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We present a theoretical analysis of the capillary driven transport of liquid in porous media that 
undergoes a sudden expansion. The use of appropriate coordinates allows for exactly and 
analytically solving different cases in two and three dimensions. The time dependence of liquid 
front motion in an expanding porous media is shown to be different from the one dimensional 
Lucas-Washburn (Kolloid Z., 1918. 23: p. 15; Phys. Rev., 1921. 17: p. 273) results as well as 
from the solution for two and three-dimensional circular expansions obtained by J. Hyväluoma et 
al. (Phys. Rev. E, 2006. 73: p. 036705) and Xiao et al. (Langmuir, 2012. 28: p. 4208). These 
cases appear as asymptotic limits of our solutions. We also observe that capillary flow in 
expanding three dimensional porous materials exhibits a steady state solution for the bulk flow 
rate at the entrance of the expansion.   
 
I. INTRODUCTION  

 Capillary driven liquid flows in porous media are ubiquitous phenomena that occur both 
in nature and in various practical applications.1-8 The dynamics of such flows was first analyzed 
about a century ago9-11 for the simple case of one dimensional transport in porous materials 
(capillaries) of uniform cross-section. The advancement of the liquid is driven by the capillary 
pressure due to the curvature of the liquid-gas interface in each individual pore. Hence the liquid 
should wet the pore walls with a contact angle that is less than 90˚. As the liquid penetrates 
further into the porous material of constant cross section, the total hydrodynamic resistance 
increases and the bulk flow rate decreases proportionally to 1/2t −

 (where t is time). This result is 
often referred to as the Lucas-Washburn (LW) relationship.10-11 Strictly the LW model was 
derived for the flow in a single straight capillary. For a porous media the LW relationship has an 
average macroscopic meaning, similar to the D’Arcy equation6,12 with pressure drop determined 
by capillarity and a permeability coefficient that is a complex function of the porosity. The LW 
model is based on the assumption that the flow is governed by the liquid motion, and the 
displacement of the gas phase at the front does not practically contribute due to its much lower 
dynamic viscosity. The model assumes a single-phase system with a moving front, and is valid in 
the limit of small gas pressure and density. This has been both experimentally and theoretically 
shown to be reasonable for a great number of systems involving liquids moving in porous 
media4,6,13-18 including by carefully obtaining the density profile at the front.19  In the case of two 
immiscible liquids displacing each, the flow needs to be treated as a two-phase and will depend 
on both viscosities.6 The focus of the present paper is on liquid phase capillary flow in porous 
materials without entrapment of air anywhere in the wetted region.  
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 The time behavior of liquid penetration in porous media is very different if the flow   
occurs in porous media that expands (or contracts) in direction of the flow. Estimations of the 
bulk flows in 2D and 3D expanding porous media were offered13-15 suggesting that the time 
dependence of the flow deviates from the LW one-dimensional (1D) case.  The cases of 2D 
radial flow where the front is represented by a gradually expanding circle was analyzed in detail 
by Hyväluoma et al.17 The authors compared the capillary driven flow D’Arcy type model to 
Lattice-Boltzmann simulation and obtained excellent agreement, thus validating the analytical 
approach. The detailed analysis of the 3D case corresponding to an expanding spherical surface 
was performed by Xiao et al.16 There the capillary driven transport model was tested against 
carefully performed experiments and again both were found to be in agreement. To maintain 
circular or spherical symmetries the flows must start from a point or an already circular (for 2D) 
or spherical (3D) boundary. Hyväluoma et al.17 used the model to describe the penetration of 
liquid in two dimensions (2D) from a droplet with circular circumference sitting on porous 
paper. They showed that the liquid velocity decreases with time following a different and more 
complicated dependence. Xiao et al.16 used the spherical expansion model to fit experimental 
data on capillary penetration of water in packed glass beads. All these results are very important 
because they imply that the shape of the porous material leads to qualitative differences in the 
resulting flow patterns. This means that applications using capillary driven transport in porous 
media can be optimized by simply shaping the materials accordingly.4 
 In this paper we present exact analytical results for the flow in porous media that exhibit 
sudden expansion (see Figure 1).  The flow in these cases is not necessarily radial as in the Refs. 
16-17 because the entrance to the expanding porous space has finite dimension and is usually flat 
instead of circular. Our results include a linear velocity field at each point (on a scale greater than 
the typical average pore size) in the domain of interest. The detailed knowledge of the local fluid 
velocity is very important for applications like designing paper based diagnostic devices with 
different shapes,2,4 delivering solutions to power fuel cells8 or to better understanding how 
moisture penetrates construction materials.13-14 We derive the position of the wetted front as well 
as the bulk flow rate in the porous material as functions of the elapsed time. The 2D solution is 
applicable to a wide variety of shapes. The 3D case can be simply treated only if the domain has 
axial symmetry. We will limit our analysis only to porous domains with zero flow across the side 
boundaries and will ignore inertia effects. Inertia and hydrodynamic nonlinearity is important in 
the initial moment of liquid penetration into the porous media and depends on the driving 
capillary pressure.20 The latter is a function of the pore (capillary) radius and the wetting contact 
angle. As the pores may vary in size, the capillary pressure used in our model is an average over 
the pore size distribution, which has to be sufficiently narrow to prevent capillary fingering from 
occuring. It was shown that for radii of the order of 50 µm inertia is usually important. If the 
wetting contact angle is 0o then inertial terms might be significant down to 10 µm pore radii.20 
Below these pore sizes viscosity is dominant and inertia does not play a role. The solution is 
restricted to the assumption that gravitational effects are negligible. For approximately 2D 
systems this is usually reasonable even for large systems as the dimensions are commonly 
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orthogonal to the gravitational field. However in 3D this means that the solution degrades as the 
capillary pressure times the surface area approaches the weight of the fluid because this greatly 
distorts the front of the advancing fluid by gravitational percolation.15 Finally our analysis does 
not include possible evaporation of 2D surfaces or of the side boundaries for both 2D and 3D 
systems. The analysis of cases with permeable side boundaries and surface evaporation will be 
published elsewhere.21 
 In the next section, we present a general overview of the capillary driven flow in porous 
materials. Section III presents the derivation of results for the flow velocity in 2D expanding 
porous media, Section IV presents the solution for the capillary driven flow in an expanding 3D 
porous material, Section V discusses and compares the results for each of the respective 
geometries, and Section VI summarizes the conclusions.  
 
II. GOVERNING EQUATIONS FOR THE FLOW IN POROUS MEDIA   

 The flow of incompressible liquid in porous media is given by the mass balance 
 
 0vi∇ =  (1) 
 
where v is the linear liquid velocity on a scale that is larger than the individual pore size.  For 
mass flux a sink or source term, Q, (e.g. evaporation, condensation, etc.) may be added to the 
right hand side of (1); this term is presently ignored.  The liquid flow in porous media is 
irrotational;22 therefore the velocity can be expressed by means of the velocity potential, ϕ,  
 

 ,k kP P= ∇ϕ = − ∇ ϕ = −
μ μ

v . (2) 

 
The right hand side of Eq. (2) is the D’Arcy law12,22 with k being the permeability of the 
medium, µ is the dynamic shear viscosity of the liquid, and P is the pressure that drives the flow. 
In the case of capillary driven flow the pressure is equal to23 
 

 
1 2

1 1cosCP
R R

⎛ ⎞
= γ α +⎜ ⎟

⎝ ⎠
 (3) 

 
where γ is the interfacial tension at the gas-liquid interface, α is the contact angle that 
characterizes the wetting of the solid. R1 and R2 are the two principal radii of curvature of the 
pore. Equations (1) and (2) can be combined to give  
 
 2 0∇ ϕ = . (4) 
 
Eq. (4) will be used to obtain expressions for the liquid flow in all cases analyzed below.   
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III. CAPILLARY DRIVEN FLOW IN TWO DIMENSIONAL EXPANDING POROUS 

MEDIA  

A. Exact solution in 2D 
 Different examples illustrating capillary liquid transport in expanding 2D porous media 
are sketched in Figure 1. Figures 1a and 1b show symmetric regions with different extent of 
expansion. Figures 1c and 1d represent two asymmetric cases. The liquid enters the expanding 
region through an entrance with finite width.  Because of the finite size of the entrance, the shape 
of the expanding liquid front is elliptical rather than circular as in the case discussed by 
Hyväluoma et al.17 The entrance is saturated with liquid and the pressure there equals the 
ambient.  The front of the moving wetted region is where the liquid meets the gas phase in the 
pores and the pressure there is equal to the ambient minus the capillary pressure [see Eq. (3)].  
Hence, we look for a solution in the domain that starts at entrance and propagates a wetted front.  
The problem is best defined in elliptic coordinates24 (see Figure 2) 
 

 
x = acosh ηcosψ
y = asinh ηsinψ.

 (5) 

 
The general form of Eq. (4) then becomes 
 

 ( )
2 2

2
2 22 2 2

1 0.
cosh cosa

⎛ ⎞∂ ϕ ∂ ϕ∇ ϕ = + =⎜ ⎟∂η ∂ψη − ψ ⎝ ⎠
 (6) 

 
If there is no liquid flow across the edges of the domain that are defined by 1ψ = ψ  and 2ψ = ψ   

(see Figure 1), there will be no variation of ϕ with respect to the angular variable ψ.  Hence the 
term 2 2/∂ ϕ ∂ψ  can be dropped from Eq. (6) and the equation simplifies to  
 

 
2

2 0d
d

ϕ =
η

. (7) 

 
The solution of this equation describes concentric elliptic lines that correspond to the flow 
potential ϕ at a given η.  The boundary conditions are  
 

 0 at 0 

0 at  

C

f

k Pϕ = ϕ = − η =
μ

ϕ = η = η
 (8) 

 



5 
 

where η = 0 at the entrance and η = ηf  at the front.  The solution of Eq. (7) is then  
 

 1 .C
f

k P
⎡ ⎤ηϕ = − −⎢ ⎥μ η⎢ ⎥⎣ ⎦

 (9) 

 
Hence the velocity of the moving liquid is  
 

 ( )
( ) ( )1/2 1/22 2 2 2

1 1 1 .
cosh cos cosh cos

C

f

kPv
a a

η η

⎛ ⎞∂ϕ= ∇ϕ = = ⎜ ⎟⎜ ⎟∂η μ ηη − ψ η − ψ ⎝ ⎠
 (10) 

 
Following the approach outlined by Washburn,11 we derive an equation for the velocity of the 
moving front  

 

vη f
= a cosh2 η f − cos2 ψ( )1/2 dη f

dt
= 1

a cosh2 η f − cos2 ψ( )1/2

∂ϕ
∂η

⎛
⎝⎜

⎞
⎠⎟ η=η f

=
kPC

aμ
⎛

⎝⎜
⎞

⎠⎟
1

cosh2 η f − cos2 ψ( )1/2

1
η f

.
 (11) 

 
It is convenient to use a dimensionless velocity that has the form �vη f

= μa / kPC( )vη f
.   

The time dependence of the position of the liquid front ( )f tη  can be derived by 

integrating Eq. (11) 
 

 

   

kPC

μ

cosh2 η
f

' − cos2 ψ( )
∂ϕ / ∂η( )η=η f

'

dη
f

'

0

η f t( )
∫ = �t , �t =

kPC

μa2 t . (12) 

 
After integration and brief rearrangement Eq. (12) leads to the following relationship for the time 
dependent position of the liquid front  
 

 
   
η f sinh 2η f( ) − 1

2
cosh 2η f( ) − cos 2ψ( )η f

2 + 1
2

= 4�t . (13) 

 
Eq. (13) represents the dependence of the front position on time η f

�t( ) . Differentiating with 

respect to time and multiplying it by the factor ( )1/22 2cosh cosfa η − ψ  gives the time-dependent 
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velocity of the front [see the left hand side of Eq. (11)]. Alternatively η f
�t( )  can be introduced in 

the last line of Eq. (11) to obtain the time dependence of the linear velocity �v f
�t( ) .  

 Another quantity of interest is the volumetric flux of liquid U. It is equal to the integral 
over the liquid linear flow velocity across the area of the front, or [see Eq. (11)] 
 

 U �t( ) = v ⋅n
A
∫ dA = a vη fψ1

ψ2

∫ �t( ) cosh2 η f
�t( ) − cos2 ψ⎡⎣ ⎤⎦

1/2
dψ =

kPC

μη f
�t( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ψ 2 − ψ1( ) . (14) 

 
Since the liquid motion occurs in 2D plane, the above result is per unit length in direction normal 
to the plane surface. The local linear velocity �v  will decrease with the increase of η in an 
expanding domain and is lowest at the front where fη = η . The volumetric flux U conserves 

because as the linear velocity decreases the front area increases to exactly compensate for that. 
Both, however, will change with time. For fully open entrance ( )1 20,ψ = ψ = π  one obtains 

 

 U �t( ) =
πkPC

μη f
�t( )  (15) 

 
 
B. Asymptotic results for small and large fη  

For short times, fη  is small and we can further simplify the solution (13) (also setting 

/ 2ψ = π ) to read 
 

 
2

2
f t�

η
= . (16) 

 
This expression is formally identical to the LW result10-11 
 

 
L t( )2

2a2 = �t  (17) 

 
Which describes the position of the front L(t) in porous domain with constant cross-section. 
Hence for short times and small fη  the effect of the expansion is negligible. It is also important 

to stress that the short times discussed here are reflecting only the effect of the porous media 
geometry and are still long in comparison to the time-scale of any inertial fluid motion. Inertia (if 
present) occurs on a time scale that is much faster (about at fraction of a second) and practically 
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absent for pores with radii below 10 µm, or for even larger pores if the wetting contact angle is 
less than 0o.20 
 The asymptotic result for large ηf is obtained by realizing that ( ) ( )sinh 2 exp 2 / 2f fη → η  

and ( ) ( )cosh 2 exp 2 / 2f fη → η .  At long times the asymptotic result for (13) is 

 

 
   
1
8

η f exp 2η f( ) − 1
16

exp 2η f( ) = �t . (18) 

 
As will be shown below, Eq. (18) is identical to the long time asymptotic results of Hyväluoma 
et al.,17  
 

 
2 2 2 2 2 2

2
0 0 0 0 0 0 0

4ln 1 lnf f f f f f CR R R R R R kP t
R R R R R R R

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
− + ≈ − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ μ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. (19) 

 

fR  is the postion of the expanding liquid front and 0R  is the radius of the entrance, which in 

their analysis must be circular. Using the relationship between polar and elliptical coordinates 
defined by 
 
 ( )2 2 2 2 2 2 2 2cosh cos sinh sinr x y a= + = η ψ + η ψ  (20) 

 
one can write Eq. (19) in terms of fη . Thus tracing the position of the liquid front along the y-

axis we obtain 
 

 
2 2

2
2 2
0 0

sinh 1f
f

R a
R R

= η + . (21) 

 
The term 1 on the right hand side of the above equation is added to ensure that 0/ 1fR R ≥ . 

Inserting (21) into (19) describes the position of the liquid front (along the y-axis) as a function 
of time 
 

 sinh2 η f +
R0

2

a2

⎛

⎝⎜
⎞

⎠⎟
ln sinh2 η f +

R0
2

a2

⎛

⎝⎜
⎞

⎠⎟
− sinh2 η f =

4kPC

μa2 t = 4�t  (22) 

 
The factor 2 2/fR a  can be found from the condition that entrances for both circular and elliptical 

cases are the same. For 0 ≤ ψ ≤ π  this condition reads 
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 0
0

2  or 
2

aa R
R

π= π = . (23) 

 
 For large fη  we have  

 

 
( ) ( )2 2

exp 2 exp 2
cosh , sinh

4 4
f f

f f

η η
η → η →  (24) 

 
and 
 

 
( ) ( ) ( )2 2 2

2 2
2 2 2
0 0 0

exp 2 exp 2
cos sin

4 4
f ffR a a

R R R
η η

= ψ + ψ = . (25) 

 
Then the right hand side of Eq. (19) becomes  
 

 

a2

R0
2

exp 2η f( )
4

ln a2

R0
2

exp 2η f( )
4

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

−
exp 2η f( )

4

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=

a2

R0
2

exp 2η f( )
4

2η f + ln a2

4R0
2

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−
exp 2η f( )

4

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
≈ a2

R0
2

η f exp 2η f( )
2

−
exp 2η f( )

4

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
,

 (26) 

 
since    2η f � ln a2 / 4R0

2( ) and therefore can be neglected. Introducing the above expression in 

Eq. (19) makes it identical to (18). For very large ηf  and one may use the approximation  
 
 ( ) ( )ln ln ! ln 1x x x x x− ≈ ≈ Γ +⎡ ⎤⎣ ⎦ , (27) 

 
 which allows to write the left hand sides of Eq. (18) in a more compact form.  
 

 ( ) ( ) ( )21 1 1exp 2 exp 2 ln 1
8 16 16

f
f f f e η⎡ ⎤η η − η ≈ Γ +⎣ ⎦ . (28) 

 
 
IV. CAPILLARY DRIVEN FLOW IN EXPANDING THREE DIMENSIONAL POROUS 

MEDIA 

A. Exact solution in 3D 
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 For flow in 3D porous media, a general grasp of the geometry can be obtained from 
Figures 1a and 1b if the graphs are revolved around their vertical axis of symmetry (the z-axis in 
Figure 3).  The coordinates that are relevant to such system are defined by24 (see also Figure 3) 
 

 
cosh sin cos
cosh sin sin
sinh cos

x a
y a
z a

= η θ ψ
= η θ ψ
= η θ

. (29) 

 
Note that the variable ψ is different from the one used in the elliptic 2D case discussed above 
(see Figure 3 and compare it to Figure 2).   The Laplace equation for the flow potential, Eq. (4), 
has the form24  
 

 ( )
2 2 2

2
2 2 2 2 2 22 2 2

1 1tanh cot 0
cosh sincosh sin aa

⎛ ⎞∂ ϕ ∂ϕ ∂ ϕ ∂ϕ ∂ ϕ∇ ϕ = + η + + θ + =⎜ ⎟∂η ∂η ∂θ ∂θ η θ ∂ψη − θ ⎝ ⎠
.(30) 

 
Since we consider an axis-symmetric domain, 2 2/ 0∂ ϕ ∂ψ = , the last term can be dropped.  
Additionally, there is no flow across the surface corresponding to θ = π/2 and θ = –π/2, hence 
there is no change with θ and all derivatives with respect to the polar angle are zero.  Therefore 
Eq. (30) can be significantly simplified to  
 

 d 2ϕ
dη2 + tanh η dϕ

dη
= 0. (31) 

 
This equation describes concentric oblate surfaces that correspond to the flow potential ϕ(η).  
The boundary conditions for capillary driven flow are identical to those given by Eq. (8) 
 

 . (32)  

 
The solution for the flow potential is then  
 

 
( )

( )0

arctan tanh / 2
1

arctan tanh / 2f

⎧ ⎫η⎡ ⎤⎪ ⎪⎣ ⎦ϕ = ϕ −⎨ ⎬
⎡ ⎤η⎪ ⎪⎣ ⎦⎩ ⎭

. (33) 

 
Note that for fη → ∞  the above expression becomes 
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( )

0

4arctan tanh / 2
1
⎧ ⎫η⎡ ⎤⎪ ⎪⎣ ⎦ϕ = ϕ −⎨ ⎬π⎪ ⎪⎩ ⎭

 (34) 

 
which means that in the 3D  case we have a finite asymptotic result for infinite domains which is 
not true for the one and two dimensional cases.  

The liquid velocity profile in the 3D porous region has only an η-component, which is  
 

 
( ) ( ) ( )1/2 1/22 2 2 2

1

cosh sin 2 cosh cosh sin arctan tanh / 2
C

f

kPv
a a

η
∂ϕ= =
∂η ⎡ ⎤η − θ μ η η − θ η⎣ ⎦

. (35) 

 
The velocity of the front is  
 

 
( ) ( ) ( )1/2 1/22 2 2 2

1

cosh sin 2 cosh cosh sin arctan tanh / 2f

f

C

f f f f

kPv
a a

η
η=η

⎛ ⎞∂ϕ= =⎜ ⎟∂η ⎡ ⎤⎝ ⎠η − θ μ η η − θ η⎣ ⎦
(36) 

 
The velocity is formally expressed in terms of the spatial and temporal variables by 
 

 ( )1/22 2cosh sin
f

f
f

d
v a

dtη

η
= η − θ . (37) 

 
Hence, combining (36) and (37) one derives 
 

 ( )( ) '
2 ' 2 ' '

20
cosh sin arctan tanh cosh

2 2 2
f t f C

f f f
kP td t

a
�η ⎡ ⎤⎛ ⎞η

η − θ η η = − =⎢ ⎥⎜ ⎟⎜ ⎟ μ⎢ ⎥⎝ ⎠⎣ ⎦
∫ . (38)  

 
After integration we obtain a relationship between the front position fη and scaled time �t  

 

1
3

arctan tanh
η f

2
⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2 + 3cos 2θ( ) + cosh 2η f( )⎡
⎣

⎤
⎦sinh η f( ) −

1
6

1+ 3cos 2θ( )⎡⎣ ⎤⎦ ln cosh η f( )⎡
⎣

⎤
⎦ − 1

12
cosh 2η f( ) −1⎡
⎣

⎤
⎦ = �t

. (39)  

 
The front velocity is then obtained by introducing the obtained time dependence of fη  in Eq. 

(36) or (37). The volumetric flux is obtained from  
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( )
( )

( )
( )

0
2 2

0 0

0

sin
arctan tanh

2

2 1 cos
.

arctan tanh
2

C

A f

C

f

kP aU t dA d d
a t

akP
t

v n� π θ
= ⋅ = ψ θ θ

μ ⎧ ⎫η⎡ ⎤⎪ ⎪
⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

π − θ
=

⎧ ⎫η⎡ ⎤⎪ ⎪μ ⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

∫ ∫ ∫

 (40) 

 
For full open entrance ( )0 / 2θ = π   

 

 ( )
( )

2 .
arctan tanh

2

C

f

akPU t
t

� π=
⎧ ⎫η⎡ ⎤⎪ ⎪μ ⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

 (41) 

 
 
B. Asymptotic results for small and large fη  

 For short times and small values of fη  and 0θ =  Eq. (39) simplifies to 

 

 
2

2
f t�

η
= . (42) 

 
The long-time, large fη , asymptotic result can be derived for Eq. (42) using the same arguments 

as above [see Eq. (18)] and also noting that ( )arctan tanh / 2 / 4f⎡ ⎤η → π⎣ ⎦ .  The result is 

 

 π
4

exp 3η f( )
12

= �t . (43) 

 
For large fη  the front shape should approach that of an expanding sphere. The latter can be 

derived from Eq. (4) written in the form  
 

 2
2

1 0d dr
r dr dr

ϕ⎛ ⎞ =⎜ ⎟
⎝ ⎠

 (44) 

 
together with the following boundary conditions 
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 0 0, ,

, 0

C

f

kr R P P P

r R

= ϕ = ϕ = − Δ Δ =
μ

= ϕ =
. (45) 

 
Then the solution for the potential is (see also Ref. 16)  
 

 0
0

0

1 1f

f f

R R
R R r R

⎛ ⎞
ϕ = ϕ −⎜ ⎟⎜ ⎟− ⎝ ⎠

. (46) 

 
It is interesting to point out that in the case of 3D radial flow, there is a finite solution for ( )rϕ  

even if fR  is at infinity.  In this case  

 

 0
0

R
r

ϕ = ϕ . (47) 

 
The radial velocity is then  
 

 0 0
0 2 2

0 0

1 1f f C
r

f f

R R R R kPv
r R R r R R r

∂ϕ= = −ϕ =
∂ − − μ

. (48) 

 
At fr R=  

 

 vRf
=

dRf

dt
=

R0

Rf Rf − R0( )
kPC

μ
. (49) 

 
Hence the time-dependent position of the moving front is given by 
 

 
( )

0

' ' 3 2 2
0 '

3 3 2 2
0 0 0 0

1
3 2 6

fR f f f f
fR

R R R R R adR t
R R R R

�
−

= − + =∫ . (50) 

 
The radial coordinate in 3D oblate spheroid coordinates is  
 

 ( )
( )

2 2 2

2 2 2 2 2 2 2 2 2

2 2 2 2 2

2

cosh sin cos cosh sin sin sinh cos

cosh sin sinh cos

x y z

a

a

r + + =

η θ ψ + η θ ψ + η θ =

η θ +

=

θ

. (51) 
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At the front fη = η and for large fη  we use the approximations ( )2cosh exp 2 / 4η ≈ η  and 

( )2sinh exp 2 / 4η ≈ η . Hence 

 

 ( )2 2

2 2
0 0

exp 2
4

fR a
R R

η
=  (52) 

 
and Eq. (50) becomes  
 

 

( ) ( )

( ) ( )

3 2 3 2 2

3 2 3 2 2
0 0 0 0 0

2
0
2

0

exp 3 exp 21 1 ,     or 
3 2 6 3 8 2 4 6

exp 3 exp 2
.

24 8 6

f fR R a a a t
R R R R R

Ra t
R a

�

�

η η
− + = − + =

η η
− + =

 (53) 

 
Keeping only the leading order term in (53) and expressing the ratio 0/a R  using Eq. (23) we 
obtain  
 

 
( )exp 3

2 24
t�

ηπ =  (54) 

 
which is identical to (43). 
 
 
V. RESULTS AND DISCUSSION 

A. Transport in two dimensional porous media 
 Two effects govern the liquid transport in an expanding 2D porous region. Both of them 
follow from the mass conservation of the incompressible liquid. The first one follows from the 
mass conservation and is due to the liquid distribution over an ever-increasing space (or area). 
This effect leads to an apparent decrease in the velocity of the moving front. At the same time 
the liquid travels less distance per unit time which lowers the friction resistance while the 
capillary force increases due to the expansion of the front. The combination of the two effects 
slows down the linear velocity and facilitates the bulk flow rate in an expanding porous material.   
Figures 4a and 4b show the dependence of the liquid front position and linear velocity of 
capillary driven liquid flow in two dimensional porous regions. The solid lines correspond to the 
case depicted in Figure 1a (the entrance has finite dimensions). The plot was derived from Eq. 
(13) setting / 2ψ = π  i.e., the flow along the y-axis is traced (see Figure 2). It is compared to the 
LW power-law case10-11 of non-expanding porous material which maintains constant cross 
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sectional dimension [dashed line, see also Eqs. (16) and (17)], as well as to the case of radial 
flow17 [see Eq. (19)]. At short times the front position shows a power law increase similar to the 
LW solution. This is due to the fact that the effect of the expansion is weak for short distances, 
the liquid has not spread too much, and the streamlines are almost parallel. As time progresses, 
however, the expansion effect increases and the distance traveled by the front in the expanding 
porous domain decreases in comparison with the non-expanding LW case because liquid has also 
moved to the sides to form the elliptically shaped front. For long times the front becomes less 
elliptical and more circular and the solution for the front position asymptotically approaches that 
for an expanding circle given by the dotted line in Figure 4a [see Eqs. (18) and the discussion 
thereafter]. Hence, the LW10-11 solution and the circular expansion result obtained by Hyväluoma 
et al.17 represent the limiting cases of no expansion and maximum expansion in 2D. Our result 
given by Eq. (13) describes the entire time behavior including two limiting cases as well as the 
intermediate case, and as seen from Figure 4a. The latter applies to a range of more than two 
orders of magnitude of the scaled time. 
 The time dependence of the linear velocity of the liquid front is shown in Figure 4b. The 
solid line corresponds to our solution given by Eq. (11) in combination with (13). The dashed 
line is the LW result10-11 and the dotted line is that for the radial flow when 0/fR R  or, 

equivalently, fη  are large.17 Clearly the velocity drops with time for all the cases but at different 

rates. If the porous region does not expand, then the reason for the velocity decrease is due to the 
increase of the length of liquid penetration. This length contributes to the viscous resistance and 
hence, slows down the motion. If the liquid travels in an expanding material (like the examples 
outlined in Figure 1) the front motion is also slowed by the fact that liquid is diverted sideways 
into the available expanding space. The effect of the expansion is strongest in the case of pure 
radial flow. At short times our solution is close to that for a non-expanding medium and 
asymptotically approaches the one for radial flow for very long times.  
 It is interesting to examine the dependence of the bulk (volumetric) flow rate since it is a 
measure of the ability of the porous material to absorb liquid. An important practical application 
exploiting this ability is to drive fluid in devices and material using capillary action instead of an 
external power source.4 The solid line in Figure 5 shows the change of the bulk flow rate with 
time calculated from Eq. (41). Since we are considering a 2D domain, the bulk flow rate is 
calculated per unit length in direction normal to the plane of the flow. Again for comparison both 
the non-expanding LW and the radial expanding cases (for large fη ) are shown. Both are 

obtained in a similar way by multiplying the liquid velocity at the front by its length. Clearly an 
expanding porous material has better capabilities of absorbing liquids; as it is evident in the 
plots, the bulk flow rate decreases much slower with time in comparison with the non-expanding 
case.   
 
B. Transport in three dimensional porous media 
 The effect of expansion is stronger when it occurs in three dimensions. The reason is that 
there is more space available for the liquid to occupy as it moves forward driven by capillary 
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pressure. The calculations presented below are for fully opened medium where / 2θ = π  (see 
Figure 3). The entrance has a circular shape. The flow along the y-axis is traced, which 
corresponds to 0θ = . Figure 6a shows the position of the fluid front as a function of the elapsed 
time.  The solid line corresponds to the solution in oblate spheroid coordinates given by Eq. (39)  
(i.e. the fluid enters the porous material through a circular entrance with finite dimension) and it 
is compared to the non expanding case (dashed line) and the expansion in spherical symmetry for 
large 0/fR R  [or fη  – see Eq. (54)]. At short times the expansion effect is insignificant while at 

long times the behavior approaches that of an expanding spherical front. Similarly to the 2D 
case, our solution interpolates between these two limiting cases and provides a correct 
description for the cases where the liquid enters the 3D expanding porous material through an 
entrance with a finite size.  
 The linear velocity of the advancing liquid front is shown in Figure 6b. The effect of the 
expansion on the front velocity resembles 2D (see Figure 4b) but more pronounced because of 
the spreading of the liquid over larger front area. That leads to greater reduction of the velocity 
of the moving liquid front.  
 The bulk volumetric velocity is presented in Figure 7. It should be emphasized that the 
3D expanding case allows for a solution where fluid will keep entering the porous material 
through the circular entrance. This is also evident from Eq. (41) which for time and fη → ∞  

becomes 
 

 4
2 C

UU
akP

� ∞
∞

μ= =
π π

. (55) 

 
This result implies that 3D porous media can be used as capillary pumps to drive fluids in 
devices. This cannot be accomplished if the porous material does not expand, or the expansion is 
two dimensional (see also the discussion below). The actual rate of drawing liquid in, however, 
will depend on parameters such as the average pore size, liquid viscosity, and pore wetting 
ability and may turn out in many cases to be too low (see experimental results in Xiao, et. al.16).  
 Since the asymptotic result (55) follows from the dimensionality of the system, one may 
expect that similar relationship to exist for the pure radial (spherical) transport (see Figure 7). 
Indeed using equation (48) we can find the linear velocity at the entrance where 0r R= . To 
obtain the bulk flow rate one needs to multiply the result by the area of the entrance which we 
assume to be a hemispherical in order to better compare to the oblate spheroid case discussed 
above. Thus the asymptotic ( )fR → ∞  expression reads 

 
0

1
2 C

UU
R kP

� ∞
∞

μ= =
π

. (56) 
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Hence, if the system is 3D stationary solutions are possible, which is generally the case for 
Laplace equations in infinite or semi-infinite spaces and is known for similar processes like heat 
transfer or diffusion.25  
 
C. Effect of porous media dimensionality 
 The dimensionality of the porous media is extremely important for the flow rate. There is 
no expansion in the case of 1D transport (which is represented by the LW case10-11) and the 
linear velocity (as well as the bulk flow rate) drop as 1/ t . At the other extreme, the 3D case 
allows for a solution even for fη → ∞  [see Eq. (55) above]. Figure 8a shows a comparison for 

the time dependent position of the moving liquid front for 1D, 2D (elliptical) and 3D (oblate 
spheroid) cases. The 1D case exhibits the farthest liquid penetration while in 2D and 3D the 
distance is much shorter. The rate of liquid motion also decreases with the dimensionality of the 
flow (see Figure 8b). This is due to distribution of the advancing liquid over greater space. The 
cross sectional area that the fluid moves through does not change in 1D, increases linearly with 
distance in 2D, and quadratically in 3D. Since the liquid is incompressible it can cover shorter 
distances per unit time for the two and particularly the three dimensional cases. It is, however, 
very different for the bulk flow rate (see Figure 8c). The volume absorbed per unit time by the 
porous domain decreases the fastest for the 1D flow. The decrease in the bulk flow rate for 2D 
expanding case is lower and for 3D it levels off to a steady state [see Eq. (55) above]. The reason 
is the bulk flow rate is slowed down by the viscous resistance which increases with the length of 
the traveled path. The latter is greatest in 1D, shorter in 2D and shortest in 3D.  
 
VI. CONCLUSIONS 

 We derived solutions for potential capillary driven liquid flow in 2D and 3D expanding 
porous media. The selection of suitable coordinate systems allows for simplification of the mass 
balance expressions to ordinary differential equations that can be exactly solved.  The obtained 
solutions for expanding 2D and 3D porous materials are different from the well-known Lucas-
Washburn solution describing liquid motion in non-expanding material geometries. The 
functional forms of the time dependence of the front position and velocity are more complicated 
if the porous domain is expanding. At the same time and the liquid linear velocity is lower, 
which is due to spreading of the incompressible liquid over an ever-increasing domain.  
 The bulk flows display a qualitative difference in 1D, 2D and 3D. It decreases the fastest 
if the porous domain does not expand, less in 2D expanding domain and least in 3D. In fact the 
3D case can reach a steady state for the bulk flow into the porous material. This makes it suitable 
to use in driving fluids through devices using capillary forces and without the need of an external 
power source.   
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Figures 
 

 
 

Figure 1. Examples for flows in various types of expanding porous media in 2D [see Eqs. (5) 
and Figure 2.] Case (a) corresponds to 0 ≤ ψ ≤ π . Case (b) corresponds to 1 1ψ ≤ ψ ≤ π − ψ where 

1ψ  is an arbitrary angle. Case (c) corresponds to 1ψ ≤ ψ ≤ π . Case (d) corresponds to 

1 / 2ψ ≤ ψ ≤ π . Rotating cases (a) and (b) around the y-axis gives a 3D flow in expanding media 

[see Eqs. (29) and Figure 3] with 0 / 2≤ θ ≤ π  and 10 ≤ θ ≤ θ  respectively, where 1θ  is an 
arbitrary angle.  
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Figure 2. Elliptic coordinates, used to describe the flow in an expanding 2D porous domain. The 
points –a and a are the foci of the ellipses.  
 

 
 
Figure 3. Oblate spheroid coordinates, used to describe the flow in an expanding 3D porous 
domain. The points –a and a are the foci of the oblate surface corresponding to η. Only systems 
with axial symmetry are considered.  
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Figure 4a. Position of the liquid front in an expanding 2D porous material as a function of time 
[see Eq. (13)] (solid line). The dashed line is corresponds to the non-expanding LW result [see  
Eq. (16)]. The dotted line represents the result for an expanding circular front [see Eq. (19)].  
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Figure 4b. Velocity of the liquid front for capillary motion in expanding 2D porous material. 
The solid line corresponds to the flow depicted in Figure 1a [see also Eqs. (11) and (13)]. The 
dashed line shows the LW while the dotted – the 2D radial flows.  
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Figure 5.  Bulk flow rate vs. time for expanding 2D porous materials. The solid line corresponds 
to the flow depicted in Figure 1a [see Eq. (15) and (13)]. The dashed line shows the LW while 
the dotted – the 2D radial flows for large fη . 
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Figure 6a. Liquid front position as a function of the elapsed time in a 3D expanding porous 
material.  The solid line corresponds to the solution in oblate spheroid coordinates, the dashed 
line is the LW non-expanding case and the dotted line is the solution for spherical expansion at 
large fη . 
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Figure. 6b. Linear velocity of the moving liquid front in 3D porous material. The solid line 
represents the solution for an oblate spheroid front, the dashed line is for the LW solution and the 
dotted line corresponds to the asymptotic case of an expanding spherical front.  
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Figure 7. Bulk flow in 3D porous medium. The solid line the result for oblate spheroid 
symmetry, the dashed line corresponds to the LW case and dotted line represents the spherical 
case.  
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Figure 8a. Liquid front position vs. time in 1D (dashed line), 2D (solid line), and 3D (dotted 
line).  
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Figure 8b. Linear velocity of the liquid front vs. time in 1D (dashed line), 2D (solid line), and 
3D (dotted line). 
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Figure 9. Bulk liquid flow vs. time in 1D (dashed line), 2D (solid line), and 3D (dotted line). 
 
 
 


