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We investigate the Casimir or fluctuation-induced interaction between two cross linkers bound to
the same semiflexible filament. The calculation is complicated by the appearance of second order
derivatives in the bending Hamiltonian for such filaments, which requires a careful evaluation of the
the path integral formulation of the partition function in order to arrive at the physically correct
continuum limit and properly address ultraviolet divergences. Doing so based on the previous
work of Kleinert [H. Kleinert, J. Math Phys. 27, 3003 (1986).], we find that cross linkers interact
along a filament with an attractive logarithmic potential proportional to thermal energy. The
proportionality constant depends on whether and how the cross linkers constraint the relative angle
between the two filaments to which they are bound. We comment on the implications of this Casimir
interaction for equilibrium distribution of labile cross linkers in semiflexible biopolymer, e.g., F-actin,
networks and bundles.

PACS numbers: 87.16.Ka,05.40.-a,82.35.Lr

I. INTRODUCTION

Objects that modify the fluctuations of their surround-
ings experience an effective interaction known as the
Casimir force after the pioneering work of Casimir [1].
He predicted that two parallel conducting plates sepa-
rated by a distance D in a vacuum should experience an
attractive interaction that decays as 1/D4 due to their
interaction with the quantum fluctuations of the elec-
tromagnetic field. While such Casimir, or fluctuation-
mediated, interactions are a general feature of of quan-
tum field theories at zero temperature [2, 3], they are
also generated by thermal fluctuations in classical sys-
tems at finite temperature. In both the thermal and
quantum cases, Casimir forces are pronounced in systems
with massless modes such as those associated either with
broken continuous symmetries (Goldstone modes) in e.g.,
liquid crystals [4], or at a critical point – see Refs. [5–7].
Figure 1 demonstrates the Casimir effect schematically:
two plates are held a fixed distance apart in a system
with thermally excited Goldstone modes. These fluctua-
tions are represented by the blue ellipses. The boundary
conditions imposed by the plates on these soft modes
shift their fluctuation spectrum in the region between
the two plates in a plate separation-dependent manner.
This leads to a contribution to the free energy of the sys-
tem that now depends on the interplate separation, and
thereby produces the effective interaction between these
objects.

∗dkachan@physics.ucla.edu
†alevine@chem.ucla.edu

It is tempting to view this thermal Casimir effect as a
type of depeletion attraction. In this way, thermal fluctu-
ations of wavelength λ are viewed as “particles” of that
size. The effect of bringing the plates together is to ex-
clude the longer wavelength fluctuations or “larger par-
ticles” (λ ≥ D) from the region between the fixed plates,
resulting in an effective pressure or depletion type force
pushing the plates together. This analogy, while instruc-
tive, is not exact, as can be inferred from the observa-
tion that the Casimir interaction can be either attrac-
tive (as suggested by the above analogy) or repulsive,
depending on the boundary conditions imposed on the
fluctuations by the embedded objects. The depletion
interaction is necessarily attractive. Casimir forces are
often obscured by stronger, direct interactions, but not
always. For example, the Casimir force between mem-
brane proteins – and other membrane inclusions – inter-
acting through thermally excited membrane undulations
are important because this interaction decays as a power
law with distance whereas direct protein-protein interac-
tions are short ranged [8, 9].

In this paper we examine Casimir interactions between
cross links on semiflexible polymers. Figure 2 shows
an example: two semi-flexible polymers are linked by
two sliding linkers. Given linearization of the filament
bending Hamiltonian, we restrict our analysis to cross
linker separations less than a persistence length to ensure
that the filament will have only small transverse fluctu-
ations and that the arc length will be well parametrized
by the projected distance. Fluctuation-induced inter-
actions between cross linkers in the opposite limit of
highly flexible polymers have been studied extensively
elsewhere [10, 11]. The existence and sign of a Casimir-
type force between the linkers can be understood as fol-
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FIG. 1: Thermal Casimir effect. As the two plates are brought
closer together, fluctuations between the plates are suppressed
while the entropy of the surrounding medium increases result-
ing in an attractive interaction between the plates.

lows. Imagine that one nails two points along an other-
wise free filament. The addition of a fixed point reduces
the number of conformational degrees of freedom, and
hence the entropy. Two fixed points at finite separation
result in a further reduction of the number of available
states over a single fixed point. The system will therefore
find it entropically favorable to place both fixed points
at the same position.

FIG. 2: Two semiflexible polymers are linked by two sliding
rings. Thermal fluctuations of polymer segments in between
the rings are constrained. By reducing the separation D be-
tween the rings, degrees of freedom transferred from in be-
tween the rings to the exterior increase the entropy of the
system. This generates an attractive interaction between the
rings.

The physical interest of this simple model problem lies
in possible applications in polymer networks. Thermal
fluctuations have long been known to play a central role
for the viscoelastic properties of networks of polymers.
In particular, the force-extension curve τ(D) of a poly-
mer of fixed length connecting two points separated by a
distance D is believed to determine the elastic properties
of polymer network. This force-extension curve is deter-
mined largely by thermal fluctuations. There is, however,
a fundamental difference between this form of entropic
elasticity and the thermal Casimir effect of Fig. 2: if
two permanent nodes of a polymer network are brought
closer there is no transfer of degrees of freedom from the
polymer section between the links to the rest of the net-
work. When the two linkers of Fig. 2 are brought to-
gether, degrees of freedom are transferred from the sec-
tion in between the linkers to the surrounding system.
In addition, the computation of the Casimir effect typ-
ically requires the regularization of infinities associated
with summations over all fluctuation modes. No such di-
vergences appear in the calculation of entropic elasticity.

There are interesting examples of biopolymer networks
where linker proteins bind reversibly to the protein fil-
aments. Such proteins might exhibit a Casimir interac-
tion due to their modification of the thermally excited
transverse undulations of the filaments to which they are
bound. A first objection against this idea is that, for typ-
ical biopolymer networks, the persistence length is much
greater than the separation between linkers. On length
scales small compared to the persistence length, thermal
shape fluctuations must have a low amplitude, so the
Casimir interaction is expected to be very weak. Next,
biopolymer networks often are under tension, either in-
trinsic or externally applied. Tension introduces a length
scale in the problem beyond which thermal fluctuation
are suppressed. In this paper, we will demonstrate that
the Casimir interaction between sliding linkers on length
scales smaller than the persistence length cannot be ne-
glected, in networks both with and without tension. We
will show that neither effect suppresses the Casimir in-
teraction. Finally, we show that if the linker molecules
imposes angular constraints on the filaments at the cross
link, then this generates repulsive elastic stresses, which
overwhelm the Casimir interaction. Thus, we propose
that distinction between between flexible cross linkers
and stiff ones, associated with filament bundling has im-
portant consequences for the equilibrium distribution of
these molecules in semiflexible filament networks.

In Section II we discuss the calculation of the parti-
tion function that is required for the derivation of the
Casimir force. Because of the appearance of higher-order
derivatives in the Hamiltonian H, the standard method
for evaluating Gaussian functional integrals by path in-
tegration is questionable. We will apply a technique in-
troduced by H. Kleinert [12] for field-theoretic problems
to define the integration measure for path integrals with
actions that contain higher-order derivatives. In Section
III we compute the Casimir interaction using this func-
tional integral technique, and examine a few cases. In
Section IV, we review our results in the context of poly-
mer networks.

II. PARTITION FUNCTION

A. Model Hamiltonian

Let two linkers be separated by a distance D along the
z axis. A semiflexible polymer of bending modulus κ and
thus persistence length lp = βκ� D is threaded through
the two linkers. Here and throughout: β = 1

kBT
. The

cross linkers fix the position and direction of the poly-
mer at the linker locations but the length of the polymer
between the linkers is not fixed. This corresponds to the
case of Fig. 2 if one of the two polymers is subject to a
very strong tension. Since we do not consider the steric
interaction between the filaments, the Casimir force for
Fig. 2 is then simply twice the force computed below.

We specify the filament configuration by its (two-
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dimensional) displacement ~h(z) from the z-axis and ne-
glect torsional and compressional modes of the filament,
in order to write its thermal partition function as

Z =

∫
D~h(z) e−βH[~h]. (1)

For D � lp, so that this partition sum is dominated by
nearly straight configurations of the filament, the elastic

energy H can be expressed in terms of ~h(z) as

H({~h}) ≈ 1

2

D∫
0

dz

κ(d2~h(z)

dz2

)2

+ τ

(
d~h(z)

dz

)2
 , (2)

in the so-called small gradient approximation. The first
term gives the contribution to filament curvature while
the second term accounts for a tension τ applied to the
polymer. Because the polymer can freely slide through
the linkers, the linkers do not absorb this tension. But
the two linkers do impose the local boundary conditions

on the displacement ~h(z = 0) = ~h(z = D) = 0 and di-

rection ~h′(z = 0) = ~va, ~h′(z = D) = ~vb of the polymer.
These boundary conditions correspond to perfect pinning
cross linkers, i.e. , ones that can provide arbitrary con-
straint forces to fix the filament’s position perfectly. In
any physical biopolymer system, however, the cross link-
ing molecules have some finite elastic compliance and are
of finite size. Such molecules cannot precisely pin the fil-
ament at a point. The use of perfect cross linkers allows
one to better isolate the role of filament fluctuations on
the Casimir interaction of two cross linkers. Corrections
associated with a finite elastic compliance are explored
in the discussion following Eq. 47. The finite size of the
cross linkers may be considered within our framework by
modeling them as rings that enforce the boundary con-
ditions only when the filament’s transverse displacement
becomes larger than the rings’ radius–see Fig 2. For the
Casimir effect to be operative between two such ring-like
cross linkers, one must be sure that the scale of transverse
undulations at a location on the filament without a cross
linker is larger than the ring radius. Larger rings would
have no effect on the filament’s fluctuation spectrum and
thus generate no Casimir interaction.

The scale of the transverse undulations of a semiflexi-
ble filament may be estimated using equipartition. The
mean squared height fluctuations in equilibrium are pro-
portional to kBT/κ, i.e., they are inversely proportional
to the persistence length. Dimensional analysis gives
the remaining dependence on the filament length L so
that the characteristic scale of the height fluctuations is
〈h2〉 ∼ L3/lp, as noted previously by others [13]. Such
transverse fluctuations in F-actin have been well studied
experimentally, see e.g., Ref. [14]. We present a more
thorough analysis in appendix C, where we determine
the scale of fluctuations at a given distance away from
a cross linker. Based on this analysis in appendix C,
we find that Casimir interactions should be present be-
tween nanometer scale binding proteins down to cross

linker separations of ∼ 10nm for F-actin. Below that
short distance two cross linkers will experience a rapidly
diminishing attractive interaction. On stiffer filaments
this cutoff will be larger, as discussed in appendix C.

Within the small gradient approximation, it is clear
that the two transverse polarizations hx,y(z) of the fila-
ment undulations decouple, so that the resulting parti-
tion sum is simply the product of two copies of the parti-
tion sum over a scalar field h(z) representing one trans-
verse mode, but still obeying the Hamiltonian Eq. 2. To
absorb the bending modulus, it is convenient to rescaled

lengths z = (βκ)
1
3 z̃ = l

1
3
p z̃. Finite tension introduces a

length scale, which we write in terms of a wave number

q =
(
βτ/l

1/3
p )1/2. We note that the rescaled length z̃

has physical dimensions of L
2
3 ; q has dimensions of in-

verse z̃.After this change of independent variables, the
filament Hamiltonian reduces to

H =
1

2

D∫
0

dz
[
h′′(z)2 + q2h′(z)2

]
. (3)

Here and in the remainder we remove the tildes from all
rescaled lengths and we measure energies in units of β−1.

In analogy to the standard presentation of the path in-
tegral approach to quantum mechanics classical, we de-
compose the field h(z) in terms of the “classical solution”
hcl(z), which minimizes the energy, and the fluctuations
around it, writing

h(z) = hcl(z) + δh(z). (4)

The stationarity condition: δH
δh = 0, which imposes the

force balance condition for a flexible beam, requires the
classical trajectory to satisfy the differential equation

h′′′′cl − q2h′′cl = 0. (5)

We require the classical solution to satisfy the appropri-
ate boundary conditions at the end points z = 0 and
z = D. By choosing the appropriate coordinate system
we may always set h(0) = h(D) = 0. We define the ini-
tial and final tangents to be: h′(0) = va, h

′(D) = vb. The
fluctuation field δh(z) and its first derivative are required
to vanish at the endpoints. The general solution of Eq. 5
is

hcl(z) = a sinh qz + b cosh qz + cz + d, (6)

with undetermined constants, a, b, c, d.
Using the decomposition Eq. 4 and integrating by

parts, one finds that the energy of a configuration sepa-
rates into a classical path contribution and one from the
fluctuations about that path: H = Hcl +Hfl. The energy
associated with the classical trajectory is given solely by
the boundary term:

Hcl =
1

2

[
h′′clh

′
cl − h′′′clhcl + q2h′clhcl

]∣∣∣∣h′(D)=vb

h′(0)=va

. (7)



4

Due to our choice of the initial and final values of hcl,
only the first term makes a non-vanishing contribution
to the elastic energy of the bent filament. Applying the

boundary conditions to set the undetermined constants
in Eq. 6, we find the energy of the classical trajectory
to be

Hcl =
1

2

q
(
qD(v2

a + v2
b )cosh(qD)− (va − vb)2sinh(qD)− 2qDvavb

)
2(1− cosh(qD)) + qDsinh(qD)

. (8)

The above result reduces to a particularly simple form
in the limit of zero tension: q = 0. There the elastic
energy of the filament depends on the initial and final
tangents through the expression

Hcl =
2lpkBT

D

(
v2
a + v2

b + vavb
)
, (9)

in the original units. In response to choosing symmetric
imposed tangent angles, va = −vb = θ/2, and defining a
radius of curvature R via θ = D/R, the energy minimiz-
ing filament trajectory is an arc of a circle with radius
R and the stored elastic energy is κD

2R2 (in the original
units), as is expected. This solution is shown in Fig. 3.
Of course, for much larger bends, where the replacement
of the curvature by the second derivative in the Hamil-
tonian is inappropriate, a more complicated solution is
obtained involving elliptic functions [15].

FIG. 3: Elastic rod subject to a torque is bent into the shape
of a circular arc. The radius of curvature of the arc is R and
the angle subtending the arc is θ.

The remaining part of the partition function involves
the integral over all allowed fluctuations

Z = e−Hcl

∫
Dδh(z) e−βHfl({δh}), (10)

where

Hfl({δh}) =
1

2

D∫
0

dz
[
δh′′(z)2 + q2δh′(z)2)

]
, (11)

where δh and its derivative must vanish at both ends of
the filament.

B. Näıve Mode Analysis: Casimir force and force
extension relation

To evaluate the functional integral, one slices the spa-
tial coordinate z into N + 1 pieces of width ε such that
zn = εn and ε(N + 1) = D. In this approach ε plays the
role of a short-distance cutoff for the continuum theory.
For polymers one typically imagines this length to be re-
lated to the monomer size. For the continuum approach
to be meaningful, physical quantities like the Casimir
force should not depend on the precise formulation of
this cutoff. On the other hand, extensive thermodynamic
properties, such as the heat capacity, necessarily depend
on the number of degrees of freedom and thus retain an ε
dependence. With this slicing of the functional integral,
we may replace the measure by

Dh =

N∏
n=1

∞∫
−∞

dhn
∆h

(12)

where ∆h is a phase factor with dimension of length.
The partition function of the segment can be evaluated
by expanding the fluctuation displacement into a series
of harmonic modes

hn =

√
2

3(N + 1)

N∑
m=1

Am(cos(kmzn)− 1), (13)

with wavenumber km = 2πm/D. The normalization of
the harmonic modes in Eq. 13 has been chosen so as to
set the Jacobian of the transformation to unity. The cal-
culation of the remaining Gaussian integrals is straight-
forward. The answer can be inferred directly by noting
that the energy stored in the mth mode in thermal equi-
librium is

Um =
ε

4
(κk4

m + τk2
m)A2

m (14)

(in the original units), which is the energy of a harmonic
oscillator having spring constant Km = ε

2 (κk4
m + τk2

m).
Since these harmonic modes are decoupled, the free en-
ergy of the N modes with spectrum ω(km) ∝

√
Km is

given by the sum

∆F (D) = kBT

N∑
m=1

ln(Γω(km)/kBT ) (15)
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of their free energies. Here Γ is a phase space factor which
does not depend on D. Converting the summation to an
integration, we write

∆F (D)/kBT =
D

2π

∫ 2π/ε

2π/D

ln(Γω(k)/kBT )dk. (16)

At zero tension this reduces to

∆F (D)/kBT = D ln

(
Γεκ

kBT

) 1
2
(

1

ε
− 1

D

)
+ 2D

(
1

ε
ln(2π/ε)− 1

D
ln(2π/D)− 1

ε
+

1

D

)
. (17)

To compute the Casimir force between the cross links,
we must include the section of the filament outside of
them. We consider a filament of total length L � D.
To avoid additional complexities associated with the
choice of boundary conditions at the free ends, we as-
sume the filament to be linked into a loop. Then the
total free energy of the loop with two cross links is
FT (D) = ∆F (D) + ∆F (L − D). The Casimir force
−dFT (D)/dD is then fC(D) = f(D)− f(L−D), where
we have defined f(D) = −d∆F (D)/dD. Each of the
two fluctuation-induced interactions between the linkers
takes the form

f(D)/kBT = − ln

(
Γ(εκ)1/2

kBT

)
1

ε
−2

(
1

ε
ln(2π/ε)+

1

D
−1

ε
)

)
.

(18)
This expression must be proportional to an inverse
length. The system has three characteristic lengths: the
persistence length, which is proportional to the bending
modulus κ, the small distance cutoff ε, and D. We note
that the force depends on all three in a manner such
that it diverges in the continuum limit, ε→ 0. However,
after the subtraction of the two fluctuation-induced in-
teractions within the loop, each divergent in the ε → 0
limit, the residual Casimir force is finite and, in the limit
L� D is given by

fC(D) ≈ −4kBT

D
. (19)

Where, recalling the two independent undulatory polar-
ization states, we have multiplied our result by two. This
expression has a universal character: it is independent of
the small distance cutoff, the persistence length, or the
phase factor. To estimate the magnitude of this force in
typical biopolymer systems, we note that a separation of
a ten nanometers, the attractive force is on the order pi-
coNewtons, the typical force scale of motor proteins. The
work required to separate the two cross links from 100nm
to one micron is ∼ 9kBT . If the tension term were kept,
then the Casimir force would be unchanged for inter-
cross-link separations of D < 1/q, but would be reduced
by a factor of two for larger separations, D � 1/q.

It is essential to recognize that the finite Casimir force
between the two cross linkers on the loop was produced

by the subtraction of the two fluctuation-induced inter-
actions, each of which diverged in the continuum limit of
ε→ 0. The näıve mode analysis is not capable of separat-
ing the finite Casimir force from these cutoff dependent
terms, which diverge in the continuum limit. Although
this result is shown for the case of a filament at zero ten-
sion, the same issue appears for all finite tension. That
tension, of course, can be employed as a Lagrange multi-
plier in order to fix the mean arc length of the filament.
Controlling mean length in this way does not eliminate
the divergences associated with näıve mode analysis.

Of course, physical polymers have a natural short dis-
tance cutoff related to their monomer size. By fixing ε the
näıve mode analysis gives the free energy of a polymer of
N = D/ε degrees of freedom. The variation of that free
energy with length D (necessary to calculate the Casimir
force) changes the total number of degrees of freedom
making the analysis of the problem complicated. This
procedure gives a Casimir force with cutoff-dependent
contributions. The precise nature of the cutoff, how-
ever, should not determine the physical force between
distant pinning sites on the polymer. The subtraction
scheme used above masks our ignorance by subtracting
this cutoff dependence and is able to reproduce the cor-
rect Casimir force, but it is not inherently satisfactory.
The path integral method outlined in section II C system-
atically arrives at a free energy which neatly separates
cutoff dependent divergences and in this way produces
an explicitly finite Casimir force in the limit of ε→ 0.

As mentioned, the appearance of divergences is a sig-
nature of calculations of the Casimir force [4]. More
care must be used in taking the continuum limit in
the Casimir force calculation than is generally necessary
in computing other physical quantities associated with
semiflexible filaments. For example, one may compute
the force extension curve of such a filament and take the
continuum limit without encountering the infinities dis-
cussed above. We review that calculation briefly.

Including a finite tension on the filament, we may com-
pute the thermal expectation values of the squared am-
plitudes – see Eq. 13 – of the various undulatory fluctu-
ations on the filament. Using the equipartition theorem
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and Eq. 14 we immediately obtain

< A2
m >=

2

ε
(k4
m + q2k2

m)−1 (20)

The arc length L of the filament between two points sep-
arated by D is

L =

∫ D

0

dz
√

1 + h′(z)2, (21)

where we again only consider one polarization state for
the fluctuations. Using Eqs. 20 and 21 we find the mean
arc length between those points to be given by

L/D − 1 ∝ 1

D

D/ε∑
m=1

(k2
m + q2)−1. (22)

The key observation is that the summation converges in
the limit ε→ 0. In that continuum limit, changing from
summation to integration leads to the force-extension re-
lation (L/D−1) ∝ 1/τ1/2 for semiflexible polymers in the
limit of high tensions. This is a well-known result that
has been verified by micromechanical experiments [16].

The appearance of infinities in the Casimir force calcu-
lation raises questions as to the reliability of our result, as
it is far from clear that our procedure properly separates
the divergent and non-divergent terms. In contrast, the
force-extension calculation, as presented above, does not
suffer from these infinities, and consequently should be
considered to be more reliable. The source of our difficul-
ties lies in the free energy, Eq. 17, where the dependence
on D and ε is mixed together. A related problem con-
cerns the fact that the Hamiltonian contains higher order
derivatives. In a standard Feynman-type evaluation of a
functional integral over all possible trajectories, analyt-
ical functions like h(z) are replaced by a piecewise lin-
ear function that interpolates between the values h(zi)
evaluated at adjacent slices zi separated along the z-
axis by the small distance cutoff ε. In a Hamiltonian
that contains only first derivatives, these are replaced
by (h(zi+1)− h(zi))/ε. Physically meaningful results are
then obtained for the functional integral in the limit that
the width of the slice goes to zero. If, however, the Hamil-
tonian contains higher-order derivatives, as in the present
case, then approximating h(z) by a piece-wise linear in-
terpolation leads to ambiguities. Curvature energies, for
example, would be infinite at the cusps of a piece-wise
linear trajectory. Replacing the curvature by a discrete
second derivative avoids this divergence but that intro-
duces interactions between “time” slices that are not ad-
jacent, with mathematically unclear consequences. In
the next section we will present a method for computing
the Casimir force that avoids the ambiguities of the naive
method.

C. Kleinert Functional Integral

We will use a method introduced by Kleinert [12] in the
context of field theories with actions that contain higher

order derivatives. A higher dimensional functional inte-
gral will be evaluated that only contains first derivatives.
This Kleinert functional integral can be computed with-
out ambiguity by the usual Feynman method. The re-
sult does not depend on the small-distance cutoff. In the
present case, we need to establish a relation between the
Kleinert functional integral and the partition function
that we want to calculate.

The Kleinert functional integral is

ZK =

∫
DhDvDpDpv×

exp

{∫
dz

[
ip(h′ − v) + ipvv

′ − 1

2

(
p2
v + q2v2

)]}
.

(23)

If one were to drop the first two terms of the argument of
the exponential, the functional integral would resemble
the path integral expression of the density matrix of a
quantum harmonic oscillator, with pv playing the role of
the canonical momentum. It should be kept in mind that
in classical statistical mechanics momentum integration
produces the partition function of the ideal gas. The
variable pv is only a mathematical aid and should not be
viewed as a physical momentum variable.

The relation with the partition function that we want
to compute can be seen intuitively by completing the
square of pv(z) in the Kleinert Hamiltonian. This pro-
duces a term − 1

2v
′(z)2 inside the square brackets. Next,

the functional integral over p(z) produces a delta func-
tion at every time slice. That imposes the condition
h′(zi) = vi, which transforms v′(z) into a discretized ver-
sion of h′′(z). After performing the functional integrals
over p, pv, and h′ = v, the remaining functional integral
over h(z) is expected to be proportional to the partition
function. We must carefully verify however that the mul-
tiplicative constant does not involve any dependency on
D.

To explicitly evaluate the functional integral, slice the
spatial coordinate z into N+1 pieces of width ε such that
zn = nε and (N + 1)ε = D. The boundary conditions
translate into the requirements

h0 = 0 hN+1 = 0

v1 = va vN+1 = vb (24)

There are no boundary conditions imposed on p and
pv. A piecewise linear path is now defined by the val-
ues of (hn, vn, pn, pvn) at each slice, with a straight line
path in four-dimensional phase space interpolating be-
tween adjacent slices. Since the phase space coordinates
are independent, we recover all possible paths by inte-
grating over each variable at each slice. The measures
Dh,Dv,Dp, andDpv in the partition function are defined
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to be

Dh =

N∏
n=1

∞∫
−∞

dhn
∆h

Dv =

N∏
n=2

∞∫
−∞

dvn
∆v

Dp =

N+1∏
n=1

∞∫
−∞

dpn
2π∆p

Dpv =

N+1∏
n=2

∞∫
−∞

dpvn
2π∆pv

(25)

The factors ∆h,∆v,∆p, and∆pv are included in the def-

inition of the elementary volume in the four-dimensional
phase space to construct a partition function that is di-
mensionless, just as a factor with the dimensions of ~3

must be included in the partition function of classical
systems. The phase-space factors can be combined into
the term ∆−N = ∆h−N∆v−N+1∆p−N−1∆p−Nv .

All first order derivatives in the Hamiltonian can be
discretized:

H̃ = ε

N+1∑
n=1

[
−ipn

(
hn − hn−1

ε
− vn

)
− ipvn

(
vn − vn−1

ε

)
+

1

2

(
p2
vn + q2v2

n

)]
(26)

First, perform the Gaussian integrals over pvn . This gives

one factor (2πε)
− 1

2 for every n and a term 1
2 ( vn−vn−1

ε )2

inside the square brackets. Next, perform the integrals
over pn. This produces one delta function δ(hn−hn−1−
εvn) for every n. Finally, the integrals over vn combined

with the delta function means replacing vn by hn−hn−1

ε .
Finally, a factor of 1/ε is generated by each of the N − 2
integrals over vn through the δ functions. The final result
is

ZK =
1

ε
3N
2 −1

 N∏
n=1

∞∫
−∞

dhn
∆

 δ (hN − εvb) δ (h1 − εva) e−H,

(27)
where the Hamiltonian is given by

H =
ε

2

N∑
n=1

[(
∇∇̄hn

)2
+ q2 (∇hn)

2
]
. (28)

Here, ∇ and ∇̄, are the forward and backward lattice
derivatives:

∇h(z) =
h(z + ε)− h(z)

ε

∇̄h(z) =
h(z)− h(z − ε)

ε
. (29)

Equation 27 provides us with the desired relation between
the Kleinert functional integral and the partition func-
tion. The latter is ZK without the prefactor ε−3N/2+1

and with ∆ replaced by a suitable ∆h that makes the
partition function dimensionless. Note that h(z) in the
functional integral is here allowed to have a slope at the
end points that differs from the imposed boundary con-
dition with the boundary condition enforced by the two
delta functions.

D. Partition Function

To explicitly compute ZK(ε), it is convenient to leave
the integral over p1 and pN+1 in place. As before, we
separate the displacement into a classical and a fluctua-
tion part. The classical contribution Zcl = e−Hcl(va,vb) is
given by Eq. 7, just as in the näıve mode analysis. Carry
out a mode analysis by expanding the displacement in a
sine series:

δh(z) =

√
2

N + 1

N∑
m=1

Amsin kmz, (30)

with km = mπ
D . This decomposition differs from that of

the näıve mode analysis in that the sine series imposes
only the zero displacement boundary conditions h0 =
hN+1 = 0 at the ends, but does not constrain the angles
there. The remaining boundary conditions on the angles
are imposed afterwards through the integral over p1 and
pN+1. The fluctuation part of the Kleinert Hamiltonian
is

Hfl =
ε

2

N∑
m=1

(Q4
m +Q2

mq
2)A2

m. (31)

Here

Q2
m =

2− 2cos (kmε)

ε2
(32)

is the mode dispersion relation of a linear chain. Eq. 30
is an orthogonal transformation with unit Jacobian.

Finally, we express δh1 and δhN in
exp {ip1δh1 − ipN+1δhN} in terms of the sine series:
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exp {ip1δh1 − ipN+1δhN} = exp

{
i

√
2

N + 1

[
(p1 − pN+1)

N∑
m odd

Amsin(kmε) + (p1 + pN+1)

N∑
m even

Amsin(kmε)

]}
.

The functional integral over the fluctuations, after the
change of variables, is then

Zfl = ε∆−N
N∏
m=1

 ∞∫
−∞

dAm√
2πε ε

∫ ∞
−∞

dp1

2π

∫ ∞
−∞

dpN+1

2π

× exp

{
i

√
2

N + 1

[
(p1 − pN+1)

N∑
m odd

Amsin(kmε)

+ (p1 + pN+1)

N∑
m even

Amsin(kmε)

]}

× exp

{
ε

2

N∑
m=1

(Q2
m + q2)2A2

m

}
. (33)

The integrals over the mode amplitudes Am are Gaus-
sian. Evaluation produces the product of a prefactor

N∏
m=1

(ε2Q2
m + ε2q2)−1 (34)

that includes a factor 1√
2πε ε

, and a piece which depends

on p1 and pN+1:∫ ∞
−∞

dp1
2π

∫ ∞
−∞

dpN+1

2π
exp

{
− 1

(N + 1)ε

[
(p1 − pN+1)2Σo

+ (p1 + pN+1)2Σe

]}
.(35)

where

Σe
o

=

N∑
meven

modd

sin2(kmε)

(Q2
m + q2)2

. (36)

The infinite product (Eq. 34) and the sums Σe
o

can be
evaluated in the limit N →∞ giving

Σe =
ε2D

8q
coth(

qD

2
)

Σo =
ε2D

8q
tanh(

qD

2
)

(37)

(see Refs. [17] and [18]). The remaining momenta inte-
grals (Eq. 35) are Gaussian. After evaluation and com-
bination with Eq. 34, the fluctuation contribution to the
partition function is

Zfl =
1

2π∆N

q2√
2(1− coshqD) + qdsinhqD

. (38)

The final result for the Kleinert functional integral

ZK = e−Hcl
1

2π∆N

q2√
2(1− coshqD) + qdsinhqD

(39)

does not depend on the short distance cutoff. The actual
partition function

Z = e−Hcl
ε

2π(ε3/2∆)N
q2√

2(1− coshqD) + qdsinhqD
,

(40)
however does depend on the short distance cutoff, but
only through a multiplicative constant, which can be ab-
sorbed into the phase factor. The free energy equals

F
kBT

= Hcl − ln

(
q2√

2(1− coshqD) + qDsinhqD

)
+N ln

√
∆2ε3

kBT
− ln(ε/2π). (41)

The first term, the classical Hamiltonian, is the elastic en-
ergy of the chain in the absence of thermal fluctuations.
It is, of course, independent of the microscopic cutoff.
The second term is also independent of the short dis-
tance cutoff and it will be the source of the Casimir force.
The third term, which depends explicitly on the cutoff,
is extensive in the number N of microscopic degrees of
freedom and dominates in the large N limit. Now, the

finite and divergent terms are cleanly segregated in the
free energy: the dependence on the small distance cutoff
– which stands for dependency on microscopic variables
– only appears in the free energy per monomer.

Note that, unlike the case of field-theory whose meth-
ods we have been using here, there is nothing unphysical
in the remaining dependence of the free energy on the mi-

croscopic cutoff. In fact, −T ∂2F
∂T 2 must equal the Dulong-
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Petit heat capacity N
2 kB in the limit of large N according

to classical statistical mechanics. The third term (with
the explicit temperature dependence restored) ensures
that this relation holds even as ε is taken to zero.

III. LINKER INTERACTION POTENTIAL

We can now use the results of the previous section
to infer the effective interaction between sliding linker
molecules. We start with the case of zero tension when
the partition function reduces to

Z ∝ 1

D2
e−

2
D (v2a+v2b+vavb) (42)

and the free energy

F = −kBT logZ

= kBT

(
2logD̃ +

2

D̃

(
ṽ2
a + ṽ2

b + ṽaṽb
))

+ C, (43)

The constant C, which is independent of D and the
boundary conditions, plays no further role. The tildes

have been reinserted here as a reminder: D̃ = l
− 1

3
p D, ṽ =

l
1
3
p v. The force between the linkers is computed, as be-

fore, by connecting the ends of the chain into a loop of
length L and computing the derivative of the total energy
with respect to D. This produces

f(D) ≈ −2kBT

D
+ 2κ

v2
a + v2

b + vavb
D2

. (44)

assuming again L � D. The first term has the form
of the Casimir interaction that we obtained earlier. The
second term is the elastic energy of the section of the
chain between the linkers. The combined expression has
a stable minimum at f(D∗) = 0 with a separation D∗ =
lp(v

2
a + v2

b + vavb) that is of the order of the persistence
length.

One must now specify how the sliding linker molecules
impose angular restrictions on the filaments to which
they are bound. There are two particular cases of inter-
est related to cross linked F-actin networks. Some linkers
that promote filament bundling, such as α-actinin, have a
strong preference for parallel filaments, but others, such
as the network-forming filamin cross linkers do not ap-
pear to generate strong angular constraints. It is simple
to examine both cases if the linker molecules apply a
harmonic restoring torque on the two filaments towards
parallel alignment. In that case, two final Gaussian in-
tegrals remain to be done to perform a thermal average
of the classical partition function over different linker an-
gles:

Zcl =

∞∫
−∞

dva
∆va

dvb
∆vb

exp

{
−2lp
D

(
v2
a + v2

b + vavb
)}

(45)

× exp

{
−βγ

2

(
v2
a + v2

b

)}
,

where γ is a measure of the angular rigidity of the linker.
The associated free energy is

Fcl(D)

kBT
=

1

2
log

[
1

2
(lp/D)2

(
12 + 8βγD/lp + (βγD/lp)

2
)]

+C (46)

This expression must replace the second term in Eq. 43.

A. Network Linkers

For the case that the linker molecule have little or no
angular preference, we take the limit of βγ � lp/D and
find the total force to be

f(D) ≈ −kBT
D

. (47)

The thermal average over the repulsive “classical” inter-
action simply cancelled one half of the Casimir force. The
net force remains attractive as long as βγ � lp/D. For
very large separations, this condition fails. The attrac-
tion starts to increase even more and is better described
by the opposite limit of bundling linkers, which have
a strong angular preference. Relaxing the angle condi-
tion in going from the result given by Eq. 44 to the one
given by Eq. 47 removes precisely half of the interaction
strength. One may view the attraction in Eq. 44 as aris-
ing in equal parts from the restriction of two separate de-
grees of freedom, the position and slopes of the filament
at the pinning sites. Alternatively, if one were to consider
the unphysical case of cross linkers which pin the slopes
but not the positions of the filaments, one should expect
the same result as in Eq. 47. More importantly, one may
consider the case of cross linkers with no angular prefer-
ence and some intrinsic elastic compliance, modeled by
a harmonic spring with spring constant k. Based on our
results for the cross linkers that generate a harmonic po-
tential with curvature γ for the filament slope, we expect
that the prefactor of unity in Eq. 47 would be reduced
monotonically for elastically compliant cross linkers, and
go to zero as k → 0.

B. Bundling linkers

For the case that the linker molecule have a strong
angular preference for parallel alignment, we should take
the opposite limit of βγ >> lp/D. This gives

f(D) ≈ −2
kBT

D
(1− 2

kBT lp
γD

+ ...) (48)

for the total force. The repulsive interaction amounts to
a small reduction of the Casimir force. The Casimir force
is thus roughly twice stronger for bundle linkers than for
network linkers. In the limit γ → ∞ the final result for
the Casimir force obtained from the correct evaluation
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of the path integral is identical to that obtained by the
näıve approach and subtraction scheme discussed in sec-
tion IIB. The näıve approach to the calculation of the free
energy of the pinned filament introduces errors in its de-
pendence upon the small distance cutoff ε. However, by
taking a derivative with respect to the inter cross linker
spacing and subtracting the remaining formally divergent
part of the resultant force as described after Eq. 18, one
can mask the deficiencies of the näıve approach. Other
derivatives of the free energy, such as the specific heat,
still retain the unphysical dependence of the näıve free
energy upon ε, as discussed after Eq. 41.

FIG. 4: (color online) The Casimir force versus cross linker
separation for a filament fluctuating in one transverse dimen-
sion. We compare the interaction in the tension-free case for
network cross linkers, which do not constrain the filament
crossing angles (blue short-dashed), and angle-constraining
bundle cross linkers (red dotted) with zero preferred slope.
When the bundle cross linkers enforce filament slopes that in-
troduce a nonzero mean torque (pink dot-dashed), the inter-
action becomes repulsive at short distances due to the forced
bending of the filament. The effect of finite tension is explored
for the case of fixed tangent angles of zero at the cross links.
Increased tension reduces the attractive interaction at lengths
greater than

√
κ/τ , as can be seen by comparing the low

tension (green solid) and high tension (orange long dashed)
results.

C. The effect of tension

Next, consider the case that the nonzero filament ten-
sion. Rewriting the earlier results in terms of the un-
scaled variables, introducing the dimensionless quantity

d ≡
√

βτ
lp
D =

√
τ
κD, and further setting the slopes

va = vb = 0 to focus on the fluctuation contribution
(Hcl = 0), we find the free energy

F = −kBT

[
log

(
1

D2

)
+ log (W (d))

]
+ C, (49)

where

W (d) =
d2√

2(1− cosh(d)) + d sinh(d)
(50)

is a scale function. The function f(d) contains the entire
correction to the free energy due to tension, which enters
only through the length

√
κ
τ . The force between the two

linker molecules, obtained as before, is

f(D) = kBT

(
− 2

D
+

√
τ

κ

(
W ′(d)

W (d)
+

1

2

))
. (51)

The factor 1/2 in the second term is the contribution to
the force due to filament fluctuations of chain material
that is not between the two linkers. The second term is
strictly positive so that the inclusion of tension weakens

fluctuation attraction. For d � 1, W ′(d)
W (d) ≈ −

1
2 + 3

2d .

In that case, the total force is f(D) ≈ −kBT
1

2D . The
tension-induced fluctuation repulsion thus cancels 3/2 of
the tension-free Casimir force.

For d � 1 on the other hand, the second term con-
tributes a repulsive force that is independent of D and

equal to kBT
2

√
βτ
lp

but this is small compared to the

tension-free fluctuation attraction. For distances small
compared to the “tension scale” 1/q the full Casimir at-
traction is recovered. In summary, the Casimir force is
not suppressed by tension for the case of bundle linkers
with strongly preferred alignment. If slope fluctuations
are included one finds a reduction of kBT

1
D in the at-

tractive force for d << 1 again illustrating that tension
has no effect for distances less than the tension scale.
For large distances the slope fluctuations are strongly
suppressed and do not weaken the Casimir attraction.
We plot the Casimir force between cross linkers of the
bundling and network types and explore the effect of ten-
sion applied to the filament in Fig. 4.

IV. CONCLUSIONS

We showed in this paper that when semiflexible
polymers are connected by sliding linkers as in Fig.2,
then thermal conformational fluctuations generate a
long-range Casimir attractive pair interaction V (D) =
γkBT lnD between linkers separated by a distance D.
The proportionality constant γ is a number that ranges
from 1/2 to 4 depending on: (i) the presence or absence of
tension along the polymer, (ii) whether or not the poly-
mers are confined to a plane, and (iii) the rigidity of
angular constraints imposed by the sliding linkers.

For distances large compared to the persistence length,
the polymers can be treated as flexible. In that case,
V (D) can be roughly approximated as the entropic en-
ergy cost of a loop of size D, if we reinterpret D as
the total polymer length between the two linkers. In
that limit, the linker pair-interaction maintains the same
form, though the prefactor γ will be different (for non
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self-avoiding polymers, γ would equal d/2 with d the
spatial dimension). It is important to stress that the
Casimir attraction between sliding linkers only is impor-
tant if elastic stress does not prevent the two linkers from
approaching each other. For example, if the two slid-
ing linkers in Fig. 2 impose a non-zero angle then this
generates an elastic stress that amounts to a repulsive
interaction that overwhelms the Casimir interaction on
length scales small compared to the persistence length.
The most interesting examples of polymer networks held
together by transient linkers involve F-actin filaments in
the presence of linker proteins. F-actin has a persistence
length in the range of 20 microns. The force between two
sliding linker proteins separated by a distance of ∼ 10nm
is in the picoNewton range, which is the same order of
magnitude as typical forces exerted on proteins.

FIG. 5: Three interacting sliding linkers on a single fluctuat-
ing filament

Any elastic compliance in the cross linkers will decrease
the overall prefactor of the Casimir interaction between
them. We analyzed this effect for the case of replacing
the fixed angle boundary conditions with a harmonic po-
tential having a minimum at the desired crossing angle
of the two filaments at the cross linker. As the curvature
of that potential was reduced, the contribution to the
Casimir interaction coming from the pinning of the angu-
lar degrees of freedom vanished continuously. Since slope
and position variables are treated analogously within the
path integral formulation, replacing the boundary condi-
tion of the fixed filament position at the cross linkers with
a harmonic potential at those positions will have a sim-
ilar effect. Alternately, one might consider treating the
cross linkers as small rings of radius a, as represented in
our figures. If that radius is finite then undulatory modes
of the filaments with an equilibrium amplitude less than
a should be essentially unaffected by the rings and not
contribute to the Casimir interaction. As the persistence
length of the filaments diverges and all undulatory mode
amplitudes decrease, the Casimir interaction must van-
ish. We pursued our calculation by first taking the limit
of an infinitesimal ring so that our results show a finite
Casimir interaction for arbitrarily large (but finite) per-

sistence lengths. As mentioned above however, one can
still explore the effect of softening the position boundary
condition by treating the cross linker as a spring instead
of a hard constraint.

Different values for γ may lead to different equilibrium
phase behavior for networks of semiflexible polymers. As-
sume a stress-free network of semiflexible polymers held
together by sliding linkers. If two neighboring linkers of
a given polymer can approach each other – without gen-
erating elastic stress – then the equilibrium probability
distribution P (D) for the separation of the two linkers
would be proportional to exp[−βV (D)] ∝ 1/Dγ . The
mean square separation <D2> of the two linkers then
would be infinite for γ less than or equal to 3. That
would suggest that for γ greater than 3, linkers would
come together into pairs of linkers. Would this trigger
decomposition of the network as a whole? Estimate the
free energy density of the linker many-body system as
F (ρ)/kBT ≈ ρ ln ρ − (z/2d)γρ ln ρ, with z the average
number of nearest neighbors per linker in the network
and ρ ≈ 1/Dd the linker density. The critical value for
γ above which the free energy density is a concave func-
tion of the density is 2d/z. For larger values of γ, the
network state is thermodynamically unstable. These ar-
guments assumed that the Casimir force could be treated
as a pair interaction. In Appendix B we show that this is
not quite right: three-body Casimir interactions cannot
be neglected in general. We are currently investigating
the thermodynamical stability of these networks.

We conclude by noting an important difference be-
tween the Casimir interactions in liquid membranes and
on semiflexible polymers. It is essential to recognize that
the linkers in our problem constrain the filament’s posi-
tion with respect to the space in which the filament is
embedded. In other words, the filament can exchange
momentum with the background system, e.g., a poly-
mer network with the linkers at those points. If it were
not constrained in this manner, so that the linker poly-
mer system could collectively diffuse in the space, there
would be no fluctuation-induced interaction between the
linkers. This is demonstrated in appendix A. This as-
pect of the Casimir interaction on one dimensional elas-
tic objects is surprising when compared to the analo-
gous problem of rigid, disk-like inclusions in an isolated
membrane. These are known to interact via a power-law
Casimir force even if the collective disk and membrane
system were allowed to freely diffuse in the embedding
space. One cannot simply generalize this membrane re-
sult to the semiflexible polymer problem and this has sig-
nificant biophysical implications. Based on our result, we
predict that DNA binding proteins do not experience a
long-ranged attractive Casimir interaction along a DNA
filament, while membrane-bound proteins do.
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Appendix A: No Casimir interaction for rigid
inclusions within the spin-wave approximation

Consider a free semiflexible filament fluctuating in the
plane with two linkers attached. The Hamiltonian for the
filament, parameterized by the angle of the local tangent
with respect to a reference direction θ(s) as function of
arc length, is given in the usual form,

H ({θ(s)}) =
1

2

∫ L

0

ds κ(s)

(
dθ

ds

)2

. (A1)

The role of the attached linkers is to modify the local
bending stiffness of the filament κ(s); the filament has
one bending modulus at the linkers’ locations and an-
other elsewhere. The partition function for such a system
may be written as

Z =

∫
Dθ e−βH({θ(s)}). (A2)

The above partition function is that of the one-
dimensional nonlinear σ model, but with a nonuniform
stiffness. The functional integration should respect the
restriction of θ(s) to the unit circle: 0 ≤ θ < 2π. In the
case of interest where the entire chain segment is much
shorter than a persistence length, the partition sum is

dominated by a small range of tangent angles so that
this constraint can neglected. Having done so, we per-
form the functional integral over θ(s) treating it as a
Gaussian variable. In the non-linear sigma model, this is
known as the spin-wave approximation. Discretizing the
functional integral again in chain segments of length ε,
and assuming periodic boundary conditions, we obtain

Z =

[
N∏
n=1

∫ ∞
−∞

dθn
∆

]
exp

{
− 1

2ε

N∑
n=1

βκn (θn+1 − θn)
2

}
,

(A3)
with θN+1 = θ1. Since there are no higher-order deriva-
tives, there are no ambiguities of the kind previously dis-
cussed in the evaluation of the functional integral. In-
troducing the difference variable yn = θn+1 − θn and
performing the Gaussian integrals we arrive at

Z ∝
N∏
n=1

1√
βκn

. (A4)

It is evident from this expression that the partition func-
tion does not depend on the separation of the two beads
on the filament; there is no fluctuation-mediated interac-
tion between the beads within the spin-wave approxima-
tion.

Appendix B: The three particle interaction

Consider three sliding linkers on a fluctuating filament
as shown in Fig. 5. The classical and Casimir contribu-
tions to the free energy in a tensionless filament in the
scaled units are

F = 2kBT

(
logD̃ + log(L̃− D̃) +

ṽ2
a + ṽ2

b + ṽaṽb

D̃
+
ṽ2
b + ṽ2

c + ṽbṽc

L̃− D̃

)
, (B1)

If one assumes the linkers have no angular preference
then the ṽi may be integrated out and one finds the in-
teraction free energy

F = kBT

(
logD̃ + log(L̃− D̃) +

1

2
logL̃

)
(B2)

The Casimir force on the middle linker is

f = −kBT

(
1

D̃
− 1

2(L̃− D̃)

)
(B3)

The force on the leftmost linker is

f = −kBT

(
1

D̃
+

1

2L̃

)
(B4)

As we let D̃ → L̃ corresponding to a single linker inter-
acting with a cluster of two linkers we see the force goes
to − 3kBT

2L̃
. This result highlights the fact that tight clus-

ters must eliminate fluctuations and therefore force the
slopes to be identically zero at the edges of the cluster.
Fluctuating slopes generate repulsive forces of strength
−kBT

2L̃
so the elimination of such fluctuations increases

the overall strength of the attraction. We see that an in-
dividual linker will be preferentially attracted to clusters
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over solitary linkers. This result holds for the interaction
of a single linker with any size cluster up to correction of
order a

L , where a is the mean spacing within a cluster and
L is the separation of the single linker with the cluster.
We may also deduce that two clusters will interact with
the full fluctuation force − 2kBT

L̃
since there are no slope

fluctuations at either end.

Appendix C: Semiflexible Filament Equilibrium
Fluctuations

In this appendix we address the questions of the overall
scale of the transverse fluctuations of a filament in order
to demonstrate that the thermally generated undulations
are sufficiently large so as to be affected by cross linkers
that imperfectly pin the filament, such as ring cross link-
ers shown schematically in Figs 2 and 5. To do this we
consider a filament of length L� lp without applied ten-
sion. In this case the energy of a given deformation h(z)
is

E =
κ

2

∫
dz [∂2

z h(z)]2. (C1)

We take the filament to be hinged at z = 0 and free
at z = L and determine the characteristic fluctuations
a distance l from z = 0. The boundary conditions are
then h(0) = h′(0) = 0 and h′′(L) = h′′′(L) = 0, where
primes denote differentiation with respect to z. For these
boundary conditions we may integrate by parts to get

E =
κ

2

∫
dz h∂4

z h. (C2)

To determine the thermal expectation value of the fil-
ament’s transverse displacement at z = l it is convenient
to decompose those displacements into eigenfunctions of
the ∂4

z operator with the boundary conditions imposed
above. These are

hn = cn

[
sin(knz) +

sin(knL)

sinh(knL)
sinh(knz)

]
, (C3)

with corresponding eigenvalue k4
n where kn are the solu-

tions of the transcendental equation

tan(knL) = tanh(knL), (C4)

and cn is a normalization constant chosen so that∫ L

0

dzh2
n(z) = 1. (C5)

We further simplify the analysis by considering only the
first mode, n = 1. Since the mean square amplitudes
of each mode are positive definite quantities that add
to the quantity of interest 〈h2(l)〉, our result provides a
conservative underestimate of the rms fluctuations of the
filament.

From the equipartition theorem

κ

2
〈A2

1〉k4
1 =

kBT

2
, (C6)

where A1 is the amplitude of the first mode. The local
height fluctuations are then given by

〈h2(l)〉 =
kBT

κk4
1(L)

h2
1(l;L) + · · · , (C7)

where we note explicitly the dependence of the eigen-
function and eigenvalue on the filament’s length L. The
ellipses represent positive terms associated with the ne-
glected modes. The eigenfunction scales as h1(l;L) ∼
L−1/2k1l due to the normalization factor c1 of the eigen-
function and its dependence on l for small l. The eigen-
values scale as k1 ∼ L−1, so h1(l;L) ∼ L−3/2l. Combin-
ing this with Eq. C7 and recalling that lp = κ/kBT , we
find

〈h2(l)〉 ∼ l2L

lp
. (C8)

The rms fluctuations are then estimated to be√
〈h2(l)〉 ∼ l

√
L/lp. Taking parameters appropriate for

a 1µm filament of F-actin (lp ∼ 10µm) we find that√
〈h2(l)〉 = .1l. (C9)

At a separation of l = 100nm the fluctuations are ap-
proximately 10nm. If we imagine that the hinged bound-
ary condition at z = 0 is due to a cross linker with no
angular preference then we expect to have a meaning-
ful Casimir interaction at a separation of 100nm since
a physical cross linker should be capable of constrain-
ing fluctuations of order 10 nm. Assuming cross linkers
can affect fluctuations on the scale of 1nm, we arrive
at our estimate for the short distance cutoff for Casimir
interactions between physical cross linkers: separations
of 10nm. This result is somewhat sensitive to boundary
conditions: A clamped boundary condition at z = 0 leads
to a quadratic growth profile and would produce fluctua-
tions of only a few nm at l = 100nm, and thus extend our
short distance cutoff of the Casimir interaction to such a
distance.
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