations, we compute the
pressure with all algorithms at one representative state
point. With each algorithm, we perform between 8 and
100 independent runs to compute the statistical standard
error. Results obtained with the four algorithms agree
within numerical accuracy to ≤ 10−4, which is sufficient
for our purposes (see Table I).

III. PERFORMANCE COMPARISON

One of the slowest processes during the time evolution
of the hard-disk system at high density is the fluctuation
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Algorithm runs disp./run βP (2σ)2 std. error

LMC 64 6× 1011 9.17046 1.5× 10−4

EDMD 100 1010 9.17076 1.8× 10−4

ECMC 32 5× 1011 9.17062 8.7× 10−5

MPMC 8 6× 1013 9.17078 4.5× 10−5

TABLE I: Test of the pressure computations for N = 2562 at
η = 0.698. The table lists for each algorithm the number of
runs, number of displacements (disp.) per run, pressure, and
standard error. Results of all four algorithms agree within
their numerical accuracies.

of the global orientation order parameter

Ψ6 =
1

N

∑
j

ψj ,

which is the spatial average of the local orientational or-
der parameter

ψj =
1

6

6∑
k=1

exp(i 6φj,k). (8)

The sum is over the six closest neighbors k of disk j,
and φj,k is the angle between the shortest periodic vector
equivalent to xk−xj and a chosen fixed reference vector.
This approach is simpler than using the Voronoi con-
struction [7], without affecting the autocorrelation func-
tions. To determine the efficiency of our algorithms, we
track the autocorrelation function of Ψ6 [6],

C(∆t) =
〈Ψ6(t)Ψ∗6(t+ ∆t)〉t

〈|Ψ6|2〉
. (9)

The Ψ6 → Ψ6 + π symmetry in the square box im-
poses that C(∆t) decays to zero for infinite times. In
the asymptotic limit, the decay is exponential, C(∆t) ∝
exp(−∆t/τ), and we obtain the correlation time τ from
a fit of the pure exponential part (see Fig. 2).

We compare speeds for N = 5122 at η = 0.698, that is,
in the dense liquid close to the liquid–hexatic coexistence.
Although still a liquid, the correlation length of the local
orientational order parameter ψj at this density is ∼ 50σ.
Such a large correlation length induces a long correlation
time, and equilibration requires > 106 trial moves per
disk for LMC. For the test, each algorithm is set to its
optimal internal parameters. Total simulation run times
are on the order of 103τ to 104τ .

Fig. 2 illustrates that the autocorrelation functions
decay roughly as pure exponentials. The time unit in
Fig. 2(a) corresponds to the number of attempted dis-
placements per disk (number of collisions in the case of
EDMD and ECMC). As expected, MPMC decays slightly
more slowly than LMC because trial moves across cell
boundaries are rejected. ECMC and EDMD are sig-
nificantly faster than LMC, confirming that these two
methods sample configuration space more efficiently, but

0.01

0.1

1

0 200000 400000

C
(∆

t)

∆t (disp.)

MPMC
LMC

ECMC
EDMD

(a)

0.01

0.1

1

0 2 4 6

C
(∆

t)

∆t (hours)

LMC
EDMD
ECMC
MPMC

(b)

FIG. 2: (Color online) Autocorrelation function of the global
orientation order parameter Ψ6(t) for N = 5122, η = 0.698
obtained with LMC, EDMD, ECMC, and MPMC. (a) Time
is measured in number of attempted displacements (or colli-
sions) per disk. (b) Time is measured in CPU or GPU hours.

Algorithm τ/disp. disp./hour τLMC/τ Speed-up

LMC 7× 105 6.5× 109 1 1

EDMD 1.8× 104 1.7× 109 39 10

ECMC 2.5× 104 1.6× 1010 28 70

MPMC 8× 105 2.3× 1012 0.9 320

TABLE II: Speed comparison of the four hard-disk algorithms
for N = 5122, η = 0.698. The correlation time τ is measured
in number of displacements (or collisions) per disk. disp./hour
represents the number of displacements per hour achieved in
our implementations. The two rightmost columns show the
speed-up of the algorithms in number of displaced disks, and
in terms of CPU or GPU time in comparison to LMC.

slower than MPMC. The time unit in Fig. 2(b) corre-
sponds to the real simulation time (CPU or GPU time).

Correlation times, number of attempted displacements
per hour, and accelerations with respect to LMC are sum-
marized in Table II. EDMD and ECMC sample con-
figuration space more efficiently by a factor of 39 times
and 28 times, respectively, while MPMC samples config-
uration space slightly less efficiently by a factor of 0.9.
Evidently, the efficiency of the simple LMC algorithm is
improved significantly with speed-ups of 10, 70, and 320
for EDMD, ECMC, and MPMC, respectively. Although
speeds in Table II correspond to somewhat different hard-
ware, as indicated in the methods section, the numbers
give a clear idea of practical improvements that can be
obtained with respect to LMC.

IV. RESULTS AND DISCUSSION

A. Equation of state at high density

In their seminal work, Alder and Wainwright observed
a loop in the equation of state of hard disks [3]. As ex-
plained by Mayer and Wood [21] (see also [22, 23]), this
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FIG. 3: (Color online) Equation of state from ECMC, EDMD,
and MPMC for N = 2562 and N = 5122. Error bars are
mostly smaller than the symbols. Results agree within one
standard deviation. The inset shows the relative pressure dif-
ference ∆P/P of EDMD and MPMC with respect to ECMC
for N = 2562.

loop is a result of finite simulation sizes and therefore dif-
fers conceptually from a classic van der Waals loop, which
is derived in the thermodynamic limit. The branches of
the Mayer-Wood loop are thermodynamically stable, but
vanish in the limit of infinite size.

It is known that the presence of a Mayer-Wood loop
in the equation of state is observed in systems showing a
first-order transition as well as systems showing a contin-
uous transition [37]. However, the behavior of these loops
with increasing system size is different. For a first-order
transition, the loop is present in the coexistence region
and is caused by the interface free energy ∆F . At a given
density, the interface free energy per disk, ∆f = ∆F/N ,
can be computed by integrating the equation of state [7].
In two dimensions, it scales as ∆f ∝ N−1/2. In contrast,
for a continuous transition, ∆f decays faster, normally
such that ∆F is constant, that is ∆f ∝ N−1, and the
equation of state becomes monotonic for large enough
systems. The scaling of ∆f with system size, together
with a fixed finite separation of the peaks for large system
sizes, is a reliable indicator of the first-order character of
a phase transition [38].

Fig. 3 shows the equation of state for N = 2562 and
N = 5122, obtained with ECMC, EDMD, and MDMC.
Error bars (standard errors) are computed through in-
dependent simulations. The inset shows the relative
pressure difference ∆P/P of EDMD and MDMC with
ECMC. Error bars correspond again to the standard er-
ror on ∆P/P . We observe that the three independent
simulations agree. In a similar way, Fig. 4 compares re-
sults from ECMC and MPMC for N = 10242. For this
system size and the currently available computer hard-
ware, equilibration with EDMD takes too long to be prac-
tical. Again, all results agree within standard deviations.
Note that while the Mayer-Wood loop shrinks with sys-
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FIG. 4: (Color online) Equation of state from ECMC and
MPMC forN = 10242. Error bars are mostly smaller than the
symbols. Results agree within one standard deviation. The
inset shows the relative pressure difference ∆P/P of MPMC
with respect to ECMC.

tem size, the position of the local extrema stay fixed close
to η = 0.702 and η = 0.714.

B. Orientational order parameter field

The degree and distribution of local order in a system
can be analyzed with the help of order parameters. By
averaging a given order parameter attached to each par-
ticle over a small sampling area surrounding the particle,
we obtain a continuous function, the corresponding or-
der parameter field. Typical sampling areas used in this
work contain between 5 and 20 disks.

To show the separation of the liquid and the hexatic
phase, we graphically represent the orientational order
parameter field ψ(x) for configurations at densities where
coexistence occurs. As for any first-order phase transi-
tion in two dimensions, the characteristic geometry of the
region of the minority phase with increasing density is ex-
pected to change from an approximately circular bubble
into a parallel stripe and again into a circular bubble.
Ref. [7] used the projection of the local orientational or-
der ψk on the global orientational order Ψ6 and a lin-
ear color code. This projection is not a unique measure
for the orientational order parameter field. Instead, in
Fig. 5, we use a circular color code on data obtained by
long MPMC simulations with N = 10242.

We observe that the system is uniformly liquid at
η = 0.700 and the color fluctuates on the scale of the
correlation length. At η = 0.704, the representations in-
dicate the presence of a circular bubble of hexatic phase,
visible as a large region of constant purple color, whereas
at η = 0.708 a stripe minimizes the interfacial free en-
ergy. The hexatic phase is now visible in blue, while the
liquid is characterized by fluctuations of the direction
of Ψ6. The constant color in the region of the hexatic
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FIG. 5: (Color online) Orientational order parameter field
ψ(x) of configurations obtained with the MPMC algorithm
for system size N = 10242. With increasing density, (a) pure
liquid (η = 0.700), (b) a bubble of hexatic phase (η = 0.704),
and (c) a stripe regime of hexatic phase (η = 0.708) are vis-
ible. The interface between the liquid and the hexatic phase
is extremely rough. (d) A scale bar illustrates the size of
the fluctuations. The phase of ψ is represented via the color
wheel.

phase confirms the presence of the same orientational or-
der across the system. Additional important evidence
for the nature of the transition is provided by the spa-
tial correspondence between variations in local density
and orientational order, which are included as a movie in
the supplemental material of this work. The movie illus-
trates for the density η = 0.71 that the system is ergodic
by seeing the patches of the two phases appear and dis-
appear at different locations but with roughly fixed ratio
of areas.

C. Positional order parameter field

To identify the structure of the ordered phase in coex-
istence with the liquid, we analyze the positional order in
the system. The goal is to distinguish the hexatic phase,
which has short-range positional order (characterized by
exponential decay of the correlation function) and quasi-
long-range orientational order (algebraic decay), from the
two-dimensional solid, which has quasi-long range posi-
tional order [39] and long-range orientational order (no
complete decay).

(a) (b)

(c) (d)

FIG. 6: (Color online) Positional order parameter field
χ(x) of configurations obtained with (a,b) the MPMC and
(c,d) ECMC algorithms for system size N = 10242. (a,c) In
the hexatic phase (η = 0.718), positional order is short-range.
(b,d) Towards higher density (η = 0.720), fluctuations are
much weaker and bounded, as expected for a continuous tran-
sition to a solid phase. The scale bar and the color code for
the χ-phase are identical to the scale bar and the color code
in Fig. 5.

In [7], the positional order was analyzed using the two-
dimensional pair-correlation function in direct space and
the decay of the positional correlation function at the
wave vector q0 corresponding to the maximum value of
the first diffraction peak of the structure factor

S(q) =
1

N

∑
n,m

exp(iq · (xn − xm)). (10)

With this classic method, the wave vector q0 must be
chosen carefully to correspond to a diffraction peak.
In some previous works [13, 40], it was assumed that
q0 would correspond to the reciprocal vector of a per-
fect triangular lattice of edge length a0, namely |q0| =

2π/(a0
√

3/2). This assumption is not correct because the
solid phase has a finite density of vacancies and other de-
fects in equilibrium, which increases the effective lattice
constant [7].

We visualize the positional order parameter field χ(x)
calculated from the positional order parameter

χj = exp(iq0 · xj). (11)

slightly above the upper critical density of coexistence
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with the liquid (Fig. 6). At η = 0.718, the system re-
sembles a patchwork of independent, solid-like regions
of size in the order of a few hundred σ. Some regions
show almost constant χ, while others are characterized
by regular interference fringes (oscillatory waves) with
a fixed wave vector. It can be shown that each end of
a fringe corresponds to one unpaired dislocation [43].
We find that fringes can be made to disappear sepa-
rately in each region by small rotations of q0 around
the origin. This behavior is consistent with the existence
of small-angle grain boundaries separating neighboring
solid-like regions, exactly as predicted by the KTHNY
scenario [14]. Note that if fringes disappear on one side
of a boundary separating two regions, they necessarily
have to reappear on the other side with the sequence of
the colors reversed.

On physical grounds, the hexatic phase is not expected
to be stable up to close packing. Indeed, already at η =
0.720, the positional order field shown in Fig. 6 fluctuates
much more slowly and is highly correlated throughout the
system as expected for a solid phase.

D. Positional correlation function

The decay of positional order can be analyzed using
the positional correlation function in reciprocal space,

Cq0
(r) = 〈exp(iq0 · (xn − xm))〉 . (12)

The averaging for Cq0(r) is done on two levels. First, we
average over neighboring pairs that satisfy |xn − xm| ∈
[r − σ, r + σ]. In addition, we conduct an average over
independent configurations, which can be a time average
or an ensemble average. For details on the configuration
averaging see Appendix A. As the system can perform
global rotations during the simulations, q0 rotates from
one configuration to the other. Each configuration is in-
dividually rotated so that Ψ6 is aligned in the same direc-
tion for all of them. We verified that alignment errors are
sufficiently small and can be neglected. As a result of the
configuration average, finite-size effects present at large
distances r in the form of interferences are suppressed.

Fig. 7 shows Cq0
(r) at η = 0.718 and η = 0.720. The

results of ECMC and MPMC are again in good agree-
ment. We observe that Cq0

(r) decays exponentially at
η = 0.718. Therefore, η = 0.718 cannot be in the solid
phase. The length scale of the exponential decay is in
the order of 100σ, which corresponds approximately to
the width of the interference fringes in Fig. 6. Since the
coexistence phase ends at η ' 0.716, the region η & 0.716
is thus hexatic. We have shown once more that the first-
order transition observed in Fig. 3 connects a liquid and
a hexatic phase.

The positional order increases drastically at η = 0.720.
Cq0

(r) decays almost as a power law, r−1/3, which is the
stability limit for the solid phase in the KTHNY theory.
Thus, the stability regime of the hexatic phase comprises
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FIG. 7: (Color online) The positional correlation function
Cq0(r) shows exponential decay at density η = 0.718 and ap-

proaches a power law ∝ r−1/3 at η = 0.720. (a) System size
N = 5122: Excellent agreement between ECMC and MPMC.
(b) System size N = 10242: Excellent agreement in the hex-
atic phase (η = 0.718) and fair agreement at the approach of
the solid phase (η = 0.720). Our algorithms fall out of strict
equilibrium in the solid and long-scale correlations become
sensitive to the boundary conditions.

a narrow range of density. An additional characteriza-
tion of the hexatic phase with ECMC including a study
of the diffraction peak shape can be found in [42] and in
the supplemental material of [7]. The continuous trans-
formation to the solid phase and the nature of the hexatic
phase agree with the KTHNY scenario.

Slight variations in the positional correlations can be
observed in Fig. 7 at density η = 0.720 for distances com-
parable to the system size. Two factors play a role. First,
the relaxation becomes very slow at the onset of the solid
phase. Our largest system no longer achieves full global
rotations with respect to Ψ6. Second, the positional cor-
relations span the whole simulation box and therefore
depend slightly on the orientation of the crystal. Longer
and larger simulations are necessary to determine the lo-
cation of the hexatic–solid transition with good precision.
However, the general absence of a loop in pressure is suf-
ficient to rule out a first-order transition. We note that
while our simulations fall out of strict equilibrium with
respect to global rotations in the solid phase, they remain
fully ergodic within our simulation times on both sides
of the liquid–hexatic transition.

V. CONCLUSION

We analyzed the thermodynamic behavior of the hard-
disk system close to the melting transition using indepen-
dent implementations of three different simulation algo-
rithms to sample configuration space and two distinct
approaches for the pressure computation. The equation
of state data of Ref. [7] are confirmed within numerical
accuracy both qualitatively and quantitatively. Typical
relative errors are . 10−4, more than one order of mag-
nitude smaller than finite-size effects for systems with up
to N = 10242 particles. Such finite-size effects are mani-
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FIG. 8: (Color online) Influence of the configuration averaging
on the positional configuration functions in the hexatic phase.
For single configurations (n = 1, data incoherently averaged),
positional correlations cannot decay below a level given by
the square root of the ratio of the correlated domain size to
the system size. Coherent averaging over n = 2, 4, 8, 16, and
32 configurations reduces the noise level and the correlations.
The data corresponds to a single long MPMC run with N =
10242 particles at density η = 0.718.

fested in the form of a Mayer-Wood loop in the equation
of state. Our analysis of orientational and positional
order parameters confirms the presence of a first-order
phase transition from liquid order to hexatic order and a
continuous phase transition from hexatic order to a solid
phase.

Appendix A: Role of configuration averaging

It is instructive to analyze the influence of configura-
tion averaging that we employ to calculate the correla-
tion function Cq0

(r). We define a configuration average
as the time average or the ensemble average of Cq0

(r)
over individual configurations. This coherent averaging
procedure stands in contrast to the incoherent averaging

procedure, where we bin the function Cq0
(r), determine

the maximum within each of the bins, and average the
maxima. As shown in Fig. 8, for incoherently averaged
single configurations the long-distance correlations do not
decay below a sampling threshold that is set by the in-
verse square root of the number of independent domains
in the sample. For our large system of N = 10242 par-
ticles, given that the sample size is L/2 ∼ 1000σ and
the positional correlation length is in the order of 100σ,
there are about 100 independent domains. Residual cor-
relations visible in the figure as a plateau at large val-
ues of r/σ correspond to what would be expected from
about 100 independent randomly positioned (yet equally
oriented) lattices. As illustrated in the figure, coherent
averaging over oriented configurations increases the ef-
fective number of independent domains, thus to reduce
the noise level. The same effect would be obtained if we
could equilibrate yet larger systems.
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