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DNA conformation plays an important role in a host of cellular processes. Despite the central
importance of DNA conformation, there is not yet a general-purpose calculator for conformational
statistics that is designed for the scientific community. Here we describe a public tool we developed
for calculating an important class of conformational statistics: the end-to-end probability density of
finding a locus of the DNA polymer at a given displacement and orientation relative to a second locus
on the same polymer. As a demonstration, we propose a novel cyclization experiment and use our cal-
culator to show that this experiment could measure the energy of DNA bending as a direct function
of bend angle in the poorly-understood high-bending regime. Our tool is available as both an online
calculator and a downloadable program at: http://mtshasta.phys.washington.edu/wormulator/

PACS numbers:

Introduction

Many important cellular processes are controlled or in-
fluenced by the mechanical properties of DNA [1]. For
example, stiffness plays a role in regulatory DNA looping
[2] and condensation of the chromosome [3, 4], while the
flexibility of DNA at very short scales affects the bind-
ing affinity of DNA-bending and DNA-bridging proteins
[5]. In each of these cases, proteins bind two or more ge-
netic loci, constraining the displacement and orientation
of these bound loci relative to one another. (See Fig. 1.)
These constraints increase the free energy of the polymer
by decreasing the entropy (number of accessible configu-
rations) and increasing the enthalpy (bending energy) of
the DNA polymer.

For example, consider the binding of a transcription
factor T with two distinct DNA binding domains to
DNA sites A and B. The equilibrium concentration of
the protein-DNA complex ATB is predicted to be:

[ATB] = KAKB [A][B][T], (1)

where KA and KB are the equilibrium association con-
stants for the binding of sites A and B to T at equilib-
rium concentrations [A], [B] and [T] respectively. If we
consider the concentration of looped complexes where A
and B are on the same DNA molecule, once sequence A is
bound, the relevant concentration of B is not its solution
concentration, but rather the concentration of B at its
binding site on T given that A is bound to the other end
of T. This concentration, [B]∗, is called the effective con-
centration or J factor and is predicted by the statistical
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mechanics of the DNA polymer [6, 7]:

[B]∗ ≡ J = 8π2p(∆R,Ω`|Ω0; `), (2)

where J is the J factor, p is the conditional probability
density (or concentration per radian cubed) of the poly-
mer with physical displacement ∆R and orientation Ω`

at locus A relative to locus B with orientation Ω0 when
sites A and B are separated by contour length ` along
the polymer chain. ∆R, Ω`, and Ω0 are a consequence
of protein conformation and ` is a consequence of DNA
sequence. The factor of 8π2 is a consequence of the re-
quirement that the angular orientation of B is also con-
strained whereas the equilibrium constants are defined
assuming an isotropic angular distribution of molecules
in the solvent (1/8π2). Therefore the concentration of
looped complex is predicted to be:

[ATBloop] = KAKBJ [DNA][T], (3)

where [DNA] = [A] = [B] is the solution concentration of
each DNA sequence. We define the looping free energy:

Gloop ≡ −kBT log J, (4)

where kB is the Boltzmann constant and T the absolute
temperature and J is in units of Molarity.

Two special cases are worth discussing which simplify
Eqn. 2. In the special case where the tangent of the DNA
sequence is constrained, but not the twist, the effective
concentration simplifies to

J = 4πp(∆R,u`|u0; `), (5)

where p is the probability density (or concentration per
radian squared) of the polymer with physical displace-
ment ∆R and tangent u` at locus A relative to locus
B with tangent u0 when sites A and B are separated
by contour length ` along the polymer chain. A second
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FIG. 1: (Color online) DNA looping induced by the bind-
ing of a transcription factor with two DNA binding domains.
The conformation of the protein determines the displacement
between binding sites (∆R) and the orientations Ω0 and Ω`.
The DNA sequence determines the contour length (`) between
the binding sites. Once the first domain has bound DNA, the
conformational statistics of the polymer determine the effec-
tive concentration (J = 8π2p) of the second binding site at
its binding domain.

special case describes the situation where there are no
orientational constraints. In this case, the effective con-
centration further simplifies to

J = p(∆R; `), (6)

where p is the probability density (or concentration) of
the polymer with physical displacement ∆R at locus A
relative to locus B when sites A and B are separated by
contour length ` along the polymer.

The conditional probability density which gives [B]∗ is
computed using the bending energy-weighted Boltzmann
distribution within a path integral over all polymer con-
figurations satisfying the endpoint conditions (e.g. [7]):

p(∆R,Ω`|Ω0; `) ≡ dP

d3∆Rd3Ω`
, (7)

= Z−1

∫
[DX(s)] e−E[ ~X(s)]/kBT

×δ3[∆R− (R(`)−R(0))]

×δ3[Ω` −Ω(`)], (8)

where P is the cumulative probability, X(s) parametrizes
the conformation, δ is the Dirac delta function which en-
forces the final displacement and orientation constraints,
Z is the partition function (the path integral evaluated
without constraint delta functions), and E is the bending
free energy functional.

The end-to-end partition function depends the ener-
getics of DNA bending and twisting. The most popular
mechanical description of DNA is given by the wormlike
chain model (WLC), in which the DNA axis is modeled
as a continuous line in space, with a tangent vector u(s)
and a rotating twist angle ψ(s) that are functions of the
contour location s. The energy of a wormlike chain poly-
mer is [7]:

E = kBT

∫ `

0

[
lp
2

(
du

ds

)2

+
lt
2

(
dψ

ds
− ωψ

)2
]
ds. (9)

The parameter lp is called the (bending) persistence
length [7], and sets the intrinsic length scale for DNA
bending. The persistence length is roughly 50 nm for
naked in vitro DNA [8]. In this paper we will call seg-
ments of DNA ‘long’ or ‘short’ if the ratio of the contour
length to the persistence length is significantly greater
or less than one. The parameter lt, which is called the
twist persistence length, sets the length scale for com-
puting statistics of DNA twist. Various measurements of
the twist persistence length of DNA give roughly 100-120
nm [8]. The unstressed twist rate ωψ of DNA is approx-
imately one full helical turn per 10.5 bases.

Methods

We have developed web-based and downloadable cal-
culators for computing the various end-to-end distribu-
tions of DNA under the phantom-chain approximation
[33] whereby excluded-volume interactions are ignored.
These distributions are computed under the assumption
that the polymer is in equilibrium in a thermal envi-
ronment. Our calculator can use three complementary
methods and treats a variety of polymer models. An
eigenfunction-based method, due to Spakowitz and Wang
[9, 10], is best-suited for cases in which the locus separa-
tion is much greater than the bending scale of the DNA.
The numerical Monte Carlo method efficiently computes
statistics of shorter DNA contours, and can bias the
sampling towards high-energy conformations to improve
statistics. Finally, the harmonic approximation method
of Zhang and Crothers [11] handles polymers that are
sharply deformed due to positional and/or orientational
constraints. The web calculator has a straightforward
and intuitive interface but is restricted to the worm-
like chain model and lacks the Zhang-Crothers method.
The downloadable program uses a command-prompt in-
terface, but has the full range of capabilities (including
sequence-dependent and nonharmonic polymer models
for Monte Carlo) and can be used for intensive calcu-
lations.

Gaussian chain method

In the limit of very long contours, the DNA essentially
performs a random walk in which the step taken over any
individual persistence length is much smaller than the
total distance traversed. In this situation the end-to-end
distribution approaches the Gaussian chain distribution
[7]:
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p(∆R) −→
(

3

4πlpL

)3/2

· e−3(∆R)2/4lpL (10)

where the orientational distributions are uniform. This
long-chain limit is trivial to calculate and is included in
our program.

Eigenfunction method

An exact solution to the wormlike chain end-statistics
problem was obtained by Spakowitz and Wang [9, 10],
which can be written as follows:

p(R`,Ω`|R0,Ω0;L) =
∑

l0,lf ,m,j

F−1
[
L−1

{
fmjl0lf

(Ω0,Ω`, k̂) · Gmjl0lf (k, p)
}]

. (11)

Here F−1 is the inverse Fourier operator that converts

the variable k (having magnitude k and direction k̂) into
R` −R0; and L−1 is the inverse Laplace operator which
converts p to the chain length L. R0 and R` give the
positions of the ends: R` = R0 + ∆R. The functions f
(a product of Wigner functions [7]) and G (a product of
continued fractions) are given explicitly in [9, 10]. The
variables l0 and lf range from 0 to infinity in both the
sums and the continued fractions, but the higher terms
tend towards zero so in practice we drop all terms above
some cutoff lmax when we perform a calculation. The
shorter the contour (relative to a persistence length), the
higher lmax must be to achieve a given accuracy.

Evaluating Eq. (11) in the straightforward way in-
volves eight nested iterations: the four sums over l0, lf , m
and j; the three inverse Fourier integrals; and the inverse
Laplace transform. In order to speed up the calculation,
our implementation pre-computes and stores the roots of
the continued-fraction polynomials that contribute to the
residues of the inverse Laplace transform. Effectively, we
compute the following:

1. gmjl0lf (k, L) = L−1
{
Gmjl0lf (k, p)

}
2. p(R`,Ω`|R0,Ω0;L) =

∑
l0,lf ,m,j

F−1
[
fmjl0lf

(Ω0,Ω`, k̂) · gmjl0lf (k, L)
]
.

The limiting step 2 now involves seven nested sums rather
than eight, greatly speeding evaluation of the expression.
The memory required to store the results of step 1 can
be significant, but overall we have found this tradeoff to
be worthwhile.

In certain special cases we can obtain further boosts in
speed by exploiting symmetries of the perturbation se-
ries. For the full distribution (11) we can take advantage

of the fact that the continued fractions are nearly sym-
metric with respect to m and j, up to an additive term
in the Laplace variable. To obtain the reduced distribu-
tion p(R`,u`|R0,u0;L) that ignores the relative twist of
the two ends, we ignore the sum over j and set j = 0;
to obtain p(R`|R0;L) we set m = j = 0. To obtain
the orientation-only distribution p(Ω`|Ω0;L) we replace
the inverse-Fourier operation with a simple evaluation at
k = 0 and restrict l0 = lf . Finally, to compute statistics
for cyclization (R` = R0 and Ω` = Ω0), we set l0 = lf ,
and exploit the fact that the expression is symmetric with
respect to m and j, and with m and −m modulo a com-
plex conjugation.

Our inverse-Laplace solver uses a C++ imple-
mentation of the complex Jenkins-Traub root-
finding algorithm written by Henrik Vestermark
(http://www.hvks.com/Numerical/ports.html). A root-
polisher using Newton’s method ensures that the roots
are at machine precision.

Monte Carlo method

Our second method for calculating end statistics is
Monte Carlo sampling, in which a large number of rep-
resentative conformations are generated beginning from
(R0,Ω0), and the distribution p(R`,Ω`) is estimated
by counting the number of conformations whose sec-
ond end lies within some finite window of the desired
(R`,Ω`). In order to generate representative conforma-
tions, the algorithm must be given the end-to-end dis-
tribution for a single segment; in other words, Monte
Carlo constructs p(R`,Ω0|R0,Ω`;L) from a polymer
model p(R`s ,Ω`s |R0,Ω0; `s) where `s is the segment
length. Monte Carlo is fastest at short contour lengths
because short polymers are quick to construct. It is
therefore complementary to the eigenfunction technique
of Spakowitz, which works best at long contour lengths.

We write our polymer model as p(X; `s) where X =
{∆r‖,∆r⊥,∆r×, θ, φ, ψ} describes translations and rota-
tions using axes affixed to the polymer. In our Monte
Carlo implementation the user specifies E(X; `s), and a
discretized probability function is computed using the
Boltzmann factor p ∝ J(X)e−E(X) where J(X) is the
volume factor appropriate to the system. Due to our
use of numerical interpolation tables both E(X) and
J(X) can be specified arbitrarily (although using inde-
pendent distributions for the various Xi saves significant
memory). Our Monte Carlo method can accommodate
nonharmonic energy functions, extensible polymers, cou-
pled degrees of freedom, 1-3 dimensional polymers, and
sequence-dependent models such as the DNA model of
[12] which is included in our Monte Carlo calculator. In
order to evolve the polymer once the trajectory vector X
has been sampled at each segment, we use the method
outlined in ref. [13].

Our Monte Carlo implementation can either sample
endpoint statistics as the chains are generated, or store
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the endpoints of all chains and sample their statistics
in a separate step. The first method saves memory as
little storage is required. The second method is much
faster when the distribution is being measured at multi-
ple points since most of the computational expense is in
generating the chains.

Thermal sampling on molecular scales is much faster
than numerical sampling on a computer, which leads to
the problem that sparse regions of the end-to-end distri-
bution may be relevant to biology despite being hard to
access numerically. To sample these regions, our Monte
Carlo code has the ability to bias its sampling towards
certain conformations by constructing the chains from
a different single-segment distribution than the distribu-
tion that defines the model. The sampling bias is then
corrected for by post-weighting. For example, if a given
bend angle of a polymer is drawn from a point where the
sampling distribution has twice the value of the true dis-
tribution then that joint will contribute a factor of 1/2 to
the weight. The total weight is the product of weighting
factors at all evaluations of the interpolation tables. Mea-
surement of the end-to-end distribution p() then involves
summing weighted conformations. The generic name for
this technique is ‘importance sampling’.

Our Monte Carlo method estimates the sampling er-
ror of a general biased sample by binning the weighting
factors and estimating the counting error in each bin b:

N2V 2
〈
δp2
〉

=
∑
b

w2
b

(〈
n2
b

〉
− 〈nb〉2

)
If we take these bins to be very small so that 〈nb〉 � 1,
then nb is almost certain to be zero or one, in which case
n2
b = nb. Then

N2V 2
〈
δp2
〉
≈
∑
b

w2
b

(
〈nb〉 − 〈nb〉2

)
≈
∑
b

w2
b 〈nb〉

We can estimate the error using the expression δp ≈√∑
i w

2
i /NV using the sample set wi. In the spe-

cial case of an unweighted sample set this reduces to
δp ≈ p/

√
nhits, although for unweighted samples we ex-

plicitly use δp ≈ p/
√
nhits − 1 to remove the bias of hav-

ing estimated the mean from the same sample set.
In addition to the various end-to-end distributions, we

include routines for measuring the various moments of
the distribution: the mean end-to-end distance function〈
R2n

〉
, and the mean of 〈(R · u0)n〉 for any n, where R is

the end-to-end displacement and u0 is the initial tangent
vector. These functions complement analytical results of
these same quantities [7], as those can be difficult to eval-
uate. To estimate the error in the moments, our program
divides the set of N conformations into m disjoint sub-
sets, computes the moment separately using each subset,

and then estimates the error based on the variance in the
moments of the subsets.

Harmonic approximation method

The eigenfunction and Monte Carlo methods described
above are most accurate when there are low-energy
polymer conformations that satisfy the end-to-end con-
straints. To complement these, we have also implemented
the ‘harmonic approximation’ (HA) method of Zhang
and Crothers [11] which works best in the regime of high-
energy, sharply-bent conformations. The HA method es-
timates the probability function by integrating Eq. 8
about the minimum-energy configuration of the polymer
that satisfies the given constraints. When the polymer is
sharply bent, the energy trough tends to be steep, fluc-
tuations are small and approximations made in the per-
turbative integral become ignorable. As in the case of
Monte Carlo, the HA method can incorporate any num-
ber of positional and/or orientational constraints along
the length of the polymer.

Our HA calculator is essentially an extension of our
Monte Carlo calculator, so it can be applied to the
same variety of DNA models as Monte Carlo deals with.
Sequence-dependence, extensibility, coupled degrees of
freedom and non-harmonic energy functions can all be ac-
counted for using HA. The HA method itself is described
in detail in ref. [11]; to summarize, their method first
finds the minimum-energy conformation of the polymer,
then computes the distribution by summing over fluctua-
tions about this conformation (assumed small-amplitude
if the polymer is sharply constrained). The main dif-
ferences in our implementation are 1) that we do not
assume a wormlike chain model and therefore the answer
is couched in terms of derivatives of the energy function;
2) the constraints are arbitrary whereas ref. [11] con-
centrates on cyclization; 3) the unconstrained partition
function is found by numerically integrating our interpo-
lation tables [14]. To find the minimum-energy confor-
mation, we use a general-purpose multi-dimensional root
finder from the GNU Scientific Library (GSL) [15].

For some purposes we would like to know the normal
modes of a constrained polymer. For example, our calcu-
lator allows one to perform biased Monte Carlo where the
normal modes of the constrained polymer comprise the
bias function. Unfortunately, real-valued normal modes
do not come directly out of the Zhang and Crothers
analysis, because the delta-function constraints are made
tractable for integration by Fourier-transforming them
into complex space. However, if we replace the singu-
lar delta-functions with a narrow Gaussian, then both
the energy and the constraint appear straightforwardly
within an exponential, which we can expand to second
order and convert to real-valued normal modes.

Formally, to obtain normal modes we write the distri-
bution as p = Zc/Z where Zc is the constrained partition
function and Z is the unconstrained partition function.
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Z is just a summation over the interpolation tables. To
evaluate Zc, we compute:

Zc =

∫
dx1dx2 . . . dxN

√
k1

2π

√
k2

2π
. . .

√
km
2π

×
(
e−E0e−

k1
2 f

2
1 e−

k2
2 f

2
2 . . . e−

km
2 f2

m

)
(12)

where fi denote the constraint functions and E0 is the
energy of the minimum-energy conformation. Performing
the integration, we obtain:

Zc = (2π)(N−m)/2

√
|Kc|
|M|

e−E
′
0 (13)

where E′0 = E0 + 1
2 fT0 Kcf0, Kc is a generalized stiffness

matrix, and M is defined by:

Mij =
∂

∂xi

∂

∂xj

(E + λ · f) +

(
∂f

∂xi

)T
Kc

(
∂f

∂xj

)
. (14)

For good sampling statistics, we choose Kc so that
the variances in the fi will be of the same order as the
respective sampling window sizes. Specifically, we dial in
Kc such that the projection of M into f -space is diagonal
with entries (PMPT )ii = Tii = 1/σ2

i , where σi is the
window size of constraint i. Projections between ∆X
and f are effected by f = β∆X and ∆X = Pf , where

βij = ∂xi
fj and P =

(
βTβ

)
βT . Writing M in the form

M = M0 + βKcβ
T , we obtain the constraint stiffness

matrix Kc = T− (βTβ)−1βTM0β(βTβ)−1.

Web interface

The online calculator allows the user to measure the
end-to-end distribution p(R`,Ω`|R0,Ω0; `) for single val-
ues of {∆R,Ω0,Ω`, `} by providing a polymer length `,
endpoint tangents and relative displacement and twist.
The online calculator only supports the wormlike chain
model; however, one can control the material parameters
(bending/twist persistence lengths and intrinsic twist)
so to model polymers other than double-stranded DNA.
Checkbox options to sum over R, tangents and/or twists
allow the various reduced distributions to be computed.
One convenience, not present in the command-line tool, is
that the program supports several length units (nanome-
ters, persistence lengths, base pairs of DNA, etc.). Online
computations may be performed using the eigenfunction
and Monte Carlo methods.

The output of the basic computation outlined above is
a single number: a probability density (probability per
unit volume and/or unit angular volume) for the poly-
mer’s second end to be in the given position and/or ori-
entation relative to the first end. Frequently, the user

would like to map this distribution over a range of val-
ues in some parameter – for example, to predict the effi-
ciency of cyclization over a range of polymer lengths. It
would be tedious to do these multiple evaluations manu-
ally, so the online calculator incorporates a ‘counter’ for
accomplishing this automatically: given a range of values
of the counter variable, the program will evaluate mul-
tiple times, once for each value of the counter. To set
up unique conditions for every run the user writes the
counter variable ‘c’ into the input fields: for example the
twist field might read sin((pi/8)*c), or the length may
be e^-c. If the counter is used, then the output of the
calculator will be a table, where the values of the counter
are displayed alongside the outputs of each evaluation of
the distribution.

It is easy for the user to request a calculation that
will either require too much memory or run practically
forever, especially when using the eigenfunction method
which involves many nested loops. In order to avoid over-
taxing the server, the online calculator restricts the per-
mitted ranges of parameters that affect memory usage
and computation time: the maximum l-value and the
number of integration steps in the eigenfunction calcula-
tion, the number of samples and discrete segments that
Monte Carlo generates, and the range of the counter vari-
able. Because of these restrictions, intensive calculations
can only be done using the command-line tool.

Downloadable tool

To perform a calculation using the downloadable
command-line tool, the user may enter commands di-
rectly into the interactive prompt, or else place those
commands into a file and have the program execute them
all at once. A basic computation requires two or three
instructions. The program has capabilities for generat-
ing and saving tables, inspecting intermediate stages of
the calculation, controlling the random sequences, and
measuring computation time and memory usage. A help
file that is included documents all of the commands and
gives examples for each type of calculation.

The Monte Carlo component of the command-line tool
has several capabilities that are not available from the
web site. One is the ability to use very general 2D or
3D polymer models, including those with non-harmonic
energy functions, coupled degrees of freedom, sequence
dependence and extensible segments, along with the trick
of biased sampling. Additionally, only the command-line
tool has the perturbative method of Zhang and Crothers.
The command-line tool can perform very lengthy calcu-
lations that are forbidden online. Finally, the ability to
export tables is useful for storing results, making plots,
and troubleshooting.
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Validation and Results

In order to validate our program, we performed a num-
ber of calculations that could be checked either explic-
itly or against a different method. For the perturbative
calculation, we compared selected computations of Eu-
ler angles and Wigner functions with hand-derived re-
sults, verified that the distribution asymptotically ap-
proaches the expected Gaussian for long chains, and re-
produced the cyclization plot given in ref. [10]. We also
compared probability densities given by our implementa-
tion of the perturbative method with equivalent calcula-
tions performed using a symbolic calculator (Mathemat-
ica [16]), drawing test cases from the full distribution
and from the orientation-only and cyclization distribu-
tions. Tests of the Monte Carlo method included explicit
checks on the propagation and rotation of individual seg-
ments, on the sampling of the bending/twisting energy
functions, and evaluations of 〈R · u0〉 which should ap-
proach lp

(
1− e−L/lp

)
. In all cases the results agreed

with the predictions within numerical precision, as long
as the parameters controlling accuracy (lmax, Kmax, etc.
for the perturbative method; segment length and number
of runs for Monte Carlo) were made stringent enough.

When a polymer’s length is on the order of a couple
of persistence lengths, both the perturbative calculation
and Monte Carlo can give good answers with reasonable
computational cost. We generated end-to-end distribu-
tions of a 3-persistence-length stretch of DNA using these
two methods and found the expected agreement.

Figure 2 Panel B compares the various computational
methods for computing J factors for the special case of
DNA cyclization, in which the configurational constraint
is zero displacement between the loci and aligned orien-
tation:

Jcycl = 8π2p(0,Ω|Ω; `). (15)

Cyclization provides an important connection between
theory and experiment, as the J factor is simply the equi-
librium ratio of cyclized to dimerized DNA fragments
when the species are allowed to reversibly anneal (Fig.
2, Panel A).

Application: Double-Gap Cyclization

Cyclization measurements, using either ligation or
FRET, are an extremely sensitive measure of DNA bend-
ing energy and provide compelling evidence that DNA is
more flexible at high bending angles than predicted by
the wormlike chain model. Many theories of high flex-
ibility of tightly bent DNA predict the localization of
bending to a kink, similar to that observed when a metal
tape measure is bent [17–22]. Such kinking could lead to
DNA bending at a well-defined large kink angle [17], or
if the mechanism leading to kinking was localized DNA
melting, a flexible joint [19]. Whether such structures ex-

`

(A)

(B)

FIG. 2: (Color online) Panel A: The DNA cyclization reac-
tion is a convenient tool for exploring the effective concentra-
tion. In cyclization, linear sequences are ligated to form DNA
circles. The constraints for cyclization are: zero displacement
between ends (∆R = 0), and the orientations of the two poly-
mer ends are aligned (Ω0 = Ω`). Panel B: DNA cyclization J
factor as a function of length using the wormlike chain model
[7], as computed by five different computational techniques.
Both entropic and energetic contributions play an important
role in determining the J factor. The J factor declines steeply
at short contour length since the bending energy scales like
the inverse contour length. The J factor is also modulated
by the helical repeat of DNA (10.5 bp) since the ends must
be in helical registry for ligation. The perturbative methods
are accurate for short (highly-stressed) contours but fail at
longer lengths where fluctuations about the minimum-energy
conformation become large. Monte Carlo and the method
of Spakowitz and Wang both work well for long contours,
but at short lengths Monte Carlo becomes inaccurate due to
sparse sampling of highly-stressed conformations while the
Spakowitz-Wang method fails to converge with the given tol-
erances. Our biased Monte Carlo runs lowered the energy bar-
rier by a factor of 1.5 (and corrected for it by post-weighting).
The perturbative results were obtained using discrete chains
with 500 segments; the Monte Carlo results used 20-segment
chains to obtain good statistics with the biasing method. We
have included a perturbative result of Yamakawa [7] that is
not computed by our program, to compare against the per-
turbative result of Zhang and Crothers.

ist and what their characteristics are remain important
and outstanding questions.

Unfortunately, traditional cyclization measurements
do not provide a straightforward approach for differen-
tiating between various DNA kinking models since the
dependence of the cyclization J factor on the bending
free energy is very complicated. To overcome this prob-
lem, we propose a modified DNA cyclization experi-
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`B
`S

(F)

(A)

`B

`S

(G)

µ
`B

`S

(E)

(C) (D)(B)

Ligase

Ligase

FIG. 3: (Color online) Panel A: Cyclization Reaction.
The single-stranded complementary sequence (red) at the
ends of a linear monomer can anneal to form either a linear
dimer or a monomer circle. These intermediates are ligated ir-
reversibly at limiting ligase concentration. Panel B-D: DNA
cycles with no (circle), one (tear drop) and two (bow) single
stranded gaps. Panel D corresponds to Double-Gap Cycliza-
tion. Panel E: The bow configuration is parameterized by a
string length, `S and a bow length `B . The bending of the
longer bow segment puts the string under tension. Panel G:
For our analytic treatment, we approximate the bow configu-
ration as two rigid segments (length 1

2
`B) bending a torsional

spring to angular displacement θ(`B , `S).

ment, termed ‘Double-Gap Cyclization’, that facilitates
the measurement of the DNA conformational energy for a
wide range of curvatures at fixed contour length. In brief,
Double-Gap Cyclization uses double-stranded DNA that
contains two nicks which serve as flexible joints (see the
Appendix for details). Due to the stiffness of the DNA
at short length scales, the cyclized conformation will con-
sist of a short ‘string’ under tension, and a longer ‘bow’
whose bending is mostly localized near the midpoint, as
illustrated in Figure 3.

To investigate whether Double-Gap Cyclization could
detect DNA kinks, we constructed a number of DNA the-
ories with physiological dsDNA persistence length, but
with significantly different bending free energies [34]. In
addition to the elastic rod theory (WLC), we considered
three examples of models with well defined kink angles,
and an example with a thermally-activated flexible hinge.
The bending energies are shown in Fig. 4, Panel A.

For each DNA model we considered, we computed the
Double-Gap Cyclization J factor using our calculator’s
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FIG. 4: (Color online) Panel A: DNA bending free energy as
a function of bend angle for 21 bp DNA segments. All theories
have the same bend persistence length, but Models II and III
kink when tightly bent. Model II has no preferred kick angle
and the free energy of kinking is independent of bend angle
above 1 rad. Model III considers three different well defined
kink angles. Panel B-F: J factor for models plotted as a
function of bow length and bend angle. WLC (Model I) has
an extremely low J factor for all large bend angles compared
to the kinking models. Model II, which has no preferred kick
angle, increases in J factor towards short contour length due
to entropy [20]. In Model III, with well defined kink angles,
the J factor is peaked in the vicinity of the kink angle, a clear
signature of kinking.

Monte Carlo method. We discretized the DNA backbone
using a segment length of 21 base pairs, corresponding
to two complete helical turns of the DNA, which allowed
us to treat the DNA as an isotropic rod and ignore heli-
cal phasing between segments. To improve statistics, we
biased the sampling distribution by reducing the bend-
ing energy by a factor of 1.5. For each DNA bending
model we measured J factors over a wide range of bow
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and string lengths using 10 million simulated conforma-
tions. The results are shown in Panels B-F of Fig. 4.

In DNA models that soften at high bend angles, a
significant enhancement in cyclization (large J factor)
was observed. In theories with well defined kink an-
gles, this enhancement is strongest around the kink an-
gle, as predicted by an approximate solution of the J
factor that we derived (see Appendix). The additional
bending of the DNA chain outside the kink broadens the
kink angle peak. These calculations predict that if strong
DNA kinking does occur then it should be observable
by Double-Gap Cyclization measurements, and that any
preferred kink angle can be directly measured by com-
paring the cyclization rates between different lengths of
the bow and string.

The minimum bow segment length in Double-Gap Cy-
clization sets the contour length resolution of the bending
free energy measurement. Are there significant limits to
the resolution of this technique? One important limita-
tion to a technique that incorporates ssDNA gaps in the
substrate is the melting of DNA at the gap leading to
the conversion of dsDNA bow to ssDNA string. We can
set an approximate limit to our resolution by setting the
DNA melting energy per base pair to the force generated
by the bow. We estimate that Double-Gap Cyclization
could be used to probe the mechanics of segments as short
as 50 bp.

Conclusion

Our goal in writing our end-statistics calculator was to
provide a comprehensive and user-friendly tool for com-
puting end-to-end statistics of DNA. Using our calcula-
tor, one can compute a variety of statistics of biological
importance, such as DNA-looping free energies for tran-
scription factors, and their dependence on sequence [23],
the presence of kinking proteins, etc. Using our calcu-
lator, we have proposed a modification to the canonical
DNA cyclization experiment that directly measures the
bending free energy as a function of bend angle. We
demonstrate that these results could be used to boot-
strap to a new theory of DNA bending describing DNA
polymer statistics on the short length scales required for
understanding protein-mediated DNA bending.

In closing, we want to emphasize that although
our program was designed with DNA in mind, it can
equally be applied to endpoint statistics of any polymer
whatsoever, as long as the phantom chain approximation
is valid.
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Appendix: Cyclization experiments and J factors

Gapless Cyclization J factor: To measure the cycliza-
tion J Factor, a DNA fragment (monomer) with comple-
mentary single-stranded ends is engineered. The ends of
monomers can anneal to form two species: a monomer
circle (cyclization) and a linear dimer. (We will con-
sistently ignore higher-order species such as trimers as
they do not affect the J Factor.) To measure the equi-
librium monomer, circle, and dimer concentrations, the
molecules are ligated at limiting ligase concentrations
[24]. (T4 DNA ligase forms two covalent phosphodiester
bonds between the 3’ hydroxyl end of one nucleotide and
the 5’ phosphate end of another.) Under this rapid pre-
equilibrium kinetic scheme, the product of annealed circle
and dimer is proportional to their equilibrium concen-
trations [24]. See Fig. 3 for a schematic picture of the
cyclization experiment. The cyclization J factor is

J(`) = 8π2
[
p(∆R, ~Ω`; ~Ω0, `)

]Ω`=Ω0

∆R=0
(16)

Single-Gap Cyclization J factor: A second class of
experimentally tractable cyclization reactions has long
been recognized [24–26]: A linear monomer can form a
cyclic molecule without enforcing the alignment of the
end orientation while maintaining the end-to-end clo-
sure constraint. Experimentally, this can be realized by
linking the ends of a dsDNA segment by a short single
stranded gap since ssDNA has a short persistence length
[27–29] [35].

The lowest free energy configuration for an elastic rod
closed at a flexible hinge is a tear-drop shaped confor-
mation shown schematically in Panel C, Fig. 3. The cy-
clization J factor for such a reaction can be calculated in
terms of the position-only distribution functions:

J(`) = [p(∆R; `)]∆R=0 . (17)

Together the DNA circle and tear-drop provide two dis-
tinct amplitudes that are highly sensitive to DNA elas-
ticity [36], but these two numbers are not sufficient to
determine the DNA bending free energy alone [30].

Double-Gap Cyclization J factor: Inspired by the in-
clusion of a single single-stranded gap in the DNA back-
bone, we investigated the cyclization J factor with sub-
strates with two internal single-stranded gaps to form a
bow conformation, as shown in Fig. 3, Panel D. In the
cyclized molecule, we will denote the shorter double re-
gion as the string, with length `S , and the longer region
as the bow, with length `B . (Please see Fig. 3, Panel
E.) In the short-contour-length limit, the dominant bow
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molecular conformation will have a straight string. We
can therefore approximate the bow free energy by replac-
ing the string with a rigid rod length `S . (Please see Fig.
3, Panel F.) In this approximation, the Double-Gap Cy-
clization J Factor has an extremely simple form:

J(`S , `B) = [p(∆R; `B)]|∆R|=`S , (18)

which depends only on the magnitude of the displacement
∆R. The J factor is therefore a direct measure of the
end-to-end spatial distribution function in the moderate
to high bending regime (`B < `p). The bend angle is
controlled by the length of the bow string `S . See Fig.
3, Panel G.

The spatial evolution of an inextensible polymer such
as DNA depends entirely on the more fundamental an-
gular distribution function, which in our case reduces to
p(θ). We therefore need to reinterpret Eqn. 18 in terms
of the angular distribution in order to build a theory
of DNA statistics (e.g. [30]), which is possible at short
length scales where there is a simple one-to-one mapping
between points in the spatial and angular distributions.
We have performed this type of analysis in another con-
text: Determining the bending energy of DNA immobi-
lized to a mica surface [31].

The short-contour-length limit guarantees that the
DNA string will be nearly straight, and the bending will
be concentrated near the middle of the DNA bow. We
can therefore bootstrap a theory of chain statistics from
the spatial distribution function by discretizing a given
DNA chain into links `B in length, each bent in the mid-
dle by a torsional spring. Note that this is a coarser
approximation than was used in the Monte Carlo results
shown in Figure 4. We interpret the J factor in Eqn. 18
as the spatial distribution function for two adjacent half
links, as illustrated in Fig. 3, Panel E. We can compute
the spatial distribution function and J factor exactly:

J =
4p(θ; `B) sin 1

2θ

`3B sin θ
, (19)

where p(θ; `B) is the single-segment bending distribution
for the theory of discrete links, and θ is the angle be-
tween the chain tangents. By equating the link model J
factor (Eqn. 19) to the measured J factor we can infer
an effective bootstrapped angular distribution function:

p∗(θ; `B) ≡ `3BJ(`S , `B) sin θ

4 sin 1
2θ

, (20)

where the bend angle is defined: θ ≡ 2 cos−1(`S/`B) as
shown in Fig. 3, Panel G. We define the bending free
energy at contour length scale `B (e.g. [30]):

G∗(θ; `B) ≡ −kBT log p∗(θ; `B), (21)

where kB is the Boltzmann constant. Although mea-
surements of the bending free energy using Double-Gap

Cyclization are better for large angles, there is an impor-
tant constraint that determines the angular distribution
function for small deflections: the persistence length (e.g.
[30]). In summary, measurement of Double-Gap Cycliza-
tion determines the bending free energy and can be used
to define a theory of DNA statistics at longer contour
length.
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