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Recent studies of network science have revealed the sensitive dependence of the network collective behaviors
on structures, here we employ this feature of topological sensitivity for the purpose of pattern control. By
simple models of networked chaotic oscillators, we are ableto argue and demonstrate that, by manipulating just
a single link in the network, the synchronous patterns of the system can be effectively adjusted or controlled.
In particular, by changing the weight or the connection of a shortcut link in the network, we find that not only
various stable synchronous patterns can be generated from the system, but also the synchronous patterns can
be successfully switched among different forms. The stability of the synchronous patterns is analyzed by the
method of eigenvalue analysis, and the feasibility of the control is verified by numerical simulations. Our study
provides a step forward to the control of sophisticated collective behaviors in more complex networks, as well
as giving insights to the evolution and function of some realistic complex systems.

PACS numbers: 05.45.Xt, 89.75.Hc

I. INTRODUCTION

A distinct feature of the complex systems in nature is the
sensitive dependence of their dynamics on the initial condi-
tions or system parameters [1]. A well-known example is the
chaotic systems, where a small perturbation on the system ini-
tial condition will result in a significant change of the system
state a moment later, namely the butterfly effect [2]. To tame
this dynamical sensitivity, in the past decades there have been
extensive studies on the control of chaos [3], where a signif-
icant finding is that the chaotic behaviors can be efficiently
tamed or controlled by adding small perturbations onto the
system states or parameters, e.g., the OGY method [4]. In
terms of dynamical sensitivity, a network analogy of chaos
could be the dynamics of complex networks, where a slight
modification of the network structure could change the col-
lective behaviors of the system as a whole. For instance, the
failure of a single transmission line in the power-grid network
could lead to a large-scale blackout within a few minutes, due
to the mechanism of network cascading [5]. Being aware of
this type of dynamics-induced catastrophe, in the past years
efforts have been given to the improvement of the network ro-
bustness and performance. For instance, it is found that by
intentionally removing a few of the network links at the be-
ginning of the cascading, the network damage can be largely
reduced [6]. Besides cascading, recently the idea of topolog-
ical control has been also employed in many other problems
in network science, e.g., epidemic propagation[7], globalsyn-
chronization [8], oscillatory patterns[9], and control optimiza-
tion [10], etc.

Synchronous and coherent motions are commonly observed
in neural and biological systems, and are widely recognized
as important to the system operations and functions [11–14].
A typical example is the human brain, where the networked
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neurons are found to be firing synchronously in a group fash-
ion during the process of information processing (e.g., per-
ception recovery) [15], or when are subjected to some exter-
nal stimuli (e.g., neural binding) [16]. That is, under certain
circumstances the neurons are able to self-organize into dif-
ferent forms of synchronous patterns. These synchronous pat-
terns, as revealed from the experimental data, are very unsta-
ble and can be largely changed by small perturbations. For
instance, a slight change of the network structure, as caused
by the aberrant axonal reorganization of the excitatory den-
tate granule cell axons onto the neighboring granule neurons,
could lead to the emergence of a large-scale synchrony that in-
volves many neuronal assemblies – a network mechanism for
epileptic seizures [17]. In network science, an intriguingand
challenging question is:can we stabilize the synchronous pat-
terns in complex systems, or switching the synchronous pat-
tern among different forms, by only a slight modification of
the network structure?

Comparing to other types of network dynamics, e.g., global
network synchronization or Turing-like patterns [12–14, 18],
the analysis of synchronous patterns in the complex networks
is much more difficult and challenging [19]. This is partially
due to the fact that the synchronous patterns, if existing, are
highly fragmented and scattered, making them difficult to be
figured out from the complex network [18, 20]; and also be-
cause that the patterns are highly dynamic and unstable, mak-
ing them difficult to be manipulated [21, 22]. Regarding these
difficulties, to investigate the control of synchronous patterns
in complex systems, a plausible and meaningful approach
would be adopting the simplified network structures that cap-
ture some essential features of the general complex networks,
e.g., regular networks with a few of random shortcut links.
In the present work, employing simple networks of coupled
chaotic oscillators, we will investigate how synchronous pat-
terns can be modified or manipulated by a small adjustment
of the network structure. Interestingly, we find that in these
network models, by adjusting the properties of just asingle
link, not only stable synchronous patterns can be generated,
but also the patterns can be switched among different forms.
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The rest of the paper is organized as follows. In Sec. II we
will give our model of networked chaotic oscillators, and pro-
pose the method of eigenvalue analysis used to characterize
the stability of the synchronous patterns. In Sec. III, by dif-
ferent network models, we will demonstrate numerically how
the synchronous patterns can be generated and manipulated
by a slight change of the network structure. Finally, in Sec.
IV we will give our discussions conclusion.

II. THE STABILITY OF SYNCHRONOUS PATTERNS

Consider a complex network ofN identical nonlinear os-
cillators. Letẋ = F(x) be the node dynamics in the isolated
form, andH(x) be the coupling function among the nodes,
then the evolution of the network could be described by the
set of equations

ẋi = F(xi)− ε

N
∑

j=1

aij [H(xj)−H(xi)], (1)

with i, j = 1, . . . , N the node indices, andε the uniform cou-
pling strength. The network structure is captured by the adja-
cency matrixA, with aij = −1 if nodesi andj are directly
connected, andaij = 0 otherwise. For networks of linearly
coupled identical oscillators, the previous studies have shown
that by a suitable coupling strength, the trajectories of the os-
cillators can be converged to the same one after a transient
time, i.e., reaching the state of global synchronization. The
range of the coupling strength, as well as its dependence to
the network structure and the node dynamics, can be analyzed
by the method of master stability function (MSF) [23].

Besides the special state of global synchronization, a net-
work may also support other forms of synchronous behaviors.
For instance, for the network example plotted in Fig. 1(a),
if in numerical simulations we artificially set the initial con-
ditions of the paired nodes,(2, 5) and(3, 4), to be identical,
then during the process of the system evolution, the trajec-
tories of the paired nodes will be always identical (since they
have the same node dynamics, the same initial conditions, and
receiving the same coupling signals during the system evo-
lution). That is, the system will be staying on the state of
partial synchronization characterized by the symbol sequence
(a, b, c, c, b) [24, 27]. Here, the symbols,a, b and c, repre-
sent the trajectories of the oscillators, and are ordered bythe
node indices in the network. Nodes of the same symbol are
regarded as synchronized, and they form an individual syn-
chronous cluster. The number of clusters in the system thus
is counted as the number of different symbols in the pattern
sequence. It is straightforward to find that the synchronous
patterns that can be supported by a network is closely depen-
dent on the network symmetry. Specifically, to have a specific
form of synchronous pattern, the network structure must own
the corresponding symmetry. For instance, for the network
plotted in Fig. 1(a), the synchronous pattern(a, b, c, c, b) is
supported by the reflection symmetryS.

A network may possess different topological symmetries,
but not all the corresponding patterns are stable. The stabil-

ity of a synchronous pattern can be analyzed by the method
of eigenvalue analysis, with the details the following. (This
method is originated from the group-theory analysis proposed
in Ref. [25], and is also a generalization of the method pro-
posed in Refs. [26, 27].) Letxs be the synchronous manifold
of the system (the manifold for global synchronization), and
δxi = xi − xs be infinitesimal perturbations added to the os-
cillator trajectories, then the evolutions of the perturbations
are mainly governed by the equations

δẋi = DF(xs)− ε

N
∑

j=1

aijDH(xs)(δxj − δxi), (2)

whereDF andDH are the Jacobian matrices of the corre-
sponding vector functions evaluated onxs. Projecting{δxi}
into the eigenspace spanned by the eigenvectors of the net-
work coupling matrixC = A +K (K is the diagonal matrix
whose elements are the degree of the corresponding node, i.e.
kii =

∑

j aij), then the set of equations described by Eq. (2)
can be transformed intoN decoupled equations

δẏi = [DF(xs)− ελiDH(xs)]δyi, (3)

where0 = λ1 < λ2 < . . . < λN are the eigenvalues ofC,
andδyi denotes theith mode of the perturbations. LetΛi be
the largest Lyapunov exponent calculated from Eq. (3) for the
ith mode, then the stability of this mode is determined by the
sign ofΛi: it is stable ifΛi ≤ 0, and is unstable ifΛi > 0. The
mode ofλ1 represents the motion parallel to the synchronous
manifold, which is always unstable due to the chaotic nature
of the node dynamics.

Network symmetry sets in when dividing the eigenvalues
(modes) into groups. For any given symmetry,S, of the net-
work structure, we can construct the corresponding permuta-
tion matrixPN×N : pij = pji = 1 if the exchange of nodes
i and j according toS does not change the network struc-
ture, andpij = 0 otherwise. It is straightforward to find that
PP−1 = P2 = I, with IN×N the identity matrix. LetM be
the transformation matrix ofP, i.e.,M−1PM = P′ (with P′

the diagonal matrix), then the network coupling matrix can be
transformed into the following blocked form

G = M−1CM =

(

B 0
0 D

)

, (4)

whereB andD are, respectively,n1 andn2 dimensional ma-
trices, withn1 + n2 = N . BecauseG andC are similar
matrices, they have the same set of eigenvalues. However, in
the blocked matrixG, the eigenvalues are divided into two
groups:n1 eigenvalues inB andn2 eigenvalues inD.

Let D be the matrix that contains the eigenvalueλ1 = 0,
then we know from the function of the transformation matrix
that the synchronous manifold of the pattern is embedded in
then2 dimensional subspace spanned by the eigenvectors of
D. We order the eigenvalues ofD as0 = λsyn

1
< λsyn

2
≤

. . . ≤ λsyn
n2 , and call the spanned subspace thesynchronous

subspace. In a similar way, the eigenvalues ofB are ordered
asλtr

1 ≤ λtr
2 ≤ . . . ≤ λtr

n1. Since the subspace spanned by the
eigenvectors ofB characterizes the perturbations transverse to
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FIG. 1: (Color online) (a) The model of5-node network used in our analysis. The network has the reflection symmetryS, which may support
the synchronous pattern(a, b, c, c, b). (b) A schematic plot used to analyze the stability of the synchronous pattern. The eigenvalues are divided
into two groups: (△) for the transverse modes and (©) for the synchronous modes.σc is a critical parameter characterizing the boundary
of the stable regime: a mode is stable if its eigenvalue satisfiesελ = σ > σc. Case 1: For the pattern(a, b, c, c, b), the distribution of the
eigenvalues calculated from the network in (a). Sinceλtr

1 = λ
syn

2
, which not satisfies the eigenvalue condition, the pattern thus is unstable.

Case 2: A possible distribution of the eigenvalues that may generate a stable pattern (satisfying the eigenvalue condition λtr
1 > λ

syn
2

), which
is expected to be realized by a slight modification of the network structure or properties.

the synchronous manifold, we thus give it the nametransverse
subspace. To have a stable pattern, it is necessary that all the
transverse modes in the transverse subspace should be damp-
ing with time. More specifically, we should haveΛ(λtr

l ) < 0
for l = 1, . . . , n1. Meanwhile, to avoid the trivial pattern
of global network synchronization, it is also necessary that as
least one of the non-trivial modes in the synchronous subspace
still be unstable, i.e.,Λ(λsyn) > 0 for some mode (modes) of
D. These are the two necessary conditions for generating sta-
ble synchronous patterns in a complex network.

By the above method, we now give an analysis to the sta-
bility of the pattern(a, b, c, c, b) in the network shown in Fig.
1(a). Firstly, from the reflection symmetry,S, we can con-
struct the permutation matrix, which reads

P =











1 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0











. (5)

Then, by calculating the eigenvectors ofP, we can construct
the transform matrix

M =













0 0 1 0 0

0 1/
√
2 0 1

√
2 0

−1/
√
2 0 0 0 1/

√
2

1/
√
2 0 0 0 1/

√
2

0 −1/
√
2 0 1/

√
2 0













. (6)

Finally, byM, we can transform the coupling matrix,C, into
the blocked matrix,G, in which

B =

(

−4/3 −1/3
−1/3 −4/3

)

, (7)

and

D =





−1
√
2/4

√
2/4√

2/3 −2/3 1/3√
2/3 1/3 −2/3



 . (8)

ForB, we have(λtr
1 , λtr

2 ) = (1, 1.67); while for D, we have
(λsyn

1
, λsyn

2
, λsyn

3
) = (0, 1, 1.33). Since the null eigenvalue

belongs toD, the synchronous and transverse subspaces thus
are spanned by the eigenvectors ofD andB, respectively.

Previous studies of MSF have shown that [28], for the typ-
ical nonlinear systems, the value ofΛ(ελ), as calculated from
Eq. (3), is negative only whenελ = σ > σc, with σc a param-
eter jointly determined by the node dynamics and the coupling
function. The meaning ofσc, as well as the distribution of the
two groups of eigenvalues, are schematically plotted in Fig.
1(b). From this figure, it is straightforward to find that the pat-
tern(a, b, c, c, b) is unstable, as it not satisfies the eigenvalue
condition [case 1 in Fig. 1(b)]. More specifically, when the
transverse mode ofλtr

1 is inside of the stable regime (which
can be achieved by changing the coupling strength), all other
non-trivial modes of the system (λsyn

2,3 andλtr
2 ) will be also

inside of the stable regime, which will lead to the global net-
work synchronization, instead of the synchronous pattern.

Is there any method to stabilize the pattern in the network?
The remedy lies in the modification of the network struc-
ture. As the network collective behavior is sensitively depen-
dent on its structure, it is possible that, by a slight changeof
the network structure, the unstable pattern changes to stable.
Say, for example, if by introducing a new link into the net-
work the eigenvalues can be redistributed in such a way that
λtr
1 > λsyn

2
[as illustrated by case 2 in Fig. 1(b)], then the pat-

tern(a, b, c, c, b) may be stabilized. In the following section,
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employing a typical chaotic oscillator as the node dynamics,
we will show how this idea of structure-based pattern control
can be realized in some simple network models.

III. TOPOLOGICAL CONTROL OF SYNCHRONOUS
PATTERNS

We first demonstrate how the pattern(a, b, c, c, b) can be
stabilized by adjusting theweightof a single link in the net-
work. To keep the network symmetry unaffected (so as to
support the same pattern), we will change only the weight of
the linkL2,5 in the network, wile keeping the weights of other
links fixed. For the sake of simulation convenience, here we
adopt the normalized coupling scheme for the weighted net-
work: cij = −wi,j/

∑

wi,j for the non-diagonal elements,
andcii = 1 for the diagonal elements [29, 30]. Herewi,j rep-
resents the weight of the network links, which is to be adjusted
for the linkL2,5, while is fixed towi,j = 1 for other links. We
first check whether the eigenvalue condition,λtr

1
> λsyn

2
, can

be satisfied by this modification. In Fig. 2(a), we plot the
variations of the4 nontrivial eigenvalues,λtr

1,2 andλsyn
2,3 , as a

function ofw2,5. It is clearly seen that, asw2,5 exceeds the
critical valuewc = 1, λtr

1
is larger thanλsyn

2
. The crossover

of λtr
1 andλsyn

2
thus suggests that, in the regime ofw2,5 > 1,

the eigenvalue condition is satisfied.
In simulations, we adopt the chaotic Lorenz oscillator as

the node dynamics, which in the isolated form is described
by equations(dx/dt, dy/dt, dz/dt)T = (α(y − x), rx −
y − xz, xy − bz)T . By the parametersα = 10, r = 35,
andb = 8/3, the oscillator is chaotic, with the largest Lya-
punov exponent being about0.94. (This oscillator will be em-
ployed throughout the paper, but the same results have been
also observed in other node dynamics, including the chaotic
Rössler oscillators and logistic maps.) By the coupling func-
tion H([x,y, z]T) = [x, 0, 0]T (i.e., coupling through thex
component of the oscillator), the critical parameter character-
izing the stable regime in MSF analysis isσc ≈ 10, which
is calculated from Eq. (3) by requiringΛ = 0. Thus, to
make the transverse modeλtr

1 stable, it is necessary that the
coupling strength should be larger thanε1 = σc/λ

tr
1

. In
the meantime, to prevent the system from reaching the state
of global synchronization, we should also keep the coupling
strength be smaller thanε2 = σc/λ

syn
2

. These are the con-
ditions for the choosing the coupling strength. For example,
if we usew2,5 = 1.5, the two boundary eigenvalues of the
coupling matrix areλtr

1
= 1.06 andλsyn

2
= 0.92. According

to the above analysis, to make the pattern stable, the coupling
strength should be chosen from the rangeε ∈ (9.35, 10.82).

By ε = 9.6, we plot in Fig. 2(b) the time evolution of
the normalized synchronization error for the oscillators,∆xi.
Here,∆xi = (xi − 〈x〉)/∆xave, with 〈x〉 the averaged state
of the network and∆xave = 〈xi − 〈x〉〉 a scaling factor. If
during the system evolution two nodes have the same value
of ∆xi, then they are identified as synchronized. (The use of
∆x is just for the purpose of a clear presentation, which can
be replaced by other quantities, e.g., the state variables,which
does not affect the form of the synchronous patterns.) The
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FIG. 2: (Color online) For the network plotted in Fig. 1(a), the stabi-
lization of the pattern(a, b, c, c, b) by changing the weight of the
shortcut linkL2,5. (a) The variations of the non-trivial eigenval-
ues,λtr

1,2 andλ
syn
2,3 , as a function of the link weight,w2,5. When

w2,5 > wc = 1, we haveλtr
1 > λ

syn
2

, indicating the possible ex-
istence of a stable pattern in this regime. (b) Byε = 9.6, the time
evolution of the normalized synchronization errors,∆xi. The con-
trol is activated att = 175, wherew2,5 is changed from1 to1.5. It is
seen that, with the control, the system is gradually transferred from
non-synchronization to synchronous pattern(a, b, c, c, b).

control is activated at timet = 175, wherew2,5 is changed
from 1 to 1.5. In Fig. 2(b), it is shown that, before the control,
the synchronization errors are well separated from each other,
indicating the absence of synchronization among any pair of
the nodes; after the control, the5 synchronization errors are
gradually merged into3 individual ones. Specifically, from
the timet ≈ 250 on, we have simultaneously∆x2 = ∆x5

and∆x3 = ∆x4, and this synchronization relation keeps un-
changed as the time increases, i.e., the system is stabilized
onto the synchronous pattern(a, b, c, c, b).

We next demonstrate how the form of a synchronization
pattern can be adjusted byremoving or rewiringa link in
the network. Employing still the unweighted5-node network
[Fig. 3(a)] and the normalized coupling scheme, but this time
we start from the state of global network synchronization, and
the targeting states are chosen as different synchronous pat-
terns. We first make the network be globally synchronized,
which is accomplished by a larger coupling strength,ε =
10.8. The evolution of the network dynamics is plotted in Fig.
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FIG. 3: (Color online) The control of the network synchronization by removing or rewiring a shortcut link. (a) The structure of the original
network, which is globally synchronized underε = 10.8. (b) The modified network where the linkL1,3 in (a) is removed. The new network
owns the reflection symmetryS1, and supports the pattern(a, b, c, b, a). (c) The new network constructed from (b) by rewiring the link L1,4.
The new network owns the reflection symmetryS2, and supports the pattern(a, a, b, c, b). (d-f) The time evolution of the synchronization
errors,∆xi, for the networks in (a-c). The linkL1,3 in (a) is removed att = 60, which leads to the pattern(a, b, c, b, a). The linkL1,4 in (b)
is rewired toL1,3 at t = 150, which results in the new pattern(a, a, b, c, b).

3(d), where it is seen that after a transient period the system
is globally synchronized. Having reached the state of global
synchronization, we then at the momentt = 60 remove the
link L1,3, so that the network structure is modified to the struc-
ture plotted in Fig. 3(b). In the meantime, small perturbations
are added onto the oscillators, so as to diverge the trajecto-
ries from the global-synchronization manifold. The modified
network [Fig. 3(b)] has the reflection symmetry,S1, which
can support the pattern(a, b, c, b, a), given the two conditions
are satisfied. From the network coupling matrix, we find that
λtr
1

= 1.0 andλsyn
2

= 0.86. The eigenvalue condition thus
is satisfied. Meanwhile, since we have setε = 10.8, which is
just between the two critical strengths:ε1 = σc/λ

tr
1

≈ 10,
ε2 = σc/λ

syn
2

≈ 11.63. The condition for the coupling
strength thus is also satisfied. The numerical simulation ver-
ifies this analysis. As shown in Fig. 3(e), after removing the
link L1,3, the network is gradually changed from global syn-
chronization to the synchronous pattern(a, b, c, b, a). In Fig.
3(c), we further modify the network structure by rewiring the
link L1,4 in Fig. 3(b). Since the networks in Figs. 3(b) and (c)
are essentially the same (with a clockwise rotation of0.4π),
the network of Fig. 3(c) therefore supports the synchronous
pattern(a, a, b, c, b), as verified by the numerical simulations
[Fig. 3(f)]. We would like to note that, although the two pat-
terns,(a, b, c, b, a) and (a, a, b, c, b), characterize essentially
the same network dynamics, the change of the pattern from
(a, b, c, b, a) to (a, a, b, c, b) is still nontrivial, as the synchro-

nization relations of the nodes have been modified.

Finally we demonstrate how the network dynamics can be
switched betweendifferent forms of synchronous patterns, by
adding or removing a single link in the network. To illus-
trate this type of control, we adopt the network structure plot-
ted in Fig. 4(a), which contains6 nodes and one shortcut
link. As depicted in Fig. 4(a), this network owns two re-
flection symmetries:S1 andS2. A checking of their eigen-
values shows that onlyS1 satisfies the eigenvalue condition
λtr
1

> λsyn
2

, which corresponds to the pattern(a, b, c, c, b, a).
Sinceλtr

1
= 0.833 andλsyn

2
= 0.5, to make the pattern sta-

ble, the coupling strength should be chosen within the range
ε ∈ (12, 20). By ε = 12.8, we plot in Fig. 4(b) the time evolu-
tion of the synchronization errors, where the formation of the
pattern(a, b, c, c, b, a) is shown. To switch the pattern to an-
other form, we add a new link,L3,6, onto the network of Fig.
4(a), with the new network structure is shown in Fig. 4(b).
The new network also possesses two reflection symmetries,
S3 andS4, which may support different synchronous patterns.
By analyzing the distributions of their eigenvalues, we find
that only the former satisfies the conditionλtr

1
> λsyn

2
. As

such, the stable pattern for Fig. 4(b) is only(a, b, c, d, c, b).
Fromλtr

1
andλsyn

2
, we can also obtain the range of the cou-

pling strength,ε ∈ (10, 15). Sinceε = 12.8 is within this
range, the switching from pattern(a, b, c, c, b, a) [Fig. 4(a)] to
pattern(a, b, c, d, c, b) [Fig. 4(b)] thus is expected to be work-
able. This is confirmed by numerical simulations, as shown in
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FIG. 4: (Color online) The switching of the synchronous patterns
between different forms. The networks are unweighted, and the nor-
malized coupling scheme is employed.S1,2,3,4 are the network sym-
metries. (a) The original network. (b) The modified network by
adding the new linkL3,6 onto the network of (a). (c) and (d), by
ε = 12.8, the time evolutions of the synchronization errors,∆xi,
for the network structures in (a) and (b), respectively. In (c), the
system dynamics is stabilized onto the pattern(a, b, c, c, b, a), which
is supported byS1 in (a). In (d), the system dynamics is switched
to the pattern(a, b, c, d, c, b), which is supported byS3 in (b). The
topological control, i.e. the connection between nodes3 and6 in the
network of (a), is activated att = 60.

Figs. 4(c) and (d).

IV. DISCUSSIONS AND CONCLUSION

The topological control we have investigated is distinct
from the existing studies of network control in literature [31–
33]. Firstly, in topological control the targeting states are
chosen as the synchronous patterns (selected according to the
network symmetries), which are spatially nonuniform; while
in previous studies of network control the targeting statesare
normally uniform in space. For instance, in the pinning syn-
chronization of complex networks [31], all the network nodes
are controlled to the same trajectory defined by the external
controller, i.e., the network is globally synchronized. For this
difference, the analysis of network controllability in topolog-
ical control is very different from the ones used in previous
studies, e.g., it requires a separation of the phase space into
two orthogonal subspaces. Secondly, dislike most of the ex-
isting studies where the controlling signals are added ontothe
node state [32, 33], here in topological control the perturba-
tions are made on the network structure. While state pertur-
bation is popular in engineering systems, topological pertur-
bations may have more applications in biological and neural
systems, e.g., in understanding the evolution and functions of
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FIG. 5: (Color online) For the same network model used in Fig.2(b)
[which shows stable synchronous pattern of the form(a, b, c, c, b)],
the effect of the parameter mismatch on the pattern. The mismatch is
introduced to the parameterr in the Lorenz oscillator, which is im-
plemented by randomly chosenr from the range[35− δr, 35 + δr].
The synchronization errors are evaluated by〈xi − x1〉, with 〈. . .〉
the time average over a period oft = 1 × 103 and over100 system
realizations. It is seen that that, for a smaller parameter mismatch
(δr < 1), the system dynamics is still strongly governed by the syn-
chronous pattern(a, b, c, c, b).

the human brain [34]. Finally, in previous studies of network
control once the system is controlled, the instant states ofev-
ery nodes can be precisely predicted (from the trajectory of
the controller), which is impossible in topological control, as
the manifold of the synchronous pattern is self-organized by
the network nodes.

Although established on the simplified models of clear net-
work symmetries, the control method proposed in the present
work could be potentially applied to the large-size and com-
plex networks. In terms of the network size, in simulations
we have successfully applied this method to the control of
synchronous pattern for symmetric networks of size up to
N = 100. In terms of complex networks, this method may
also be helpful and constructive, due to the ubiquitous exis-
tence of topological symmetry in complex networks, either
globally or locally. Firstly, for some special types of networks,
e.g., the commander and control system, the network has a
strict hierarchical structure, resulting in perfect network sym-
metries [35]. Secondly, for the general complex networks of
practical interest, e.g., the small-world and scale-free complex
networks, although in general it is difficult to find a perfect
symmetry for the whole network, their local network struc-
tures do present some regular and symmetric features, due
to either the high clustering coefficient (for small-world net-
works) or the abundant motif and community structures (for
scale-free networks) [36]. Finally, even for the completely
random networks, e.g., the Erdös-Rènyi network, there still
could be some kinds of weak symmetries in the network struc-
ture (i.e., a permutation of a few of the network nodes does not
affect the network structure) [37]. All these symmetries, ac-
cording to our analysis, could provide a plenty of room for the
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control of synchronous patterns in complex systems.
However, in terms of controlling the realistic complex sys-

tems, the current study is still in its infancy, and many impor-
tant issues need to be investigated. Among others, the non-
identical node dynamics, the directed and weighted links, and
the identification of the topological symmetries in large-size
complex networks are three of the most fundamental ques-
tions to be addressed. For non-identical node dynamics, our
preliminary simulations show that [Fig. 5], given the parame-
ter mismatch among the oscillators is not significant, the sys-
tem dynamics will be still governed by synchronous patterns.
For symmetry identification in complex networks, we hope
the rapid progress of network research would provide solu-
tions in the near future. For instance, the newly developed
algorithms for network partition have already shed some new
lights on the identification of topological symmetries in large-
size complex networks [38]. It is worthy of mentioning that,

in controlling a realistic complex network, both the analysis
method and the control strategies used in the present work
should be largely improved, say, for example, it will be nec-
essary to adjust a number of the network links simultaneously
in order of an effective control of synchronous patterns in a
large-scale complex network [22, 39] – a promising issue de-
serves further studies.

In summary, using the sensitivity feature of the network dy-
namics on structure, we have proposed the idea of topological
control of the synchronous patterns in complex systems, and
demonstrated it on some simple network models of coupled
chaotic oscillators. Although based on the simplified models,
our studies provide a new viewpoint to the control of network
dynamics, which, after some improvements, might be applied
to the control of large-scale complex networks, as well as giv-
ing insights to the operation and functioning of some realistic
complex systems.
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