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Can we change the average state of a resistor by simply applying white noise? We show that the
answer to this question is positive if the resistor has memory of its past dynamics (a memristive
system). We also prove that, if the memory arises only from the charge flowing through the resistor
– an ideal memristor – then the current flowing through such memristor can not charge a capacitor
connected in series, and therefore cannot produce useful work. However, the memristive system may
skew the charge probability density on the capacitor, an effect which can be measured experimentally.

PACS numbers:

I. INTRODUCTION

If we connect a standard resistor to a random (white
noise) voltage source, no average current flows in the sys-
tem, and no change of resistance (state) of the resistor
can occur. This is simply because of the symmetry of the
standard resistor with respect to positive and negative
voltage fluctuations. However, there is now a renewed
interest in a class of resistors with memory – aptly called
memristors1,2 – whose resistance varies according to the
voltage applied to them, or the current that flows across
them (for recent reviews see, e.g., Ref. 3–6). In this case,
then, a fluctuation of the applied voltage may change the
state of the memristor; and the ensemble of fluctuations
could lead to a change of the average state of the mem-
ristor. If this is the case, what are the implications of the
noise-induced state change? Is it possible, for example,
to charge a capacitor through a noise-driven memristor
to extract useful work?

In this paper we demonstrate analytically that the ca-
pacitor can not be charged through an ideal memris-
tor (one whose state depends only on the charge flown
through it) despite the change of the average state of
such device. Although we can not prove analytically a
similar statement for the case of more general memris-
tive systems, our numerical simulations (for a particular
device model and driving regime) also indicate the ab-
sence of capacitor charging. However, at least in the case
of the ideal memristor, we can monitor the change of its
state by monitoring the charge probability density on the
capacitor (which can be extracted by placing a voltmeter
in parallel with the capacitor). This charge distribution
probability density is skewed by the memory and could
be detected experimentally. We focus here on an exter-

nal noise source because the thermal noise intrinsic to
any resistor (and hence also to a memristor) cannot, by
itself, be rectified7.

We note that memristive systems2 are particular types
of circuit elements with memory8,9. There are two kinds
of memristive systems: voltage-controlled and current-
controlled ones2. The voltage-controlled memristive sys-

tems are defined by the equations

IM(t) = R−1 (x, VM, t)VM(t), (1)

ẋ = f (x, VM, t) , (2)

where VM(t) and IM(t) = q̇(t) denote the voltage and
current across the device, R is the memristance (memory
resistance) and its inverse is the memductance (mem-
ory conductance), x = {xi} is a set of n state variables
describing the internal state of the system, and f is a n-
dimensional vector function. A current-controlled mem-
ristive system is such that the resistance and the dynam-
ics of state variables depend on the current2,3

VM(t) = R (x, IM, t) IM(t), (3)

ẋ = f (x, IM, t) . (4)

The ideal memristor that we consider below is a partic-
ular case of Eqs. (3), (4) when the memristance depends
only on the charge flown through the device: R = R(q).
Memristive effects are not rare in nanostructures and
can arise from different effects including ionic migra-
tion/redox reactions6,10, spin polarization/magnetization
dynamics11,12, phase transitions13,14, etc. (see Ref. 3 for
additional examples). A typical feature of all memris-
tive systems is the frequency-dependent pinched hystere-
sis loop1–3,15.
Noise in electronic circuits with memristors1, memris-

tive systems2 and other memory elements8 can be intro-
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FIG. 1: (color online). Circuit schematic: a stochastic volt-
age source V (t) is connected to a memristive system M and
capacitor C.
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duced in different ways. First of all, we note that certain
memory elements may have internal mechanisms of noise
– such as a probabilistic switching – and, thus, noisy
or at least random signals may exist in electronic circuits
driven by deterministic (perfect) external signals. In fact,
two of us (YP and MD) have envisaged such a possibility
in Ref. 3 introducing the concept of stochastic memory

elements. The definition of stochastic memory elements
involves noise terms in the equations of motion of the
internal state variables3. A statistical modeling of mem-
ristive devices involves a noise of this type16–18. Another
source of noise is the input noise that was considered by
several authors16,19. A previous study has indeed shown
that the hysteresis of memristive elements can be induced
by white noise of appropriate intensity even at very low
frequencies of the external driving field16. Recently, this
prediction was confirmed experimentally19.
In this work, we consider the circuit shown in Fig. 1

in which a memristive system M of memristance R and
a standard capacitor C of capacitance C are connected
to a Gaussian white noise voltage source V (t). Our goal
is to understand the circuit response and, in particular,
to find the average values of memristance and capacitor
charge.
The rest of this paper is organized as follows. In Sec.

II we consider the case of an ideal memristor and find
analytically distributions and average values of the mem-
ristance and capacitor charge (Sec. II A). Then, we in-
vestigate the transient dynamics in the ideal memristor
circuit (Sec. II B). Sec. III presents a study of noise-
driven voltage-controlled memristive system. Finally, in
Sec. IV we give our conclusions.

II. CIRCUITS WITH IDEAL MEMRISTORS

A. Properties of steady state

We consider first the case of an ideal memristor1, whose
memristance R depends only on the cumulative charge q
flown through the device. For the moment being, we
do not select any specific form of R(q) and only assume
the existence of a memory mechanism leading to an R(q)
dependence. For the circuit in Fig. 1, the equation of
motion for q is given by

R(q)
dq

dt
+

q

C
= V (t), (5)

where V (t) is a stochastic input signal. One can recognize
that Eq. (5) is a stochastic differential equation of the
Langevin type20. It is convenient to introduce a new
variable x instead of the charge q as

x =

q
∫

0

R(q̃)dq̃. (6)

Since the memristance R(q) is positive, R(q) > 0, the
dependence of x on q given by Eq. (6) is a one-to-one

relation. Consequently, Eq. (5) can be rewritten in the
form

dx

dt
+

q(x)

C
= V (t). (7)

For a given stochastic process V (t), Eq. (7) determines
the corresponding stochastic process x(t). We assume
that the stochastic process V (t) is Gaussian white noise,

〈V (t)〉 = 0, 〈V (t)V (t′)〉 = 2κδ(t− t′), (8)

where κ is a positive constant characterizing the noise
strength, and hereinafter the angular brackets denote en-
semble average.
Instead of solving the nonlinear Langevin-type Eq. (7),

let us consider the corresponding Fokker-Planck equation
(FPE)

∂P (x, t)

∂t
=

∂

∂x

(

q(x)

C
P (x, t)

)

+ κ
∂2P (x, t)

∂x2
, (9)

where P (x, t) is the time-dependent charge probability
density function. At this point, it is more convenient
to return to the initial variable q. We perform such a
transformation taking into account the transformation
law for the distribution function

P (x, t) = D(q, t)
dq

dx
=

D(q, t)

R(q)
, (10)

where D(q, t) is the charge probability density function.
Combining Eqs. (9) and (10) we find that the charge
probability density function D(q, t) satisfies the following
Fokker-Planck type equation

∂D(q, t)

∂t
=

∂

∂q

{

qD(q, t)

CR(q)
+

κ

R(q)

∂

∂q

(

D(q, t)

R(q)

)}

. (11)

The FPE (11) must be supplemented with an initial
condition. For example, if at t = 0 the charge on the
capacitor q = q′ with unit probability, then the initial
condition for the charge probability density function has
the form D(q, 0) = δ(q − q′), where δ(q) is the Dirac
delta-function. In Sec. II B we will explicitly consider
the transient dynamics of the probability density func-
tion, namely, the evolution of the initial condition into a
stationary (equilibrium) solution of Eq. (11). Here, in-
stead, we focus on the stationary solution D0(q) of FPE
(11) satisfying the following ordinary differential equa-
tion

qD0(q)

CR(q)
+

κ

R(q)

d

dq

(

D0(q)

R(q)

)

= const. (12)

On physical grounds, we can safely assume that the mem-
ristance R(q) acquires limiting values at large values of
|q|. Then, it is not difficult to show that the general solu-
tion of Eq. (12) is properly normalized (

∫

D0(q)dq = 1)
only if the constant on the right-hand side of Eq. (12) is
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FIG. 2: (color online). (a) Equilibrium charge probability
density function D0(q) calculated assuming R(q) = Ron +
(Roff −Ron) /(exp [−(q + q1)/q0] + 1) (shown in the inset).
This model describes a memristor whose memristance R
changes between two limiting values, Ron and Roff . The
steepness of the transition between Ron and Roff is specified
by a parameter q0 which is a characteristic charge required
to switch the memristor. The constant q1 is a parameter
determining the memristance at the initial moment of time
t = 0. The plot is obtained using Ron = 1 kΩ, Roff = 5 kΩ,
C = 1 µF, q1 = 0, κ = 0.5 V2s for several different values
of q0 as indicated. (b) Equilibrium charge probability density
function as a function of q1 calculated using the same model
and parameters as in (a) at q0 = 10−5 C.

zero. Hence, the unique stationary solution of FPE (11)
is given by the following expression

D0(q) = NR(q) exp







−
1

κC

q
∫

0

q̃R(q̃)dq̃







, (13)

where N is a normalization constant. Eq. (13) clearly
shows that the charge probability density function is
Gaussian only if R = const. Any q-dependence of R
breaks such a property resulting in a non-Gaussian dis-
tribution function. Typically, in experiments, the mem-

ristance switches between two limiting values3. It then
follows from Eq. (13) that the tails of the probability
distribution function D0(q) are Gaussian

D0(q) ∼ exp

{

−
R(±∞)q2

2κC

}

, q → ±∞, (14)

but asymmetric, since, normally, R(−∞) 6= R(+∞).
Fig. 2(a) presents the charge probability density func-

tion D0(q) calculated using Eq. (13) with a specific form
of memristance R(q) specified in Fig. 2 caption. When
the parameter q0 is large (in this limit, the memristor
approaches the behavior of a usual resistor since a larger
charge is needed to change its state), the charge probabil-
ity density function is close to a Gaussian (black (solid)
line in Fig. 2(a)). Clearly, the probability density func-
tion gains an asymmetry with a decrease of q0 (green and
orange (dashed) lines in Fig. 2(a)). We note that under
certain conditions a second maximum in the probabil-
ity density function may develop. An example of such
situation is shown in Fig. 4(c) below.
Moreover, it is important to emphasize that the charge

probability density function D0(q) also depends on the
initial state of the memristor (defined by the parameter q1
of the memristor model). Fig. 2(b) shows such a depen-
dence for a selected set of parameters. The asymmetry
in the charge probability density function is pronounced
for |q1/q0| . 1 and disappears when |q1/q0| increases.
The shift of |q1/q0| from the region around 0 moves ”the
operational point” of the memristor into the saturation
region where it behaves as a regular resistor.
It is interesting to note that, despite the asymmetry in

the charge probability density function, the average value

of the charge on the capacitor 〈q〉0 =
∫ +∞

−∞
qD0(q)dq in

the stationary state D0(q) is always zero, as it follows
from Eq. (13):

〈q〉0 = −NκC

∫ +∞

−∞

d

[

exp

{

−

∫ q

0 dq̃q̃R(q̃)

κC

}]

= 0. (15)

This general result is the straightforward consequence of
the mathematical structure of Eq. (13). Importantly, the
property 〈q〉0 = 0 does not depend on the specific form
of R(q).
However, a similar property does not hold for the av-

erage value of memristance 〈R(q)〉, which may be shifted
from its initial value. Since in the general case R(q) is not
linear in q, it is evident that 〈R(q)〉 =

∫

R(q)D0(q)dq 6=
R(0). An example of such situation is shown in Fig. 3,
in which the initial state of the memristor is parameter-
ized by a parameter q1. Referring to Fig. 3, the shift
of the average value of memristance is mainly positive at
negative values of q1, and negative when q1 is positive.

B. Transient Dynamics

Next, we use the method of separation of variables to
find the general time-dependent solution of Eq. (11),
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FIG. 3: (color online). Shift of the average value of mem-
ristance as a function of parameter q1 specifying the initial
value of memristance R(0) in the following memristor model:
R(q) = Ron+(Roff−Ron) (arctan [(q + q1)/q0] /π + 0.5). This
plot is obtained for Ron = 1 kΩ, Ron = 5 kΩ, q0 = 10−5 C,
C = 1 µF and κ = 0.5 V2/s.

which describes the transient processes in the system.
For this purpose, we select the specific solutions of Eq.
(11) in the form

D(sp)(q, t) = Tn(t)D0(q)yn(q). (16)

Substituting Eq. (16) into Eq. (11) and separating the
variables, we obtain the following ordinary differential
equation for the unknown function yn(q):

−
d

dq

(

κD0(q)

R2(q)

dyn(q)

dq

)

= λnD0(q)yn(q), (17)

where λn are separation constants. In order to be nor-
malizable, the specific solutions (16) of Eq. (11) must
turn to zero at large q. Thus the functions yn(q) at in-
finity, q → ∞, can grow, but not too rapidly. This serves
as the boundary condition for the solutions yn(q) of Eq.
(17). In particular due to the asymptotic behavior (14),
the solutions yn(q) can grow as a power law at large q.
The equation for the functions Tn(q) is trivially inte-

grated, and it gives the following solutions

Tn(t) = ane
−λnt, (18)

where an are arbitrary constants.
The general time-dependent solution of the Fokker-

Planck equation (11) can be presented as a sum of the
specific solutions (16) with Eq. (18) taken into account

D(q, t) = D0(q)

+∞
∑

n=0

ane
−λntyn(q). (19)

Constants an can be determined from the initial condi-
tion for the probability density function D(q, 0) by using

the weighted orthogonality of the solutions yn(q) of Eq.
(17),

∫ ∞

−∞

dqD0(q)yn(q)ym(q) = 0, n 6= m, (20)

which follows from the fact that Eq. (17) has the self-
adjoint form. As a result we find

D(q, t) =

∫ ∞

−∞

dq′G(q, q′, t)D(q′, 0), (21)

where

G(q, q′, t) = D0(q)
+∞
∑

n=0

e−λntyn(q)yn(q
′)

∫ +∞

−∞
dqD0(q)y2n(q)

(22)

is the Green function of FPE (11), which corresponds to
the initial condition G(q, q′, 0) = δ(q − q′).
The value λ0 = 0 corresponds to the unique stationary

state (13), and from Eq. (16) we conclude that y0(q) = 1.
It is impossible in general to integrate analytically Eq.

(17) for n ≥ 1, or even to find the relaxation rate λ1,
which is the minimal nonzero relaxation rate. But we
can make use of the variational approach to obtain a
reasonable approximation for this rate.
Let us determine the functional acting on an arbitrary

function y(q) as

F [y(q)] =

∫ +∞

−∞
dq κD0(q)

R2(q)

(

dy(q)
dq

)2

∫ +∞

−∞
dqD0(q)y2(q)

. (23)

It is easy to show by using integration by parts in the
numerator of Eq. (23), that the value of this functional
for the solution yn(q) of Eq.(17) coincides with λn

F [yn(q)] = −

∫ +∞

−∞
dq d

dq

(

κD0(q)
R2(q)

dyn(q)
dq

)

yn(q)
∫ +∞

−∞
dqD0(q)y2n(q)

= λn.

(24)
Moreover, since the first variation of F is zero for the
solutions of Eq. (17), these are the stationary functions
of functional (23).
Note that because of the non-negativity of the func-

tional, F [y(q)] > 0, we get the same inequality for the
relaxation rates λn > 0.
Straightforward calculation from Eq. (24) shows that

for an arbitrary function y(q) =
∑+∞

n=0 cnyn(q) we find

F [y(q)] =

∑+∞

n=0 λnc
2
n

∑+∞

n=0 c
2
n

(25)

If c0 = 0, i.e. a test function y(q) is orthogonal to the
function y0(q) = 1 in the sense that

∫ ∞

−∞

dqD0(q)y(q) = 0, (26)
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then from Eq. (25) it follows that for such functions

F [y(q)] =
λ1c

2
1 + λ2c

2
2 + ...

c21 + c22 + ...
> λ1. (27)

Noting that the function y(q) = q satisfies Eq. (26) we
find the following estimation for the relaxation rate

F [q] = κ

∫ +∞

−∞
dqD0(q)

R2(q)
∫ +∞

−∞
dqD0(q)q2

> λ1. (28)

Thus the characteristic relaxation time τ of the system
under consideration can be presented as a quotient of
averages over the stationary state D0(q)

τ =
〈q2〉0

κ〈R−2(q)〉0
. (29)

When the resistivity R(q) = R0 = const, i.e., if we
consider an ideal resistor, then Eq. (17) becomes the
Hermite differential equation. In this case we have

yn(q) = Hn

(

q

√

R0

2κC

)

, λn =
n

CR0
, n = 0, 1, ..., (30)

where Hn(x) is a Hermite polynomial. The stationary
solution (13) is the Gaussian distribution

D0(q) =

√

R0

2πκC
exp

{

−
R0q

2

2κC

}

, (31)

with 〈q2〉0 = κC/R0, and from Eq. (29) we find the
well-known relaxation time of a RC circuit, τ = R0C.
Thus we see that for this case the estimate (28) gives the
exact relaxation rate λ1 = 1/τ = 1/(R0C). Note that in
the case of constant resistivity even the Green function
(22) can be calculated in a closed form, being a Gaussian
distribution with respect to q and q′ at any moment of
time t.
A better understanding of FPE solutions can be gained

by noticing that Eq. (11) is similar to the drift-diffusion
equation. Rewriting the right-hand side of Eq. (11) as

−
∂

∂q

{[

−
q

CR(q)
+

κ

R3(q)

dR(q)

dq

]

D(q, t)−
κ

R2(q)

∂D(q, t)

∂q

}

,

(32)
we readily interpret the first term in Eq. (32) as the drift
and the second term as the diffusion term. Moreover, the
expression in the square brackets in Eq. (32) plays the
role of eµE in the usual drift-diffusion equation, where
µ is the mobility. Assuming µ = const, we introduce an
effective electric field acting on the probability density
function as Eeff = A[...] with A a positive proportionality
constant and [...] is from Eq. (32). In the most simple
situation, when R = const, Eeff = −Aq/(CR). Notice
that in this simple case Eeff changes its sign at q = 0 thus
pushing the charge probability density function toward
the stable point q = 0 from both positive and negative
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FIG. 4: (color online). An effective field Eeff calculated for
two different values of C and memristor model specified in
Fig. 2 caption. Two stable points are denoted by arrows. The
horizonal dashed line is a guide for the eye. The calculation
parameters are Ron = 1 kΩ, Roff = 5 kΩ, q0 = 10−5 C,
q1 = −0.00025 C, and κ = 1 V2s.

values of q. The diffusion term in Eq. (32) tends to
increase the distribution width. A balance between drift
and diffusion is responsible for a finite distribution width.
In the case of memristor, the expression for Eeff ac-

quires an additional contribution - the second term in
the square brackets in Eq. (32). Assuming that R(q)
is a monotonically increasing bounded function (e.g., as
in Fig. 2 caption model), this contribution can only lo-
cally increase Eeff in the region of R(q) gradient. In cer-
tain cases such an increase has interesting consequences.
Specifically, it may result in the development of addi-
tional stable points as Fig. 4 exemplifies.
Figs. 5(a)-(b) present the dynamics of the charge prob-

ability density function for the case of one and two stable
points (these plots correspond to the Eeff curves in Fig.
4). In the case of Fig. 5(a), the initially slower drift of
D(q, t) peak accelerates as the memristor passes through
its switching region. At this point, the charge probability
density function widens and then narrows back concen-
trating about q = 0. The presence of two stable points
in the system results in a two-peak shape of the charge
probability density function at longer times. Note, how-
ever, that < q >= 0 at t → ∞ as it follows from Eq.
(13).

III. CIRCUITS WITH MEMRISTIVE SYSTEMS

In this Section we consider the circuit shown in Fig. 1
where M is a threshold-type memristive system. Such
a configuration is of great interest since many exper-
imentally demonstrated memristive systems exhibit a
threshold in their switching dynamics (see, for example,
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FIG. 5: (color online). (a) Dynamics of the charge probability
density function at C = 5 µF. (b) Dynamics of the charge
probability density function at C = 50 µF. These plots have
been obtained assuming that the initial capacitor charge is
narrowly distributed around 5 × 10−4 C and using the same
parameter values as in Fig. 4.

Refs. 3,6,21,22). However, mathematical/computational
modeling of such cases in the presence of noise is com-
plicated by non-linear noise terms entering the equa-
tions of system dynamics. In fact, accurate mathemat-
ical/computational approaches to treat such situations
still need to be developed. Here, we study the circuit dy-
namics based on some intuitive arguments complemented
by numerical results found for a linearized model.

Let us consider a specific regime of circuit operation
when fluctuations of the input voltage source (Gaussian
white noise is assumed, see Eq. (8)) are smaller then the
threshold voltage of the memristive system Vt, so that the
voltage across the memristive system M is smaller than
Vt for most of the time. In this regime, the switching
events of memristance are relatively rare. Their intensity
is determined by the voltage fluctuations across M given
by VM = V (t)−VC, so that fluctuations of both V (t) and
VC are important.

One can notice that during the intervals of constant
R, the fluctuations of VC are described by the Ornstein-
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FIG. 6: (color online). Simulations of the circuit shown in Fig.
1 with a voltage-controlled memristive system (Eq. (34)).
The curves show the memristance averaged over 5000 real-
izations (〈R〉, red (dashed) line) and several examples of par-
ticular realizations of memristance (Ri). This plot was ob-
tained using the parameter values α = 0.1 Ω/s, Ron = 1 kΩ,
Roff = 5 kΩ, R(t = 0) = 3 kΩ, Vt = 0.2 V,

√
2κ = 0.1 V

√
s.

Uhlenbeck process. Consequently,

Var [VC(t) |VC(0) = 0] =
κ

RC

(

1− e−
2t

RC

)

, (33)

where 2κ is the noise strength of V (t). If we use Eq.
(33) as an estimate for the amplitude of typical voltage
fluctuations across the memristive system then it follows
that such typical fluctuations are weaker for larger values
of R and stronger when R is smaller. Consequently, we
expect that the memristive system M spends less time in
states with smaller R (since the probability of switching
from these states is higher due to stronger fluctuations)
and more time in states with larger R. Our qualitative
prediction, thus, is a rather larger value of 〈R〉.
In order to test this prediction, let us consider a specific

model of a voltage-controlled memristive system with a
“soft” threshold such that Eq. (2) is written as

ẋ = α sinh

(

VM

Vt

)

, (34)

where α is a constant, Vt is the threshold voltage and
x ≡ R. It is also assumed that Ron ≤ R ≤ Roff . The cir-
cuit shown in Fig. 1 is modeled by a couple of stochastic
differential equations describing evolution of stochastic
variables q and R. We linearize Eq. (34) with respect to
small values of the input V (t) and solve the two linear
stochastic differential equations numerically23. Some re-
sults of our simulations are presented in Fig. 6. This plot
shows that the average value of memristance R increases
in time in agreement with the above discussion. More-
over, for the selected values of parameters, our numerical
simulations do not reveal any significant deviations of the
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average voltage across the capacitor from zero, and asym-
metry in the charge probability density function. We
emphasize that our numerical results should be consid-
ered mainly qualitatively as the linearization procedure
is valid only for small fluctuations of V (t). At the same
time, these results support our qualitative considerations
above, e.g., regarding the average value of R.
The dependence of the variance of VC on R given by

Eq. (33) can also be applied to understand the asymme-
try of the noise distribution function shown in Fig. 2 for
the case of ideal memristors. We recall that in these de-
vices the memristance R is a function of q only, namely,
R = R(q). Consequently, when q is positive and R is
large, the voltage fluctuations (according to Eq. (33)) are
reduced and, consequently, the charge probability den-
sity function is narrower. In the opposite case of nega-
tive q, the voltage fluctuations are increased (because R
is smaller) and the charge probability density function
is wider. This is exactly the same behavior as observed
in Fig. 2. We anticipate that in the case of memris-
tive systems a similar change of the charge probability
density function is also possible in the regime of strong
noise, when the memristive system stays under switch-
ing conditions during a significant fraction of the time
evolution. However, in the case of weak noise considered
here, the correlation between charge flown through the
memristive system and its state is almost negligible, and
therefore we do not expect any significant asymmetry of
the charge probability density function in this regime.

IV. CONCLUSION

To summarize, we have shown that the charge prob-
ability density function may be modified in memristive
circuits coupled to white noise sources. In the specific
circuit example that we have considered (memristor and
capacitor driven by a stochastic voltage source), the dis-
tribution gains an asymmetry that disappears if we re-
place the memristor by a usual resistor. We have proved
analytically that for any charge-controlledmemristor, the
average charge on the capacitor is zero. This is a very
surprising result taking into account the fact that the
memristor introduces a circuit asymmetry. We have also
developed a formalism to describe the evolution of the
charge probability density function. It can be used to de-
scribe non-equilibrium processes in the circuit (for exam-
ple, the discharge of the initially charged capacitor). We
finally note that our theoretical predictions can be easily
tested experimentally with available memristive systems.
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