
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Description of non-Darcy flows in porous medium systems
Amanda L. Dye, James E. McClure, Cass T. Miller, and William G. Gray

Phys. Rev. E 87, 033012 — Published 18 March 2013
DOI: 10.1103/PhysRevE.87.033012

http://dx.doi.org/10.1103/PhysRevE.87.033012


Description of Non-Darcy Flows in Porous Medium Systems

Amanda L. Dye, Cass T. Miller, and William G. Gray
Department of Environmental Sciences and Engineering,

University of North Carolina at Chapel Hill,
Chapel Hill, North Carolina 27599-7431

James E. McClure
Advanced Research Computing,

Virginia Tech, Blacksburg, Virginia 24061-0123

Fluid flow through isotropic and anisotropic porous medium systems is investigated for a range
of Reynolds numbers corresponding to both Darcy and non-Darcy regimes. A non-dimensional
formulation is developed for a Forchheimer approximation of the momentum balance, and lat-
tice Boltzmann simulations are used to elucidate the effects of porous medium characteristics on
macroscale constitutive relation parameters. The geometric orientation tensor of the solid phase is
posited as a morphological measure of leading-order importance for the description of anisotropic
flows. Simulation results are presented to confirm this hypothesis, and parameter correlations are
developed to predict closure relation coefficients as a function of porous medium porosity, specific
interfacial area of the solid phase, and the geometric orientation tensor. The developed correlations
provide improved estimates of model coefficients compared to available estimates and extend predic-
tive capabilities to fully determine macroscopic momentum parameters for three-dimensional flows
in anisotropic porous media.
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I. INTRODUCTION

The equations that describe single-fluid-phase flow provide a fundamental basis for our understanding of the influ-
ence of of the pore morphology and topology on momentum transport in porous media. Expressions such as Darcy’s
law and Forchheimer’s equation describe flow processes in an averaged approximate sense, such that the complex
microscopic structure typical of porous media can be effectively described using a small number of macroscopic pa-
rameters [1, 2]. The capacity to describe flow processes for a wide range of pore structures is contingent on our
ability to identify and quantify the morphological and topological properties of a porous medium that are of leading
order importance. Existing correlations predict parameters associated with approximations to the conservation of
momentum equation using only the porosity and Sauter-mean diameter as the primary measures of porous medium
morphology [3–5]. These correlations have been developed for restricted ranges of Reynolds numbers and porous
medium morphologies. Furthermore, the available parametric correlations are insufficient to describe anisotropic sys-
tems where directional dependent effects impact the flow behavior. Proper mathematical description of anisotropy is
essential to predict transport phenomena in many naturally occurring porous media.

The current state of knowledge categorizes single-fluid-phase flow into two primary regimes: a creeping flow regime
corresponding to small flow velocities in which viscous forces completely dominate inertial forces, and a regime
corresponding to flow velocities for which inertial forces cannot be neglected [6–10]. These two regimes are most
commonly modeled by two approximations of the macroscale momentum equation for single-fluid-phase flow through
a porous media: Darcy’s law and Forchheimer’s equation, respectively. The one-dimensional forms of these equations,
which apply to isotropic flows, are familiar and have been studied extensively [1–3, 11–15]. More recent work has
focused on deriving these traditional models for single-fluid-phase flow from first principles and linking macroscopic
phenomena with microscopic flow behavior [6, 16–19]. Investigations have also linked the macroscopic permeability
to tortuosity in both isotropic and anisotropic porous media [20–23]. While the anisotropic form of Darcy’s law is
relatively well-established, the proper form of the inertial correction term remains a matter of debate and predictive
correlations for parameters in the anisotropic case are unavailable at present.

As details of porous medium micro-structure become increasingly accessible, opportunities exist to use this infor-
mation to advance a more complete macroscopic understanding of flow through porous media. Computed micro-
tomography techniques can provide three dimensional, high resolution images that reveal the pore-structure for a
wide range of materials [24]. Numerical simulation techniques permit the study of increasingly large systems that
can approach or exceed the size required for system properties to become size-independent provided that systems are
homogeneous at the macroscale. The emergence of these technologies provides ample opportunities to exploit infor-
mation collected in the field, such as imaging of core data. Most typically, properties such as the permeability and
porosity are considered [25–27]. However, we suggest that the amount of predictive information that can be extracted
from such data can be extended significantly based on current technology, particularly for anisotropic porous media.

The present state of knowledge is hindered by an incomplete understanding of non-Darcy flow in general at the
macroscale, insufficient links between microscale porous medium morphology and anisotropic flow characteristics, and
the lack of generally applicable estimations of parameters appearing in common flow equations. The development
of the thermodynamically constrained averaging theory provides an opportunity to advance such descriptions by
explicitly connecting spatial scales and identifying critical variables expected to affect single-fluid-phase flow [28].
This work will capitalize on that opportunity.

The primary objectives of this work are:

1. to develop a means to generate systematically isotropic and anisotropic porous medium systems with varying
properties;

2. to perform highly resolved microscale simulations for a wide variety of porous medium systems at a scale that
is sufficient to ensure a representative elementary volume (REV) for describing macroscale systems and hence
the generality of the results;

3. to develop a formulation of the macroscale momentum resistance tensor that is consistent with microscale
observations of anisotropic, non-Darcy flow behavior;

4. to identify porous medium characteristics that are of leading-order importance for determining parameter values
appearing in macroscale equations used to describe fluid flow;

5. to derive an expression that can be used to relate media properties to macroscale flow parameters; and

6. to compare parameter correlations developed based upon this work with existing correlations.
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II. BACKGROUND

A. Non-Darcy Flow

The three-dimensional momentum equation for single-phase flow in anisotropic porous media is approximated by
[28]:

−∇pw + ρwgw = R̂
w·vw (1)

where pw is the volume-averaged fluid pressure of phase w, ρw is the volume-averaged mass density, gw is the mass-
averaged gravitational acceleration vector, and vw is the mass-averaged velocity vector. The momentum resistance

tensor R̂
w

must be symmetric and positive semi-definite to ensure that the entropy production is non-negative. We
consider Eq. (1) written in the form

ψ
∣∣−∇pw + ρwgw

∣∣ = R̂
w·ω

∣∣vw∣∣ . (2)

Unit vectors provide the force orientation

ψ =
−∇pw + ρwgw

|−∇pw + ρwgw|
, (3)

and flow orientation

ω =
vw

|vw|
. (4)

Since ψ and ω are dimensionless unit vectors, the dimensioned variables of importance can be identified as∣∣−∇pw + ρwgw
∣∣ [m/(l2t2)], (5)∣∣vw∣∣ [l/t], (6)

ρw [m/l3], (7)

µ̂w [m/(lt)], (8)

εws [1/l], (9)

where µ̂w is the dynamic viscosity and εws is the surface area of the ws interface per unit volume, which is equal to
the specific interfacial area of the solid for this single-fluid-phase system. The surface-to-volume ratio is incorporated
by using the Sauter mean diameter as the representative length scale for the flow

d = 6
εs

εws
, (10)

where εs is the volume fraction of the solid phase.
For convenience, Eq. (2) can be arranged into a dimensionless form to simplify the task of analyzing parametric

dependence on medium properties. Multiplying Eq. (2) by ρwd3/(µ̂w)2 leads to the expression

ψFc =
d2

µ̂w
R̂
w
· ωRe, (11)

where the dimensionless forcing term is

Fc =
ρwd3

∣∣−∇pw + ρwgw
∣∣

(µ̂w)
2 (12)

and the Reynolds number is

Re =
ρwd

∣∣vw∣∣
µ̂w

. (13)

The momentum resistance tensor is symmetric and positive semi-definite and can be written in the form

d2

µ̂w
R̂
w

= Qw·Λw·
(

Qw
)−1

, (14)
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where the column vectors of Qw are a set of orthonormal eigenvectors of R̂
w

, denoted by qwi , i = 1, 2, 3. The diagonal

tensor Λw contains the associated eigenvalues Λwi . The eigenvectors of R̂
w

are assumed to be a property of the porous
medium only.

The dependence of the momentum resistance on the flow velocity has been studied extensively for one-dimensional
flows [2, 6, 8, 17, 18]. This dependence is introduced into the three-dimensional form by assuming that the eigenvalues
Λwi are a function of Re. For sufficiently small Re, a linear expansion can be applied to describe the flow behavior

Λwi (Re) ≈ Λai + ΛbiRe. (15)

Based on this expansion the momentum resistance tensor takes the form

d2

µ̂w
R̂
w

= A + BRe, (16)

where the Darcy momentum resistance tensor is

A = Qw·Λa·
(

Qw
)−1

, (17)

and the inertial momentum resistance tensor is

B = Qw·Λb·
(

Qw
)−1

. (18)

The diagonal tensors Λa and Λb provide the momentum resistance coefficients associated with the Darcy and non-
Darcy flow effects. The diagonal values Λai specify the momentum resistance associated with qwi within the Darcy
regime and the diagonal values Λbi account for the inertial correction that becomes important in the non-Darcy regime.
While there are three independent components of vw the dependence on Re only considers the influence of the lone
invariant quantity

∣∣vw∣∣. The remaining two independent quantities are provided by the flow orientation ω. If A and
B are independent of ω, Eq. (16) is a dimensionless form for the momentum resistance proposed by Wang et al. [20].
However, the directional-dependent flow behavior observed by McClure et al. suggests that the inertial momentum
resistance tensor must also be a function of ω for certain systems [29].

It would be advantageous to be able to predict A and B based on the knowledge of a small set of easily measured
quantities. These tensors provide a macroscopic measure of the momentum resistance associated with a particular
porous medium, and therefore depend on measures of the pore morphology and topology. In the dimensionless
formulation this influence can be incorporated by identifying a set of dimensionless measures that can be functionally
related to the components of A and B to produce predictive forms.

B. Correlations for Flow in Isotropic Porous Media

When the porous medium is isotropic, the tensors appearing in Eq. (16) must reduce to

A = a∗I, (19)

B = b∗I, (20)

where a∗ and b∗ are momentum resistance coefficients that apply for flows in isotropic porous media. Such flows can
be described using the resulting one-dimensional counterpart to Eq. (11)

Fc = a∗Re + b∗Re2. (21)

The dependence of the coefficients a∗ and b∗ on porous medium morphology has been studied extensively [4, 5, 30–
32]. With surface-to-volume effects accounted for by the length scale definition given in Eq. (10), existing correlations
typically predict the coefficient values a∗ and b∗ as functions of the volume fraction of the w phase εw, or equivalently
the porosity for this single-fluid-phase case, which is given by

ε = 1− εs. (22)

The most well-known of these expressions is Ergun’s equation, which specifies functional forms for the dimensionless
permeability

a∗e =
ε2

α∗e(1− ε)2
, (23)
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and inertial coefficient

b∗e = β∗e
(1− ε)
ε

. (24)

Ergun [3] suggested that α∗e = 150 and β∗e = 1.75, but several different values for the coefficients have been proposed.
When α∗e = 180, Eq. Eq. (23) is the widely used Carman-Kozeny relationship [33]. MacDonald et. al. [5] determined
that 1.8 ≤ β∗e ≤ 4.0 served to match experimental data from six different porous medium systems. For the case of
Darcy flow, Rumpf and Gupte [4] predict the permeability using the relationship

a∗rg = 5.6ε−5.5. (25)

Pan et. al. [32] found that the Carmen-Kozeny relationship underestimates the permeability, and observed devi-
ations from the Rumpf-Gupte relation when systems outside the range of experimental support for this expression
were considered. They proposed an alternative correlation form in which an additional dimensionless variable, the
relative standard deviation σ̃D, was also included whereby

a∗p = α∗p1
εα
∗
p2(

1 + α∗p3σ̃
α∗p4
D

) , (26)

where α∗p1, α∗p2, α∗p3 and α∗p4 are best-fit coefficients.

III. METHODS

The objectives of this work will be accomplished using a simulation approach that relies upon the generation of a
large set of isotropic and anisotropic porous medium systems with specified variations in size, shape, orientation, and
porosity. The factors of leading-order importance for non-Darcy flow in anisotropic systems must first be posited and
then evaluated and compared to simulation results. Simulations must be highly resolved microscale simulations of
sufficient size to yield a reliable measure of a macroscale system. Each component of these methods is described in
turn.

A. Generation of Sphere and Ellipsoid Packs

Surrogate porous media were constructed by generating sphere packs with log-normally distributed radii ri. The
sphere centroids, ci, i = 1, 2, . . . , Ns, were determined by a collective rearrangement algorithm designed for applica-
tions in porous media. The algorithm is a modified version of the one developed by Williams and Philipse to generate
packs of sphereocylinders [34]. Our version of the algorithm is constructed to provide precise control over the final
system porosity ε and to accommodate a lognormal size distribution for the sphere radii. Initially, a system of spheres
is instantiated into a domain of fixed size. The initial sphere radii are assigned from a lognormal distribution with
variance σ2 and an initial mean µ0. The sphere centroids are initially distributed randomly based upon a uniform dis-
tribution throughout the domain, which is a rectangular prism with sides of length Lx, Ly and Lz. The initialization
is summarized in the following pseudocode:

for i = 1, 2, . . . , Ns do
log (ri)← Normal(µ0, σ

2)
ci,x ← Uniform(0, Lx)
ci,y ← Uniform(0, Ly)
ci,z ← Uniform(0, Lz)

end for

The value of µ0 is chosen so that the initial porosity is high based on the size of the system (in our case the initial
porosity is ε0 = 0.80). Once the initial system of spheres has been created, a collective rearrangement algorithm is
applied to sequentially increase the size of the radii ri using a constant rescaling factor λ, thereby decreasing ε until
the desired porosity is reached. As the size of the radii are increased, the value of µ will increase and the system
porosity will decrease. Each time the radii are rescaled an iterative procedure is applied to shift the sphere centroids
so that all overlaps are eliminated. The direction to shift each sphere is determined by the overlap vector ∆xi. The
parameter κ was introduced in order to provide a way to tune the rate of convergence, which is increasingly important
as σ2 increases. This is due to the fact that sphere overlaps frequently occur between spheres of widely disparate
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radii as σ2 increases. A value of κ = 0.6 was sufficient for the systems considered in this work. However, it may be
necessary to consider smaller values of κ to generate systems with larger values of σ2. The rescaling procedure is
summarized in the following pseudocode:

while
∑
i

4πr3i
3 < (1− ε)LxLyLz do

ri ← λri
µ← µ+ log(λ)
while maxi,j (|ci − cj | − ri − rj) > 1× 10−10 do

for i = 1, 2, . . . , Ns do
∆xi =

∑
j 6=i [|ci − cj | − (ri + rj)] (ci − cj)

end for
for i = 1, 2, . . . , Ns do

ci ← ci + κ∆xi
end for

end while
end while

Full periodic boundary conditions are enforced, which eliminates the potential for boundary effects. For the homoge-
neous case σ2 = 0 the minimum achievable porosity approaches 0.367, which is a well-established result for random
close packs of equally-sized spheres [35, 36]. Lower porosity values become accessible as σ2 increases. The variance
σ2 is specified as an input parameter, and is unchanged by the rescaling procedure. The final value of µ is determined
from the desired porosity, which can be estimated using the equation

ε = 1− 4πNsE[r3
i ]

3LxLyLz
, (27)

where the expected value of the cube of the radius is

E[r3
i ] = exp

(
3µ+

9

2
σ2

)
. (28)

Then, insertion of Eq. (28) into Eq. (27) and solution for µ yields

µ =
1

3
log

(
3 (1− ε)LxLyLz

4πNs

)
− 3

2
σ2, (29)

which relates the final mean radius for the lognormal distribution to the two independent input parameters ε and σ2.
The coordination number was used to evaluate the stability of each packing in a gravitational field. For a coordina-

tion number greater than six, the average number of spheres supporting each sphere is at least three. This threshold
was used to establish an upper limit on the maximum porosity for a stable packing at a prescribed variance. The
porosity ranges obtained for each variance are listed in Table I.

Variance (σ2) Porosity Range

0 0.37–0.60

0.1 0.35–0.54

0.2 0.32–0.48

0.3 0.30–0.42

TABLE I: Range of stable, accessible porosity values for log-normal sphere packs.

Anisotropic systems were constructed by applying the mapping {ηx, γy, ζz} → {x′, y′, z′} to sphere packs. In this
work the stretch factors fall within the range of 1 ≤ η, γ, ζ ≤ 1.7. This procedure stretches the sphere packs to yield
a system of axially-aligned ellipsoids. The resulting ellipsoid surfaces are given by the equation(

x′ − c′x
ηr

)2

+

(
y′ − c′y
γr

)2

+

(
z′ − c′z
ζr

)2

= 1. (30)

where {c′x, c′y, c′z} = {ηcx, γcy, ζcz}. This mapping preserves both media porosity and grain contacts and can be used
to generate a sequence of anisotropic media by considering different stretch factors η, γ and ζ applied to a given sphere
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packing. While alternative algorithms exist to generate anisotropic media, this approach is advantageous due to the
fact that each anisotropic packing is directly associated with an isotropic counterpart. Changes in the coefficient values
can therefore be directly associated with changes in the system anisotropy with a minimum number of confounding
factors.

B. The Orientation Tensor as a Quantitative Measure of Anisotropy

In order to extend the relationships developed for isotropic porous media to anisotropic systems, a dimensionless
morphological measure of anisotropy must be identified and functionally related to A and B. In this work, we consider
the average geometric orientation tensor [37] for the ws, or solid, surface as a quantitative measure of anisotropy

Gws =

∫
Γs

nsns dr∫
Γs

dr
, (31)

where ns is the unit vector outward normal to the solid surface Γs.
The spectral decomposition of Gws provides a straightforward way to determine the anisotropic properties of a

porous medium. The orientation tensor is symmetric and can be expressed in the form

Gws = Qs·Λs·(Qs)−1, (32)

where orthonormal eigenvectors of Gws serve as the column vectors of Qs. The eigenvectors are denoted by qsi ,
i = 1, 2, 3. The diagonal matrix Λs contains the associated eigenvalues Λsi . Since ns is a unit vector, the first invariant
of the orientation tensor places a constraint on the eigenvalues

tr(Gws) = tr(Λs) = 1. (33)

This implies that the tensor is uniquely specified according to two independent quantities and establishes that Λs1 =
Λs2 = Λs3 = 1/3 for an isotropic system.

The eigenvectors provide the principal directions of anisotropy and the eigenvalues quantify the relative surface
orientation associated with each eigenvector. The significance of these quantities is illustrated by the simple case of
a rectangular prism. Consider a rectangular prism for which Ax, Ay and Az denote the surface area of the x, y and
z faces, respectively. Based on Eq. (31), the associated orientation tensor can be computed as

Gws =
1

Ax +Ay +Az

 Ax 0 0

0 Ay 0

0 0 Az

 . (34)

For this geometry the eigenvectors align with the coordinate axes and the eigenvalues are

Λs0 =
Ax

Ax +Ay +Az
, (35)

Λs1 =
Ay

Ax +Ay +Az
, and (36)

Λs2 =
Az

Ax +Ay +Az
. (37)

Each eigenvalue Λsi has the straightforward interpretation as the relative area of the part of the surface that has a
normal vector aligned with qsi .

Since Λsi are dimensionless and provide a quantitative measure of anisotropy, it is natural to incorporate them
into functional forms to predict the coefficients Λai and Λbi . Furthermore, if qsi can be used to approximate qwi the

momentum resistance tensor R̂
w

can be fully predicted using a small set of morphological information: ε, εws and
Gws. This posited leading-order dependency will be investigated through a series of highly resolved simulations.

C. Lattice Boltzmann Scheme

Simulations were carried out using a three-dimensional, nineteen velocity vector (D3Q19) multi-relaxation time
(MRT) lattice Boltzmann (LB) scheme [38, 39]. The LB scheme recovers the Navier-Stokes equations to second order,
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and is valid within both the Darcy and non-Darcy regimes. A solution for the pore-scale velocity field vw was obtained
by simulating a steady state flow driven by an external force gw. Full periodic boundary conditions were used for all
simulations, ensuring that ∇pw = 0. The density was given by ρw = 1 for all simulations. Prescribing gw in addition
to the fluid viscosity µ̂w directly determines the value of Fc and ψ for each steady state simulation. Based on the
microscale steady state velocity field, the macroscopic velocity was computed according to

vw =

∫
Ωw

ρwvw dr∫
Ωw

ρw dr
. (38)

The macroscopic velocity can be used to compute the Reynolds number according to Eq. (13), and ω may be computed
from Eq. (4).

D. Determination of Representative Elementary Volumes

To ensure that the macroscopic results are independent of the domain size, each simulated system was large enough
to be considered an REV. For the generated packing to be a valid REV, the resistance tensor must be independent
of both the lattice size of the simulated domain and the packing size of the generated media.

Simulations were performed to generate flows for a sequence of Re < 120. The upper bound on Re was selected to
ensure that a steady state was achieved. Higher values of Re lead to unsteady flows in which vortex shedding may
occur. A least-squares fit of Eq. (21) was applied to the simulation data to obtain the corresponding values of a∗ and
b∗. To develop a porous medium that yielded grid-independent results, a system containing a set number of spheres
was packed and the lattice size was increased until the resistance tensor converged to one definitive solution. This
determined the number of lattice sites needed to resolve the mean grain diameter:

D = exp
[
µ+

1

2
σ2
]
. (39)

The resulting parameter values are listed in Table II. Since the relative error for Eq. (21) was order 1 × 10−2, it
was determined that was an appropriate threshold to determine the REV for the purposes of this work. REV size
was determined by incrementally increasing the number of spheres until the variation in the parameters a∗ and b∗

decreased below 1×10−2, relative to the values a∗∞ and b∗∞ obtained at the highest resolution. The relative variation
of these quantities are shown as functions of sphere number for each variance of lognormal distributed radii in Fig. 1.
Table II outlines the number of spheres and cubic lattice sizes that define an REV porous medium for each variance
of the log-normally distributed radii.

σ2 Ns n3 D (pixels)

0 1500 3603 33

0.1 1500 3803 30

0.2 3000 4603 28

0.3 4000 4903 25

TABLE II: Domain sizes and resolution necessary to achieve a grid-independent REV.

IV. RESULTS AND DISCUSSION

A. Approximating the Eigenvectors of the Momentum Resistance Tensor

In order to produce useful parameter estimates for the anisotropic form of the momentum resistance tensor, the

eigenvectors of R̂
w

must be associated with morphological properties of the solid phase. In an isotropic system every
real-valued vector is an eigenvector of the momentum resistance tensor. This is readily apparent from Eq. (20). This
is no longer the case for anisotropic systems. In anisotropic systems the eigenvectors qwi correspond to those directions
for which the force and flow orientations align. Identification of qwi greatly simplifies the task of generating parameter

estimates of R̂
w

since it reduces the number of undetermined parameters. Since the eigenvectors of Gws provide a
way to identify principal directions of anisotropy in a given media, it is natural to relate them to the eigenvectors of

R̂
w

.
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(a) Permeability (b) Inertial

FIG. 1: Coefficient values relative to the associated REV obtained for a∗ and b∗ for a range of sphere packs.

The two-dimensional flows depicted in Fig. 2 provide physical insight into the significance of the eigenvectors in
non-Darcy flows. In this case, the symmetry of the solid geometry ensures that eigenvectors of Gws align with the
coordinate axes. When ψ aligns with one of these eigenvectors, the resulting flow orientation satisfies ω = ψ = qsi ,
as in Fig. 2 (a), (b), (d) and (e). The implication is that for this case the eigenvectors of Gws are also eigenvectors

of R̂
w

. Fig. 2 (c) and (f) demonstrate that ψ and ω will generally not be aligned in anisotropic systems.

Specifying the force orientation as ψ = qsi permits us to quantitatively evaluate if qsi is an eigenvector of R̂
w

for
a particular porous medium. The corresponding flow orientation ω can be obtained by simulating the steady state

velocity field. If qsi is an eigenvector of R̂
w

, qsi · ω = 1. The accuracy of the eigenvector approximation qwi ≈ qsi can
therefore be evaluated by computing |1−ψ ·ω|. This error is plotted in Fig. 3 as a function of the Re. The properties
of the associated ellipsoid packing were ε = 0.38, Λs0 = 0.46, Λs1 = 0.25 and Λs2 = 0.29. These results demonstrate

that the eigenvectors of Gws provide an accurate way to identify the eigenvectors of R̂
w

for ellipsoid packs. The
extensibility of this result to more general anisotropic media requires further study. Based on this approximation, we
can write:

A = Qs·Λa·(Qs)−1, (40)

B = Qs·Λb·(Qs)−1. (41)

The task is thereby simplified to develop predictive relationships laws to approximate Λa and Λb. Specific forms are
presented in §IV E.

B. Dependence on the Flow Orientation

It has been known for over a century that the inertial correction to Darcy’s law depends on the flow velocity [2, 3].
The precise form of this dependence has been the subject of ongoing study [20, 40, 41]. For one-dimensional flows, this
dependence can be expressed in terms of Re without a loss of generality. For three-dimensional flows Re accounts for
only the invariant of the velocity vector, |vw|, leaving two independent components unaccounted for. The remaining
two independent components specify the flow orientation ω. Understanding how the momentum resistance depends
on the flow orientation represents an important challenge to understanding flow processes in anisotropic porous media.

The dependence of the momentum resistance on Re is already established by Eq. (16). If the correction to
Darcy’s law is presumed to depend generally on vw, the implication is that B is also a function of ω, of which only
two components are independent. The first problem is that the components of ω are inherently determined by the
coordinate system. Since the coordinate system is arbitrary, we must develop a way to study the impact of the flow
orientation that is independent of this choice. Since the projection of the flow orientation onto the eigenvectors qsi
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FIG. 2: (Color online) Streamlines resulting from Darcy (a–c) and non-Darcy (d–f) flows obtained using various
force orientations in a simple periodic 2-D flow geometry. Darcy flows correspond to Re = 0.01 and non-Darcy flows

correspond to Re = 100. The greyscale (color) value represents the magnitude of the flow velocity |vw|.

does not depend on the coordinate system, we will consider how Λb depends on the three quantities ω ·qs0, ω ·qs1 and
ω · qs2.

Due to the fact that ω has fixed unit length, a Taylor series cannot be applied to approximate the associated impact
on the flow behavior. As a consequence, determining the functional dependence of B on the flow orientation requires
empiricism. However, the form of this dependence is subject to restrictions. First, in isotropic porous media Eq. (20)
must be recovered for all possible flow orientations. Second, entropy production must be positive for all Re. In order
to satisfy these constraints, we propose that the eigenvalues of B can be predicted by the form:

Λbi =
Λ
b(0)
i |ω · qs0|+ Λ

b(1)
i |ω · qs1|+ Λ

b(2)
i |ω · qs2|

|ω · qs0|+ |ω · qs1|+ |ω · qs2|
. (42)

The coefficients Λ
b(j)
i are functions of the porous medium morphology that determine the inertial contribution to

momentum resistance in the direction of qsi that results from a change in the projection of ω on qsj . A total of nine
coefficients are necessary to specify B in addition to the eigenvectors. The work of McClure et al. [29] suggests that

Λ
b(j)
i will also depend on the signed values of ω · qsi for certain porous media . This possibility will not be explored

in this work.
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FIG. 3: Error for the approximation qwi ≈ qsi in an axially-aligned ellipsoid packing.

C. Physical Significance of Flow Coefficients and Eigenvectors

Recent work investigating the microscopic origins of inertial behavior in porous medium flows has linked the
formation of eddies with macroscopic deviations from Darcy’s law [7, 8, 29, 42]. This insight is particularly useful
when attempting to understand the three-dimensional form given in Eq. (11). Eddies associated with the onset
of inertial effects distort the flow field such that the resistance to flow increases. In anisotropic systems the size,
shape, and location of these eddies differ depending on the flow orientation; and corresponding differences in the
macroscopic flow behavior result. This effect is evident from considering the simple two-dimensional flows shown
in Fig. 2. Three flow orientations were considered in a periodic flow domain, providing qualitative insight into the
microscopic phenomena that must be accounted for by macroscopic coefficient values in anisotropic flows.

In Darcy flows, streamlines are independent of Re and invariant upon flow reversal, as shown in Fig. 2 (a–c). As
a result the eigenvalues Λai are properties of the porous medium only. The three eigenvalues can be measured by
conducting a set of three flow experiments in which flow orientations are aligned with each of the eigenvectors.

Inertial flows present a more challenging scenario; streamlines are no longer independent of Re as inertial effects
begin to distort the flow field. For sufficiently high Re, the formation of eddies will be observed. The size, shape and
position of these eddies depends both on Re and the flow orientation. Macroscopic coefficients must account for the
impact that eddy formation has on the resulting flow behavior for all possible flow orientations. When the direction
of ψ is aligned with one of the eigenvectors of Gws, as shown Fig. 2 (d) and (e), the eddies formed do not alter the

eigenvectors of R̂
w

. As a consequence, qwi are presumed to be independent of Re.

The coefficients Λ
b(i)
i determine the rate that momentum resistance increases due to the inertial distortions of the

flow field that result when flow is aligned with qsi . The coefficient Λ
b(j)
i , j 6= i contributes to the momentum resistance

only if ω · qsi and ω · qsj are both non-zero. These coefficient values provide a macroscopic measure of the momentum
resistance caused by the varying size, shape and position of the eddies that form for different flow orientations. This
picture is described qualitatively in Fig. 2 (f). A comparison of Fig. 2 (f) to Fig. 2 (d) and (e) reveals distinct

qualitative differences between the flow fields. The necessity of the coefficients Λ
b(j)
i , j 6= i can be assessed by

considering their capacity to improve the accuracy of the estimated three-dimensional flow in an anisotropic porous
medium.

The three-dimensional analog of Fig. 2 was used to evaluate the usefulness of Eq. (42). For simplicity, a symmetric
geometry was selected to satisfy Λs1 = Λs2. If B is independent of ω only the three eigenvalues are needed to fully
specify the form of the tensor, reducing to the form proposed by Wang et al. [20]. Flows aligned with the eigenvectors
are sufficient to predict all three coefficients. In Fig. 4, flows aligned with eigenvectors qs0 and qs1 are labeled as
Case A and Case B, respectively. The relative error of this approximation is determined by how well the quadratic
form involving the Reynolds number matches the simulated data. In Case C, the flow orientation was selected to be
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(qs0 + qs1)/2. Based on the form of Wang et al. [20], Cases A and B provide all of the coefficients needed to predict
the flow behavior in Case C. However, comparing the predicted and simulated data demonstrates that while this form
predicts the flow behavior quite well in the Darcy regime, the relative error increases substantially with the onset of
inertial effects at higher Re.

The implication of this result is that differences in location, size, and shape of eddies are dependent on the flow
orientation; and these differences are manifested by a macroscopic difference in the flow behavior. To describe this
flow behavior accurately, the inertial tensor B must depend on ω. Flow data from Cases A, B, and C were then

used to determine the associated coefficients, Λa0 ,Λ
a
1 = Λa2 and Λ

b(0)
0 ,Λ

b(1)
0 = Λ

b(2)
0 , Λ

b(0)
1 = Λ

b(0)
2 ,Λ

b(1)
2 = Λ

b(2)
1 , and

Λ
b(1)
1 = Λ

b(2)
2 , where the equalities are implied by the symmetry of the flow geometry. The description of the inertial

regime improves significantly when the effects of flow orientation are accounted for due to Eq. (42).

D. Parametric Estimates for Flow in Isotropic Porous Media

Simulations of non-Darcy flow were performed in isotropic sphere packs representing the full range of porosities
and variances listed in Table I and Re < 120. Existing correlations for the dimensionless permeability and inertial
parameter were then compared to these simulation results.

In Fig. 5, the simulation results of a specific isotropic case are shown. Based on simulated data points, the relative
error is minimized for a∗ and b∗ based on Eq. (21). As a function of the Reynolds number, the relative error exhibits a
similar profile for the isotropic case as compared to the anisotropic profile plotted in Fig. 4. Based on our analysis, the
accuracy of Eq. (21) is within several percent. Since this is true for both isotropic and anisotropic cases, alternative
forms which more accurately approximate the transition region from 1 < Re < 50 would be a logical way to improve
the predictive capabilities of this model. The consideration of such forms is beyond the scope of this work.

The functional forms listed in Eqs. (23)–(26) do not fully match the simulated data throughout the range of
porosity values considered. This is unsurprising given that the range of porosity values considered here is broader
than what has been considered in other studies. The Pan et al. [32] permeability relation was based on a set of flow
simulations within a porosity range of 0.33 ≤ ε ≤ to 0.45 . At the porosities outside the experimentally supported
range, the Pan et al. [32] relation underestimates the measured permeability values, demonstrated in Fig. 6. The
Carmen-Kozeny relation for lower porosities (ε ≤ 0.42) underestimates the associated coefficient (Fig. 6). The lower
porosity deviations are consistent with the findings of others [11, 13, 32, 43, 44]. The Rumpf-Gupte permeability
relation deviates the most from the simulated data, over-predicting the data for ε ≥ 0.38 and under-predicting for
ε ≤ 0.38. The Rumpf-Gupte data is based on flow experiments using sphere packs with relative standard deviations
of the sphere-size distribution, σ̃D, of 0.0945, 0.32, and 0.327 over a wide range of porosity (0.366 ≤ ε ≤0.64) and
0 < Re < 100 [4, 5]. The cases with σ2 = 0.3 and 0.36 < ε < 0.42 are the only simulations that fit entirely within
the experimentally supported regime of the Rumpf-Gupte relation. The data within the Rumpf-Gupte experiments
correlates to the porosity range where deviations are a minimum, an observation supported by others [32, 43, 45].

We found that an exponential fit yields more satisfactory agreement for the full range of the simulation data. The
associated functional form is:

a∗ (ε) = α∗1 exp
(
α∗2ε
)
, (43)

where the best-fit coefficient values are α∗1 = 1.95 × 10−5 and α∗2 = 9.85 based on the simulated data points plotted
in Fig. 6.

The inertial correction to Darcy’s law is shown in Fig. 7, The coefficient b∗ measured from simulation increases
as porosity decreases. Simulated values for the inertial parameter are shown in comparison with values predicted by
the Ergun functional form (Eq. (24)) in Fig. 7. Neither of the inertial coefficients predicted by Ergun or MacDonald
provide a satisfactory fit to the simulation data; both relations over-predict the lower range of porosities (< 0.40)
and under-predict the higher range of porosities (> 0.40). The Ergun relation was qualitatively based on a straight
tube geometry of the pore space and has been found to be valid only in a range of Reynolds numbers, 0 ≤ Re ≤ 75
[3, 5]. Based on the packing parameters set by the REV calculations (Table II), the range of Re simulated differs for
each variance. The Reynolds number range is 0 ≤ Re ≤ 140 for the homogenous packing (σ2 = 0), 0 ≤ Re ≤ 130
for σ2 = 0.1, 0≤ Re ≤ 115 for σ2 = 0.2, and 0≤ Re ≤ 95 for σ2 = 0.3. As the Re range for each variance increases
past the upper Re limit of the Ergun relation, the difference between the simulated data and the inertial parameters
predicted by Ergun increases. The Ergun relation has also been found to be valid only for 0.38 ≤ ε ≤ 0.47 [46].

The Ergun relation matches the simulated data well within the restricted range before diverging at a porosity of

0.35. The MacDonald et al. relation is the Ergun relation (Eq. (24)) with a modified β̂∗e coefficient based on the
comparative analysis of numerous experimental results, including the data of Rumpf and Gupte. The analysis took
into account data from a wide range of porosities (0.123 ≤ ε ≤ 0.919) and granular shapes and sizes with the goal
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of deriving an Ergun relation that was applicable for packs of non-spherical grains [5]. Much of the lower porosity
data (ε ≤ 0.40) came from experiments using irregularly shaped objects, sand and gravel mixtures, and a variety of
undisclosed materials. Since the simulated data only takes into account porous media composed of smooth spheres,
roughness could explain the large deviations between the inertial parameter predicted by the MacDonald et al. relation
and the simulated data at ε ≤ 0.40.

To provide a better fit for the full range of simulated data, an alternative functional form is proposed to provide a
better match of the simulated data:

b∗(ε) = β∗1
(1− ε)β∗2
εβ
∗
3

. (44)

where the coefficients β∗1 = 4.21, β∗2 = 1.58 and β∗3 = 0.378 were obtained by performing a least squares analysis to
minimize the relative error based on the simulated data points shown in Fig. 7.

E. Parametric Estimates for Flow in Anisotropic Porous Media

The results of §IV D establish functional forms that predict the values of flow coefficients in an isotropic system as
a function of the media porosity, expanding on the results of prior studies. In this section, extended correlations are
developed that apply to systems where anisotropic effects contribute to the flow behavior.

To resolve the flow behavior in anisotropic porous media, six different force orientations were used. These ori-
entations corresponded to [1, 0, 0]T , [0, 1, 0]T , [0, 0, 1]T , [

√
2,
√

2, 0]T , [
√

2, 0,
√

2]T , [0,
√

2,
√

2]T . Between 100 and 150
steady state simulations were performed for each anisotropic medium. Each steady state simulation corresponded to
values of ψ, ω, Fc and Re that were used to determine all coefficient values for the media. Based on Eqs. (40)–(41),
twelve coefficients are necessary, in addition to the eigenvectors qsi , to fully specify the macroscopic flow behavior.
These coefficients were calculated by performing a non-linear least squares approach to minimize

Φi =
∑{

Re,F,ω,ψ
}
[
ψ · qsi −

1

F

(
ΛaiRe +

∑
j Λ

b(j)
i |qsi · ω|∑
j |qsj · ω|

Re2
)
ω · qsi

]2
, (45)

where the index i = 0, 1, 2 specifies the eigenvectors associated with the principal directions of anisotropy. The full
set of coefficients were determined by numerical solution of a set of the non-linear equations

∂Φi
∂Λai

= 0 for i = 0, 1, 2, (46)

∂Φi

∂Λ
b(j)
i

= 0 for i, j = 0, 1, 2. (47)

Simulations were performed using a large number of media to obtain a well-resolved range of anisotropies as shown in
Fig. 8. Based on these simulations flow coefficients were determined for each medium using Eqs. (46)–(47). Specific
functional forms accounting for anisotropy were then selected to match the simulation data.

Since each ellipsoid pack is defined by the mapping procedure given in Eq. (30), we can understand anisotropic
effects by considering how the introduction of anisotropy alters the flow coefficients for a given sphere pack. In
practice, each sphere pack exhibits a small amount of anisotropy as determined by the accuracy of the REV. We

account for this by measuring the full set of coefficients for each sphere pack, which we denote by Λa∗i and Λ
b(j)∗
i . The

coefficient values from an ellipsoid packing can then be compared to these values to more accurately determine the
associated impact on flow behavior. The components of Gws were determined numerically for the anisotropic systems
considered in this work.

Predictive functional forms for Λai and Λbi were developed by constructing separable functions to account for each
independent variable. Because of the constraint of Eq. (33), two functions are sufficient to fully describe the influence
of Gws. Since the indexing of the eigenvectors qsi is non-unique, the constitutive functions must be identical for all
permutations of the index convention. The eigenvalue Λsi , which provides a measure of the relative blockage orthogonal
to qsi , was selected as the first of these values. Since the labeling of the remaining axes is arbitrary, the additional
quantity obtained from the orientation tensor must be symmetric with respect to Λsj and Λsk. This is satisfied by
choosing the second independent quantity to be |Λj − Λk|. We then search for constitutive relationships of the form

Λai = a∗(ε)a‖
(
Λsi
)
a⊥
( ∣∣Λsj − Λsk

∣∣ ) , i 6= j 6= k, (48)

Λ
b(i)
i = b∗(ε)b‖

(
Λsi
)
b⊥
( ∣∣Λsj − Λsk

∣∣ ) , i 6= j 6= k. (49)
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The functional forms a‖, a⊥, b‖ and b⊥ must equal unity for an isotropic system (ie. Λsi = 1
3 and

∣∣Λsj − Λsk
∣∣ = 0),

which is satisfied by the subsequent expressions given in Eqs. (50)–(53).
Simulation results indicate that Λsi is responsible for the largest part of the anisotropic correction to Λai and Λbi . In

order to match the simulation data, the constitutive laws were formulated as

a‖ (Λsi ) =

[
1 + α

‖
1

(
Λsi −

1

3

)]α‖2
, (50)

b‖ (Λsi ) =

[
1 + β

‖
1

(
Λsi −

1

3

)]β‖2
. (51)

The best fit coefficients are α
‖
1 = 1.40, β

‖
1 = 0.351, α

‖
2 = 1.06, and β

‖
2 = 11.1. To obtain these coefficients, systems

were constructed such that Λsj = Λsk for k 6= j 6= i. Plots of the simulation data and resulting functions are shown in
Fig. 9.

A smaller contribution is associated with
∣∣Λsj − Λsk

∣∣. A linear functional form was selected to account for this
contribution

a⊥
(∣∣Λsj − Λsk

∣∣) = 1 + α⊥
∣∣Λsj − Λsk

∣∣ , (52)

and

b⊥
(∣∣Λsj − Λsk

∣∣) = 1 + β⊥
∣∣Λsj − Λsk

∣∣ . (53)

The best-fit coefficients were α⊥ = 0.0173 and β⊥ = 0.229. The range of porosity values and variances considered
to obtain these results are summarized in Table I and the range of orientation tensor eigenvalues are plotted in Fig.
8. Since a⊥(0) = 1 and b⊥ (0) = 1, the anisotropic contribution disappears when an isotropic system is considered.
As demonstrated by Fig. 10, the contribution of a⊥ and b⊥ is the approximately the same order of magnitude as the
error contribution. Not coincidentally, this error is the same order of magnitude as the error in the quadratic form
for the Non-Darcy momentum resistance, shown in Fig. 4. Based on this, we conclude that the inclusion of a⊥ and
b⊥ are unlikely to improve the description significantly. Alternatively, a⊥ and b⊥ could be set to 1, their values for
an isotropic system, for simplicity.

The remaining inertial coefficients, Λ
b(j)
i , i 6= j, contribute only when the flow is not aligned with one of the

eigenvectors qsi . Parameter values for these coefficients presumed that these coefficients could be described by

Λ
b(j)
i = b∗(ε)b†(Λsi − Λsj)b

‡(Λsk) (54)

The coefficient Λ
b(j)
i provides the relative change to the momentum resistance in the direction of qsi that results from

a change in

b†(Λsi − Λsj) = exp
[
β†(Λsi − Λsj)

]
, (55)

b‡(Λsk) = exp
[
β‡
(

Λsk −
1

3

)]
, (56)

where β† = 0.742 and β‡ = −2.05. A plot of the resulting functional form is shown in Fig. 11.
The anisotropic parameter correlations given in Eqs. (50)–(56) combine with the results of §IV D to provide

a complete set of predictive coefficients for Eq. (11) for any system where the porosity, specific surface area, and
orientation tensor are known. The functional forms proposed to account for these various contributions are summarized
in Table III. Several basic principles were relied upon to produce these relationships, which are summarized as follows:

1. The eigenvalues of the tensors A and B are each non-negative to ensure that the second law of thermodynamics
is satisfied for all Reynolds numbers.

2. By constructing the formulation in terms of the eigendecomposition of the momentum resistance tensor and
identifying the associated eigenvectors, the description is fully independent of the coordinate system choice.

3. The tensor form of the momentum transport equation reduces exactly to the one-dimensional form given in Eq.
(21) if the solid surface is isotropic (Λsi = 1

3 ).
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Specific functional forms were selected to satisfy these constraints while matching the simulated data as closely as
possible.

Microscopic imaging techniques can be exploited to obtain direct measurements of both surface area and orientation
tensor values. When working with such data, a spectral decomposition must be applied to the numerically computed
orientation tensor Gws to obtain qsi and Λsi . Our results suggest that the eigenvectors of Gws provide a good ap-
proximation for the eigenvectors of A and B. Since our results were obtained for systems of axially-aligned ellipsoids,
future studies should consider the extensibility of these results to more general anisotropic porous media. However,
the use of dimensionless variables should facilitate the extension of these results to a wide range of systems. Since
the surface area and orientation tensor can be constructed easily based on computed micro-tomography data, this
would seem to present a natural opportunity to examine the extensibility of these results to more general anisotropic
porous media. It is possible that other dimensionless morphological measures exert influence on momentum transport
for certain systems, and the identification of such measures present additional opportunities to expand the predictive
capabilities for non-Darcy flows beyond the leading-order factors identified herein.

Parameter Dependence Functional Form Coefficient Values

Λai a∗(ε) α∗1 exp (α∗2ε) α∗1 = 1.95× 10−5, α∗2 = 9.85

Λai a‖
(
Λsi
) [

1 + α
‖
1

(
Λsi − 1

3

)]α‖2
α
‖
1 = 1.40, α

‖
2 = 1.06

Λai a⊥(|Λsj − Λsk|) 1 + α⊥|Λsj − Λsk| α⊥ = 0.0173

Λ
b(i)
i , Λ

b(j)
i b∗(ε) β∗1

(1−ε)β
∗
2

ε
β∗3

β∗1 = 4.21, β∗2 = 1.58, β∗3 = 0.378.

Λ
b(i)
i b‖

(
Λsi
) [

1 + β
‖
1

(
Λsi − 1

3

)]β‖2
β
‖
1 = 0.351, β

‖
2 = 11.1

Λ
b(i)
i b⊥(|Λsj − Λsk|) 1 + β⊥|Λsj − Λsk|. β⊥ = 0.229

Λ
b(j)
i b†(Λsi − Λsj) exp

[
β†(Λsi − Λsj)

]
β† = 0.742

Λ
b(j)
i b‡(Λsk) exp

[
β‡
(

Λsk − 1
3

)]
β‡ = −2.05

TABLE III: Summary of the functional forms and coefficient values proposed to predict momentum equation
parameters (i 6= j 6= k). The tensors A and B can be determined by combining these expressions with Eqs.

(48)–(49), Eq. (54) and Eqs. (40)–(41).

V. SUMMARY AND CONCLUSIONS

In this work, a large set of lattice Boltzmann simulations were performed to produce constitutive relationships that
fully predict all coefficients required to close a tensorial form of the momentum transport equations for single-phase
flow in porous media. Essential closure information for both isotropic and anisotropic flows in porous media is provided
as a function of nondimensional measures of the porous medium morphology. In the isotropic case, simulated data
was compared to existing relationships including those due to Ergun, Rumpf and Gupte, MacDonald et al., Carmen-
Kozeny, and Pan et al. As shown in our work, these equations have varying degrees of accuracy in their application,
depending on the quantity and quality of the data used to derive them. Our work improves upon these existing
correlations by considering data for a wider range of morphological and flow characteristics than previously examined.
We also studied the dependence of single-fluid-phase flow through anisotropic media on morphological characteristics
beyond porosity and postulated a quantitative measure of anisotropy that we demonstrated to be predictive of the
macroscopic flow behavior. This result is significant because it concretely establishes a connection between the
macroscopic flow coefficients and an averaged measure of the anisotropy of underlying solid phase morphology: the
orientation tensor. As a consequence, the predictive capabilities for anisotropic flows are extended significantly. A
summary of the major contributions of this work are as follows:

1. A collective rearrangement algorithm and mapping procedure was developed to generate packed periodic systems
of spheres and ellipsoids that matched a specified porosity and size distribution.

2. An approach was derived to simulate highly resolved flows that were essentially grid independent for a repre-
sentative elementary volume of porous medium systems and guidance was given on how such systems can be
created.

3. The momentum resistance of non-Darcy flows was demonstrated to depend linearly on the Reynolds number
and non-linearly on the flow orientation, accounting for all three independent components of the flow velocity.
An empirical form was introduced to account for the influence of the flow orientation in anisotropic flows.
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4. Porosity, specific interfacial area, and the geometric orientation of the solid surface were shown to be the variables
of leading-order importance in assessing Darcy and non-Darcy single-fluid-phase flow through anisotropic porous
media.

5. The spectral decomposition of the momentum resistance tensor was studied and an approach was proposed
to predict both the eigenvectors and eigenvalues. An empirical functional form was posited to represent the
momentum resistance tensor and correlations were developed to predict parameter values based upon a large
number of highly resolved simulations.

6. The functional form developed in this work to predict the resistance tensor was compared to available estimates
and shown to be significantly more accurate than previous estimates when the entire range of simulations
performed in this work was examined.
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FIG. 4: (Color online) Relative error associated with various predictive forms plotted as a function of Re. Accurate
prediction of three-dimensional flow behavior requires all coefficients appearing in Eq. (11).
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FIG. 5: Simulated data points and best-fit curve for an isotropic sphere pack with a porosity of 0.37.
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FIG. 9: (Color online) Anisotropic simulation data and best-fit functional forms for α‖(Λsi ) and β‖(Λsi ).
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