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Recent studies of network science have revealed the sendé@pendence of the network collective behaviors
on structures, here we employ this feature of topologicatisieity for the purpose of pattern control. By
simple models of networked chaotic oscillators, we are tthéggue and demonstrate that, by manipulating just
asinglelink in the network, the synchronous patterns of the systamhe effectively adjusted or controlled.
In particular, by changing the weight or the connection ofiargut link in the network, we find that not only
various stable synchronous patterns can be generated fimisystem, but also the synchronous patterns can
be successfully switched among different forms. The stglof the synchronous patterns is analyzed by the
method of eigenvalue analysis, and the feasibility of thetrmb is verified by numerical simulations. Our study
provides a step forward to the control of sophisticatedeatiVe behaviors in more complex networks, as well
as giving insights to the evolution and function of someistialcomplex systems.

PACS numbers: 05.45.Xt, 89.75.Hc

I. INTRODUCTION neurons are found to be firing synchronously in a group fash-
ion during the process of information processing (e.g.; per

o ) _ ception recovery) [15], or when are subjected to some exter-
A distinct feature of the complex systems in nature is theng| stimuli (e.g., neural binding) [16]. That is, under egnt

sensitive dependence of their dynamics on the initial condicjrcymstances the neurons are able to self-organize ifito di
tions or system parameters [1]. A well-known example is theerent forms of synchronous patterns. These synchrondus pa
chaotic systems, where a small perturbation on the system ingerns, as revealed from the experimental data, are vergunst
tial condition will result in a significant change of the S8t pje and can be largely changed by small perturbations. For
state a moment later, namely the butterfly effect [2]. To tamgnstance, a slight change of the network structure, as dause
this dynamical sensitivity, in the past decades there hae@b 1,y the aberrant axonal reorganization of the excitatory- den
extensive studies on the control of chaos [3], where a signifigte granule cell axons onto the neighboring granule neyron
icant finding is that the chaotic behaviors can be efficientlycq,id lead to the emergence of a large-scale synchronyrthat i
tamed or controlled by adding small perturbations onto theg,g|yes many neuronal assemblies — a network mechanism for
system states or parameters, e.g., the OGY method [4]. lgpileptic seizures [17]. In network science, an intriguamgl
terms of dynamical sensitivity, a network analogy of chaoschallenging question isan we stabilize the synchronous pat-
could be the dynamics of complex networks, where a slighterns in complex systems, or switching the synchronous pat-

lective behaviors of the system as a whole. For instance, th@e network structure?

failure of a single transmission line in the power-grid netiw
could lead to a large-scale blackout within a few minuteg, du

tﬁ.the mecfhgnism of n_eté/vorkdcascadingr[IS]. _ Be:}ng aware Othe analysis of synchronous patterns in the complex network
this type of dynamics-induced catastrophe, In the pastsyeats , ,ch'more difficult and challenging [19]. This is partyall

efforts have been given to the improvement of the network roy o to the fact that the synchronous patterns, if existing, a

bustness and performance. For instance, it is found that by fragmented and scattered, making them difficult to be
|ntent|onally removing a few of the network links at the be- figured out from the complex network [18, 20]; and also be-
ginning of the cagcadmg, the_ network damag_e can be largely, se that the patterns are highly dynamic and unstable, mak
reduced [6]. Besides cascading, rece_ntly the idea of tgpolo ing them difficult to be manipulated [21, 22]. Regarding thes
difficulties, to investigate the control of synchronoustpats
- , 97 in complex systems, a plausible and meaningful approach
c_hr0n|zat|on [8], oscillatory patterns[9], and controtiopza- 64 e adopting the simplified network structures that cap
tion [10], etc. ture some essential features of the general complex neswork
Synchronous and coherent motions are commonly observe&id., regular networks with a few of random shortcut links.
in neural and biological systems, and are widely recognizedh the present work, employing simple networks of coupled
as important to the system operations and functions [11-14Fhaotic oscillators, we will investigate how synchronoas-p
A typical example is the human brain, where the networkederns can be modified or manipulated by a small adjustment
of the network structure. Interestingly, we find that in #hes
network models, by adjusting the properties of justirgle
link, not only stable synchronous patterns can be generated
*Corresponding author. Email addressingxg@;j u. edu. cn but also the patterns can be switched among different forms.

Comparing to other types of network dynamics, e.g., global
etwork synchronization or Turing-like patterns [12-18],1

in network science, e.g., epidemic propagation[7], glalyal



The rest of the paper is organized as follows. In Sec. Il waty of a synchronous pattern can be analyzed by the method
will give our model of networked chaotic oscillators, andpr of eigenvalue analysis, with the details the following. i€rh
pose the method of eigenvalue analysis used to characterireethod is originated from the group-theory analysis prepos
the stability of the synchronous patterns. In Sec. lll, by di in Ref. [25], and is also a generalization of the method pro-
ferent network models, we will demonstrate numerically howposed in Refs. [26, 27].) Let, be the synchronous manifold
the synchronous patterns can be generated and manipulatefithe system (the manifold for global synchronization)d an
by a slight change of the network structure. Finally, in Sec.dx; = x; — x, be infinitesimal perturbations added to the os-
IV we will give our discussions conclusion. cillator trajectories, then the evolutions of the perttidras

are mainly governed by the equations

Il. THE STABILITY OF SYNCHRONOUS PATTERNS N
0%; = DF(x,) — ¢ Y ai; DH(x,)(6x; — 0x;),  (2)

Consider a complex network df identical nonlinear os- =1

cillators. Letx = F(x) be the node dynamics in the isolated \yhere DF and DH are the Jacobian matrices of the corre-
form, andH(x) be the coupling function among the nodes, sponding vector functions evaluated en Projecting{sz; }
then the evolution of the network could be described by thQnto the eigenspace Spanned by the eigenvectors of the net-

set of equations work coupling matrixC = A + K (K is the diagonal matrix
N whose elements are the degree of the corresponding node, i.e
. N - N _ ki = " . a;j), then the set of equations described by Eq. (2)
i =F(xi) —e z; aig[H(x;) — H(xi)l, (1) can be transformed inty decoupled equations
J_
with i, 5 = 1,..., N the node indices, andthe uniform cou- 0yi = [DF(x;) — eAiDH(x,)]0ys, ®)
pling strength. The network structure is captured by tha-adj where0 = A\, < Ay < < Ay are the eigenvalues @
cency matrixA, with a;; = —1 if nodesi andj are directly - ’

anddy; denotes théth mode of the perturbations. L4t be

i . ) ) ) the largest Lyapunov exponent calculated from Eq. (3) fer th
coupled 'deﬂ“ca' osmllgtors, the previous S.tUd'eS. haoes ) mode, then the stability of this mode is determined by the
that by a suitable coupling strength, the trajectories efas- _sign ofA;: itis stable ifA; < 0, and is unstable it; > 0. The
cillators can be converged to the same one after a transief{ e of), represents the motion parallel to the synchronous

time, i.e., reaching_ the state of global sync_hronizatiohe T manifold, which is always unstable due to the chaotic nature
range of the coupling strength, as well as its dependence g iha node dynamics

the network structure and the node dynamics, can be analyzed yjonvork symmetry sets in when dividing the eigenvalues
by the_method of master stability function (MSF)_ [23]' (modes) into groups. For any given symmesy,of the net-
Besides the special state of global synchronization, a nelyork structure, we can construct the corresponding permuta
work may also support other forms of synchronous behaviors;, matrix Py« n: pi; = pii — 1 if the exchange of nodes
For instance, for the network example plotted in Fig. 1(a), and j according toé doejs not change the network struc-
if in numerical simulations we atrtificially set the initiabn- ture, andp;; — 0 otherwise. It is straightforward to find that
ditions of the paired node$2, 5) and(3,4), to be identical, Pil _ 1?,32 — T, with Ty  the identity matrix. LetV be
then during the process of the system evolution, the trajecthe transformatio’n matrixxcﬁ’ i.e., M~'PM = P’ (with P’

tories of the paired nodes will be always identical (sin@yth o giagonal matrix), then the network coupling matrix can b
have the same node dynamics, the same initial conditiods, an, o »«formed into the following blocked form

receiving the same coupling signals during the system evo-
lution). That is, the system will be staying on the state of . B 0

partial synchronization characterized by the symbol seqgeie G=M "CM= < 0D ) y (4)
(a,b,c,c,b) [24, 27]. Here, the symbols, b andc, repre-

sent the trajectories of the oscillators, and are orderetthdy whereB andD are, respectively;; andn, dimensional ma-
node indices in the network. Nodes of the same symbol artrices, withn; + ny = N. BecauseG and C are similar
regarded as synchronized, and they form an individual synmatrices, they have the same set of eigenvalues. However, in
chronous cluster. The number of clusters in the system thuthe blocked matrixG, the eigenvalues are divided into two

is counted as the number of different symbols in the pattergroups:n; eigenvalues ilB andn, eigenvalues iD.

sequence. It is straightforward to find that the synchronous Let D be the matrix that contains the eigenvalue= 0,
patterns that can be supported by a network is closely depethen we know from the function of the transformation matrix
dent on the network symmetry. Specifically, to have a specifichat the synchronous manifold of the pattern is embedded in
form of synchronous pattern, the network structure must owrthe n, dimensional subspace spanned by the eigenvectors of
the corresponding symmetry. For instance, for the networlD. We order the eigenvalues & as0 = A" < A\3" <

connected, and;; = 0 otherwise. For networks of linearly

plotted in Fig. 1(a), the synchronous pattémb, c,c,b) is ... < X’%", and call the spanned subspace $gachronous
supported by the reflection symmesy subspaceln a similar way, the eigenvalues Bf are ordered

A network may possess different topological symmetriesas\i” < A" < ... < A7}, Since the subspace spanned by the
but not all the corresponding patterns are stable. Thelstabieigenvectors oB characterizes the perturbations transverse to



1 A>0 A<O0

T
unstable' stable

ﬂ‘lsynl sy(lﬂqtr)ﬂ syn/l tr

5 2 @ ' O A case 1
synq SYR . tr syn tr
474, | A4 case 2
Q O :A O A
: 3
4 S 0 o, o=l

FIG. 1: (Color online) (a) The model 6fnode network used in our analysis. The network has the tigfftesymmetryS, which may support
the synchronous pattetn, b, ¢, ¢, b). (b) A schematic plot used to analyze the stability of theckyanous pattern. The eigenvalues are divided
into two groups: ) for the transverse modes an@YJ for the synchronous modes:. is a critical parameter characterizing the boundary
of the stable regime: a mode is stable if its eigenvaluefggisA\ = o > o.. Case 1: For the pattefia, b, c, ¢, b), the distribution of the
eigenvalues calculated from the network in (a). Sinfe= \;"", which not satisfies the eigenvalue condition, the patteas ts unstable.
Case 2: A possible distribution of the eigenvalues that nm;egate a stable pattern (satisfying the eigenvalue oonoW > A\3¥™), which

is expected to be realized by a slight modification of the pekvgtructure or properties.

the synchronous manifold, we thus give it the ndaraasverse  and
subspaceTo have a stable pattern, it is necessary that all the

transverse modes in the transverse subspace should be damp- -1 V2/4 V2/4
ing with time. More specifically, we should have\!") < 0 D= +v2/3 —-2/3 1/3 |. (8)
for! = 1,...,n;. Meanwhile, to avoid the trivial pattern Vv2/3 1/3 —2/3

of global network synchronization, it is also necessary #sa

least one of the non-trivial modes in the synchronous sutespa For B, we have(\[", \}") = (1,1.67); while for D, we have

still be unstable, i.e A(A*Y") > 0 for some mode (modes) of (A7, A3¥", \3¥") = (0,1,1.33). Since the null eigenvalue

D. These are the two necessary conditions for generating stielongs taD, the synchronous and transverse subspaces thus
ble synchronous patterns in a complex network. are spanned by the eigenvectord»fndB, respectively.

By the above method, we now give an analysis to the sta- Previous studies of MSF have shown that [28], for the typ-
bility of the pattern(a, b, c, ¢, b) in the network shown in Fig. ical nonlinear systems, the valuedfs\), as calculated from
1(a). Firstly, from the reflection symmetr$, we can con- Eq. (3), is negative only whem = ¢ > o, with o a param-
struct the permutation matrix, which reads eter jointly determined by the node dynamics and the cogplin
function. The meaning af., as well as the distribution of the

10000 . . e
00001 two groups of eigenvalues, are schematically plotted in Fig
1(b). From this figure, it is straightforward to find that thegp
P=|00010 (5) : \ e ,
tern(a, b, ¢, ¢, b) is unstable, as it not satisfies the eigenvalue
00100 o - o
01000 condition [case 1 in Fig. 1(b)]. More specifically, when the

transverse mode of!" is inside of the stable regime (which
Then, by calculating the eigenvectorsBf we can construct can be achieved by changing the coupling strength), allrothe
the transform matrix non-trivial modes of the system\1’;" and \%") will be also
inside of the stable regime, which will lead to the globalnet

0 0 L0 0 work synchronization, instead of the synchronous pattern.
0 1/v2 0 1v2 0 Is there any method to stabilize the pattern in the network?
M= | -1/V2 0 0 0 1/V2[. (6) The remedy lies in the modification of the network struc-
1/v2 0 0 0 1/v2 ture. As the network collective behavior is sensitively elep
0 -1/v201/v2 0 dent on its structure, it is possible that, by a slight chamige

the network structure, the unstable pattern changes ttestab
Say, for example, if by introducing a new link into the net-
work the eigenvalues can be redistributed in such a way that
B_ ( —4/3 —1/3 ) 7 AT > \JY" [as illustrated by case 2 in Fig. 1(b)], then the pat-

Finally, by M, we can transform the coupling matri, into
the blocked matrix@, in which

-1/3 —4/3 tern (a, b, ¢, c,b) may be stabilized. In the following section,



employing a typical chaotic oscillator as the node dynamics ] I
we will show how this idea of structure-based pattern cdntro (va SRS A S S S A A A0S
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We first demonstrate how the pattefm b, c, ¢, b) can be
stabilized by adjusting theveightof a single link in the net-
work. To keep the network symmetry unaffected (so as to
support the same pattern), we will change only the weight of
the link L4 5 in the network, wile keeping the weights of other
links fixed. For the sake of simulation convenience, here we
adopt the normalized coupling scheme for the weighted net-
work: ¢;; = —w;;/ Y. w;; for the non-diagonal elements,
andc;; = 1 for the diagonal elements [29, 30]. Herg ; rep-
resents the weight of the network links, which is to be adjdist
for the link L4 5, while is fixed tow; ; = 1 for other links. We
first check whether the eigenvalue conditiaff, > A\3¥", can
be satisfied by this modification. In Fig. 2(a), we plot the
variations of thet nontrivial eigenvalues\i”, and\;%', as a
function ofws 5. It is clearly seen that, a®; 5 exceeds the
critical valuew, = 1, A" is larger tham\3¥". The crossover . . .
of A" and ;Y™ thus suggests that, in the regimewf ;s > 1, 100 15
the eigenvalue condition is satisfied.

In simulations, we adopt the chaotic Lorenz oscillator a
the node dynamics, which in the isolated form is descnbe}fzation of the patterr{a, b, c, ¢, b) by changing the weight of the

by equations(da/dt, dy/dt, dz/dt)" = (a(y — x),r:z: —  shortcut link Lo 5. (a) The variations of the non-trivial eigenval-
y — xz,ay — bz)". By the parameters = 10, r = 35, yes,A\!", and A3, as a function of the link weightys,s. When
andb = 8/3, the oscillator is chaotic, with the largest Lya- , . ~ v, = 1, we havex!” > A", indicating the possible ex-
punov exponent being abowd4. (This oscillator will be em-  istence of a stable pattern in this regime. (b) By 9.6, the time
ployed throughout the paper, but the same results have beefolution of the normalized synchronization errafsg;. The con-
also observed in other node dynamics, including the chaotitol is activated at = 175, wherew. 5 is changed from to 1.5. Itis
Rossler oscillators and logistic maps.) By the couplingcfu  seen that, with the control, the system is gradually transdefrom
tion H([x,y,z]T) = [z,0,0]” (i.e., coupling through the non-synchronization to synchronous pattéinb, c, ¢, b).

component of the oscillator), the critical parameter cbea

izing the stable regime in MSF analysisds ~ 10, which

is calculated from Eqg. (3) by requiring = 0. Thus, to

make the transverse modé stable, it is necessary that the control is activated at time = 175, wherew, 5 is changed
coupling strength should be larger than = o./A{". In from1to 1.5. In Fig. 2(b), it is shown that, before the control,
the meantime, to prevent the system from reaching the stat@ie synchronization errors are well separated from eaddroth
of global synchronization, we should also keep the couplingndicating the absence of synchronization among any pair of
strength be smaller thany = o./\3Y". These are the con- the nodes; after the control, ttiesynchronization errors are
ditions for the choosing the coupling strength. For examplegradually merged int@ individual ones. Specifically, from
if we usews s = 1.5, the two boundary eigenvalues of the the timet ~ 250 on, we have simultaneouslyz, = Ax;
coupling matrix are\{” = 1.06 and\3¥" = 0.92. According andAxs = Az,, and this synchronization relation keeps un-
to the above analysis, to make the pattern stable, the emupli changed as the time increases, i.e., the system is stabilize
strength should be chosen from the raage (9.35, 10.82). onto the synchronous pattefm, b, c, c, b).

By ¢ = 9.6, we plot in Fig. 2(b) the time evolution of We next demonstrate how the form of a synchronization
the normalized synchronization error for the oscillatexs; . pattern can be adjusted bgmoving or rewiringa link in
Here, Az; = (x; — (z))/Az®¢, with (z) the averaged state the network. Employing still the unweightéanode network
of the network and\z%*¢ = (x; — (x)) a scaling factor. If [Fig. 3(a)] and the normalized coupling scheme, but thigtim
during the system evolution two nodes have the same valuee start from the state of global network synchronizatio, a
of Ax;, then they are identified as synchronized. (The use othe targeting states are chosen as different synchrondus pa
Az is just for the purpose of a clear presentation, which carierns. We first make the network be globally synchronized,
be replaced by other quantities, e.g., the state variablgsh ~ which is accomplished by a larger coupling strength=
does not affect the form of the synchronous patterns.) The&0.8. The evolution of the network dynamics is plotted in Fig.

200 250

0._.
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IG. 2: (Color online) For the network plotted in Fig. 1(d)etstabi-
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FIG. 3: (Color online) The control of the network synchratian by removing or rewiring a shortcut link. (a) The sturet of the original
network, which is globally synchronized undee= 10.8. (b) The modified network where the link; 3 in (a) is removed. The new network
owns the reflection symmet;, and supports the patte(n, b, ¢, b, a). (¢) The new network constructed from (b) by rewiring the ity 4.
The new network owns the reflection symme®y, and supports the pattefn, a, b, ¢, b). (d-f) The time evolution of the synchronization
errors,Ax;, for the networks in (a-c). The link4 3 in (a) is removed at = 60, which leads to the pattel(a, b, ¢, b, a). The link L1 4 in (b)

is rewired toL;,3 att = 150, which results in the new patte(n, a, b, ¢, b).

3(d), where it is seen that after a transient period the syste nization relations of the nodes have been modified.
is globally synchronized. Having reached the state of dloba _
synchronization, we then at the moment 60 remove the I_:|nally we dem(_)nstrate how the network dynamics can be
link Ly 5, so that the network structure is modified to the struc-SWitched betweedifferent forms of synchronous patteyiy
ture plotted in Fig. 3(b). In the meantime, small perturduasi addmg_or removing a single link in the network. To illus-
are added onto the oscillators, so as to diverge the trajectérate this type of control, we adopt the network structucé-pl
ries from the global-synchronization manifold. The modifie t€d in Fig. 4(a), which containé nodes and one shortcut
network [Fig. 3(b)] has the reflection symmet8}, which  link. As depicted in Fig. 4(a), this network owns two re-
can support the pattefia, b, ¢, b, a), given the two conditions ~ flection symmetriesS; andS,. A checking of their eigen-
are satisfied. From the network coupling matrix, we find thatvalues shows that onig, satisfies the eigenvalue condition
A" = 1.0 and A" = 0.86. The eigenvalue condition thus A1 > A>?", which COWGSSPnOHdS to the pattefm b, ¢, ¢, b, a).
is satisfied. Meanwhile, since we have set 10.8, whichis ~ SINCeAT” = 0.833 andA;*" = 0.5, to make the pattern sta-
just between the two critical strengths; = 0./l ~ 10, ble, the coupling strength shoulq be_ chosen W|t_h|n the range
e = 0. /AY" ~ 11.63. The condition for the coupling & € (12,20). Bye = 12.8, we plotin Fig. 4(b) the time evolu-
strength thus is also satisfied. The numerical simulatian ve tion of the synchronization errors, where the formatiorhef t
ifies this analysis. As shown in Fig. 3(e), after removing thePattern(a, b, ¢, ¢, b, a) is shown. To switch the pattern to an-
link L, 5, the network is gradually changed from global syn-Other form, we add a new link,3 ¢, onto the network of Fig.
chronization to the synchronous pattémb, c, b, a). In Fig. 4(a), with the new network structure is showr_1 in Fig. 4(b_).
3(c), we further modify the network structure by rewiringth The new network also possesses two reflection symmetries,
link L1 4 in Fig. 3(b). Since the networks in Figs. 3(b) and (c) Ss @hdS4, which may support different synchronous patterns.
are essentially the same (with a clockwise rotatiom.gfr), ~ BY analyzing the distributions of their eigenvalues, we find
the network of Fig. 3(c) therefore supports the synchronouthat only the former satisfies the conditiaff > A3"". As
pattern(a, a, b, ¢, b), as verified by the numerical simulations Such. the stable pattern for Fig. 4(b) is oriby b, ¢, d, ¢, ).
[Fig. 3(f)]. We would like to note that, although the two pat- FFomA;"™ andA;*", we can also obtain the range of the cou-
terns, (a, b, ¢, b, a) and (a, a, b, ¢, b), characterize essentially Pling strength,e € (10,15). Sincee = 12.8 is within this
the same network dynamics, the change of the pattern frofnge, the switching from pattefn, b, ¢, ¢, b, a) [Fig. 4(a)] to
(a,b,c,b,a) 10 (a,a,b, c,b) is still nontrivial, as the synchro- Pattern(a, b, ¢, d, c, b) [Fig. 4(b)] thus is expected to be work-
able. This is confirmed by numerical simulations, as shown in
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FIG. 5: (Color online) For the same network model used in E{f)
60 [which shows stable synchronous pattern of the fdub, c, c, b)],
Time the effect of the parameter mismatch on the pattern. The atdnis
introduced to the parameterin the Lorenz oscillator, which is im-
FIG. 4: (Color online) The switching of the synchronous eats  Plemented by randomly choserfrom the rangé35 — ér, 35 4 ér].
between different forms. The networks are unweighted, hador- ~ The synchronization errors are evaluatedg(by — 1), with (...)
malized coupling scheme is employe. » s 4 are the network sym-  the time average over a periodof= 1 x 10° and overl00 system

metries. (a) The original network. (b) The modified netwosk b realizations. It is seen that that, for a smaller parametematch
adding the new linkLs ¢ onto the network of (a). (c) and (d), by (6r < 1), the system dynamics is still strongly governed by the syn-

¢ = 12.8, the time evolutions of the synchronization errafsy;, ~ chronous patterfu, b, ¢, c, b).

for the network structures in (a) and (b), respectively. dj (he

system dynamics is stabilized onto the patteirb, c, ¢, b, a), which

is supported byS; in (a). In (d), the system dynamics is switched

to the patterr(a, b, ¢, d, ¢, b), which is supported bgs in (b). The  the human brain [34]. Finally, in previous studies of netkvor
topological control, i.e. the connection between natlasd6 inthe  control once the system is controlled, the instant states-of
network of (a), is activated at= 60. ery nodes can be precisely predicted (from the trajectory of
the controller), which is impossible in topological contras

the manifold of the synchronous pattern is self-organized b
the network nodes.

Although established on the simplified models of clear net-
work symmetries, the control method proposed in the present
work could be potentially applied to the large-size and com-

IV. " DISCUSSIONSAND CONCLUSION plex networks. In terms of the network size, in simulations
we have successfully applied this method to the control of

The topological control we have investigated is distinctsynchronous pattern for symmetric networks of size up to
from the existing studies of network control in literatuBdf N = 100. In terms of complex networks, this method may
33]. Firstly, in topological control the targeting state® a also be helpful and constructive, due to the ubiquitous-exis
chosen as the synchronous patterns (selected accordimg to ttence of topological symmetry in complex networks, either
network symmetries), which are spatially nonuniform; whil globally or locally. Firstly, for some special types of netiks,
in previous studies of network control the targeting states e.g., the commander and control system, the network has a
normally uniform in space. For instance, in the pinning syn-strict hierarchical structure, resulting in perfect netkveym-
chronization of complex networks [31], all the network nede metries [35]. Secondly, for the general complex networks of
are controlled to the same trajectory defined by the externgiractical interest, e.g., the small-world and scale-frraplex
controller, i.e., the network is globally synchronizedr Bds  networks, although in general it is difficult to find a perfect
difference, the analysis of network controllability in tdpg-  symmetry for the whole network, their local network struc-
ical control is very different from the ones used in previoustures do present some regular and symmetric features, due
studies, e.g., it requires a separation of the phase spaxe irto either the high clustering coefficient (for small-worldtn
two orthogonal subspaces. Secondly, dislike most of the exworks) or the abundant motif and community structures (for
isting studies where the controlling signals are added thr@o  scale-free networks) [36]. Finally, even for the completel
node state [32, 33], here in topological control the pedurb random networks, e.g., the Erdds-Renyi network, thete st
tions are made on the network structure. While state pertureould be some kinds of weak symmetries in the network struc-
bation is popular in engineering systems, topologicalysert ture (i.e., a permutation of a few of the network nodes doés no
bations may have more applications in biological and neurahffect the network structure) [37]. All these symmetrias, a
systems, e.g., in understanding the evolution and fungtidn cording to our analysis, could provide a plenty of room fa th

Figs. 4(c) and (d).



control of synchronous patterns in complex systems. in controlling a realistic complex network, both the anays
However, in terms of controlling the realistic complex sys-method and the control strategies used in the present work
tems, the current study is still in its infancy, and many impo should be largely improved, say, for example, it will be nec-
tant issues need to be investigated. Among others, the noessary to adjust a number of the network links simultangousl|
identical node dynamics, the directed and weighted linkd, a in order of an effective control of synchronous patterns in a
the identification of the topological symmetries in largees large-scale complex network [22, 39] — a promising issue de-
complex networks are three of the most fundamental quesserves further studies.
tions to be addressed. For non-identical node dynamics, our In summary, using the sensitivity feature of the network dy-
preliminary simulations show that [Fig. 5], given the paeam namics on structure, we have proposed the idea of topologica
ter mismatch among the oscillators is not significant, tree sy control of the synchronous patterns in complex systems, and
tem dynamics will be still governed by synchronous patternsdemonstrated it on some simple network models of coupled
For symmetry identification in complex networks, we hopechaotic oscillators. Although based on the simplified medel
the rapid progress of network research would provide solueur studies provide a new viewpoint to the control of network
tions in the near future. For instance, the newly developedynamics, which, after some improvements, might be applied
algorithms for network partition have already shed some nevio the control of large-scale complex networks, as well as gi

lights on the identification of topological symmetries irge-

ing insights to the operation and functioning of some réalis

size complex networks [38]. It is worthy of mentioning that, complex systems.
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