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Theory of self-assembled smectic-A crenellated disks: Membranes with cusped edges

Hao Tu and Robert A. Pelcovits
Department of Physics, Brown University, Providence RI, 02912, U.S.A

Smectic-A monolayers self-assembled in aqueous solutions of chiral fd viruses and a polymer
depletant have been shown to exhibit a variety of structures including large, flat disks and twisted
ribbons. The virus particles twist near the edge of the structure in a direction determined by the
chirality of the viruses. When fd viruses and their mutants of opposite chirality are mixed together in
nearly equal amounts unusual structures referred to as crenellated disks can appear. These disks are
achiral overall but the twist at the edge alternates between left- and right-handedness. To minimize
the mismatch where the two regions of opposing twist meet, the “crenellated” structure exhibits
cusps rising out of the plane of the monolayer. We use a phenomenological elastic theory previously
applied to flat disks and twisted ribbons to analyze an analytic model proposed to describe the
“crenellated” structure . When compared with flat, circular disks, we find that the model crenellated
disks are stable or at least metastable in a wide region of the phase diagram spanned by the Gaussian
curvature modulus and the edge energy modulus, with a large energy barrier separating the two
structures. The director pattern and geometric parameters of the crenellated disks are found to be
in qualitative agreement with experimental observations.

PACS numbers: 61.30.-v, 61.30.Cz, 64.70.M-

I. INTRODUCTION

The smectic A (Sm-A) liquid crystalline phase is a lay-
ered structure that expels twist and bend deformations
analogous to the expulsion of magnetic fields in supercon-
ductors [1, 2]. In a superconductor, magnetic fields pene-
trate into the bulk phase over a distance measured by the
London length. Similarly, in the Sm-A phase, two pene-
tration depths can be defined to respectively describe the
penetration of twist and bend deformations. In a Sm-A
phase composed of chiral molecules, the chirality (specif-
ically, the chiral term in the Frank free energy) plays the
role of the magnetic field in a superconductor. Chirality
favors twist deformations which can appear near the edge
of a smectic layer for low chirality. In the case of high
chirality the twist grain boundary phase [3] appears for
type II smectics (i.e., those with suitably large twist pen-
etration depth). The latter phase is the smectic analog of
the Abrikosov vortex lattice in type II superconductors.

Single layer chiral Sm-A structures have drawn sig-
nificant attention recently, motivated by experimental
studies of membranes formed of rodlike fd virus parti-
cles which self-assemble in the presence of a nonbinding
polymer depletant [4, 5]. Depending on the concentra-
tion of polymer depletant the viruses self-assemble into
a variety of structures including large flat disks (of or-
der 10µm in diameter), twisted ribbons and double- and
triple-helical structures formed from ribbons. In the flat
disks the long axes of the viruses are aligned with the
monolayer normal in the interior of the disks. Near the
edge of the disk the rods tilt due to both the chiral na-
ture of the viruses as well as the tendency to minimize
the area of the virus-polymer interface. This curved edge
is also observed when achiral rods are studied. For achi-
ral viruses the spontaneous twist at the edge can be ei-
ther clockwise or anticlockwise (when the membrane is
viewed from above), while for chiral viruses the sense of

the twist is naturally determined by the handedness of
the virus. Birefringence measurements yield a twist pen-
etration depth of approximately 0.5µm [5].

Recently, a new self-assembled fd structure was ex-
perimentally discovered [6] when right-handed fd -Y21M
viruses and left-handed wild-type fd viruses were mixed
together in proportions such that the mixture is nearly
achiral. Fluorescence images revealed that the two types
of viruses mix uniformly without any phase separation.
However, unlike the chiral case where flat membranes
were observed, in the achiral limit the membranes are
flat in the interior but exhibit a series of cusps along the
edge where the surface of the membrane rises out of the
plane of the monolayer, with adjacent cusps alternating
above and below the plane. Between neighboring cusps
the membrane exhibits a small radial bulge within the
plane of the layer. These structures have been termed
“crenellated disks” [6]. Images produced using the 3D-
LC-PolScope [7] indicate that the twist at the membrane
edge between adjacent cusps is of uniform chirality, alter-
nating between right- and left-handed as the edge is en-
circled. The cusps are defects in the director field where
right and left handed twist meet. The membrane rises out
of the plane to reduce the director mismatch. Minimiz-
ing director mismatch then requires that adjacent cusps
alternate above and below the plane of the disk (i.e.,
above-below-above-below...) as shown in the schematic
drawing, Fig. 1.

Theories describing the large flat disks and twisted rib-
bons have been constructed [5, 9, 10] using the de Gennes
model for the Sm-A phase generalized to include chirality,
and in addition, in the case of the ribbons, the Helfrich
model [11, 12] for the surface bending energy. These the-
ories use a simple form for the edge energy, the interac-
tion of the rods at the edge with the polymer depletant,
proportional to the edge length. A more realistic model
incorporating surface tension and the “melting” of the



2

FIG. 1: (Color online) Schematic edge-on illustration of the
arrangement of fd rods in the vicinity of a cusp at the edge of
a crenellated disk. (courtesy of Ref. [8])

smectic order at the edge has recently been developed
[19]. When applied to twisted ribbons the theory with
the simple edge model yields good qualitative agreement
with experimental measurements of the ribbon’s pitch to
width ratio providing that the Gaussian curvature mod-
ulus appearing in the Helfrich energy is positive, in con-
trast to the negative values typically measured in lipid
monolayers or bilayers [14]. By comparing the free en-
ergy per unit area of a twisted ribbon with the corre-
sponding energy of a large, flat membrane, a first-order
phase transition between the two structures was found in
agreement with experimental observation. However, the
predicted value for the edge energy modulus was found to
be an order of magnitude lower than that measured ex-
perimentally, presumably due to the very simple nature
of the edge energy.
In this paper we apply the above theory to an analytic

model [15] proposed to describe crenellated disks. Be-
cause of the complexity of the shape we do not directly
solve the Euler-Lagrange equation obtained by minimiz-
ing the free energy as was done in the case of twisted
ribbons. Rather we use Monte Carlo (MC) simulations
and determine the geometric parameters of the model
disk and the relative stability of crenellated and flat, cir-
cular disks. We explore the stability of the crenellated
disk model as a function of the Gaussian curvature and
edge energy moduli. We find regions of this space where
the crenellated disk is either stable or metastable. In
the latter case there is a large energy barrier separat-
ing it from the flat disk. The geometric parameters for
the crenellated disk throughout the phase diagram are
found to be in qualitative agreement with experimental
observations, as is the director pattern of the fd viruses.
The work is organized as follows: in the next section we

review the theory used earlier to study twisted ribbons
and apply it to the crenellated disk model. In Sec. III we
present the results of our MC analysis of the free energy
of the crenellated disk. We offer some concluding remarks
in the final section.

II. FREE ENERGY OF SM-A CRENELLATED

DISKS

Our analysis of the free energy of a Sm-A crenellated
disk uses the achiral limit of the theory presented in
Ref. [10] for twisted ribbons. The free energy F of

the monolayer is the sum of the Helfrich bending energy
[11, 12], the de Gennes energy [2] for the Sm-A order
and director fluctuations and a simple edge energy pro-
portional to the edge length. Specifically, we have:

F =

∫

(fH + fn) dA+ γ

∮

dl (1)

where fH and fn are the Helfrich and de Gennes free
energy densities respectively and γ is the edge energy
modulus (bare line tension). The Helfrich free energy
density is given by

fH =
1

2
k(2H)2 + k̄KG (2)

where H and KG are the mean and Gaussian curvature
of the surface respectively, k is the bending rigidity and
k̄ is the Gaussian curvature modulus. We have assumed
a zero spontaneous curvature because of the up–down
symmetry of the system.
The achiral de Gennes free energy density in the one-

elastic constant approximation and with the assumption
of perfect smectic order is given by [10]:

fn =
1

2
K[(∇ · n)2 + (∇× n)2] +

1

2
C sin2 θ (3)

where θ is the relative tilt angle of the director with re-
spect to the local surface normal, K is the single Frank
elastic constant and C is a tilt free energy modulus. The
twist penetration depth is given by λt =

√

K/C.
A monolayer of general shape can be modeled mathe-

matically as a two-dimensional surface embedded in three
dimensions. The surface is given by a position vector
Y(u1, u2) parameterized by two coordinates, u1 and u2.
To calculate the free energy of the membrane we use the
following geometric quantities [16, 17]:

Yi = ∂iY, Yij = ∂i∂jY = Γk
ijYk + LijN̂,

gij = Yi ·Yj , gij = (gij)
−1, g = det gij ,

Lij = Yij · N̂, Lij = (Lij)
−1, L = detLij (4)

where ∂i ≡ ∂ui
. The indices i, j, k = 1, 2 and we sum over

repeated indices. The tensors gij and Lij are the first and
second fundamental forms of the surface, respectively.
The Christoffel symbols Γk

ij are defined by the relation

Γk
ij = gkmYij ·Ym. The unit normal vector of the surface

is given by

N̂ =
Y1 ×Y2√

g
. (5)

The Gaussian and mean curvatures are given by:

KG =
L

g
, H =

1

2
gijLij (6)

and the surface area element is given by dA =
√
gdu1du2.

The director field n can be expressed in a local basis
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formed by Y1, Y2 and N̂; the director n makes an angle
θ with N̂.
After some calculation using Eqs. (2)-(6), (see Ref. [10]

for further details), the total free energy Eq. (1) is found
to be:

F =
K

2

∫

{

(∂jnj + nlΓ
j
jl)

2 +

(

ǫ3ji√
g
[(gik∂jnk + gilnkΓ

l
jk)N̂− (2nkLjk + ∂j cos θ)Yi]

)2
}

√
g du1du2

+
C

2

∫

sin2 θ
√
g du1du2 + k̄

∫

L

g

√
g du1du2 +

k

2

∫

(gijLij)
2√g du1du2 + γ

∮

dl, (7)

where ǫijk is the antisymmetric Levi–Civita tensor.
Henceforth, dimensionless units will be used where

lengths are measured in units of the penetration depth λt

and energies are measured in units of the Frank constant
K. These units correspond to choosing K = C = 1 in
Eq. (7).
We now apply Eq. (7) to a model [15] of the crenellated

disk structure observed in experiments. We assume that
the disk lies in the x–y plane with an array of cusps at the
monolayer edge. As noted in Sec. I, minimizing director
mismatch at the cusps requires that neighboring cusps
have heights h(x, y) (in the z direction) of opposite signs.
Likewise the alternation of the chirality of the twist at
the edge means that cusps must appear in pairs.
We model the cusps as local peaks or valleys with an

exponential decay of the height |h| from the center of
the cusp [15]. Specifically, for a single cusp centered at
ri = (xi, yi), we assume that the height is given by

hi(r− ri) = Az exp

(

−|r− ri|
b

)

(8)

where Az is the maximum height at the peak, b is a char-
acteristic length governing the decay of the cusp into the
flat central portion of the disk, and r is the position vec-
tor in the x–y plane. The form of Eqn. (8) is suggested
by the experimental observation of disks which are nearly
flat except near the edges. The experimental images sug-
gest that the decay length b is of order 0.1, in units of the
twist penetration depth. For a disk with n cusps (n even)
the height at any point r is given by the superposition

h(r) =

n
∑

i=1

(−1)nhi(r− ri). (9)

The factor (−1)n accounts for the cusps alternating above
and below the plane of the disk as observed in the exper-
iments. We choose the origin of r at the center of the
disk and the cusps are located at ri = R(cosφi, sinφi)
where R is the radius of the disk (excluding the bulges)
and φi is the polar angle location of cusp i.
We model the in-plane radial bulges between neighbor-

ing cusps labeled by i and i+ 1 as follows

Ri(φ) = R +Ar sin

(

π(φ − φi)

φi+1 − φi

)

(10)

FIG. 2: An example of the crenellated disk model with radius
R = 5.0,Az = 1.0, b = 0.5 (see Eq. (8)), and Ar = 0.5 (see
Eq. (10)) in units of the penetration depth. The four cusps are
distributed uniformly along the perimeter of the disk. Note
that the director field is not displayed in this figure.

where Ri specifies the radial coordinate of the disk edge
between the cusps and Ar is the magnitude of the pro-
trusion. The edge of the disk is then given as a piecewise
function of these protrusions between neighboring cusps.
Fig. 2 shows an example of the shape of the crenellated
disk model of Ref. [15].

With an analytic form of the shape specified, the dif-
ferential geometry quantities defined in Eq. (4) can be
computed explicitly as functions of x and y and sub-
stituted into the free energy Eq. (7). In principle we
could then follow the approach of Ref. [10] and derive the
corresponding Euler-Lagrange equations for the director
field. However because of the complexity of the shape,
the resulting equations are impossible to solve explicitly
even using numerical solvers. Instead we discretize the
underlying x–y plane using a square lattice of grid size
0.05 and carry out an MC simulation at low tempera-
ture (10−4 in dimensionless energy units with kB = 1)
varying the geometrical parameters of the shape. We
note that our dimensionless energy unit, K = 1, corre-
sponds to approximately 100kBT at room temperature
using the measured value of the twist elastic constant in
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fd solutions [18]. Thus, thermal fluctuations of the direc-
tor are negligible, as noted already in Refs. [5, 10], where
the free energy was minimized and very good agreement
was found between the predicted director pattern and
experimental measurements. We initialized our system
with both a random and fully aligned director field and
found similar equilibrium states. We also carried out a
multi-grid computation where the grid is finer at the edge
where the directors are twisted and similar results were
obtained.
Experimentally [4] the director field at the edge of the

disk is observed to be tangent to the edge. We imposed
this boundary condition in our model by introducing
ghost directors along the edge of the crenellated disk.
These directors are fixed tangent to the edge and inter-
act with neighboring directors in the interior of the disk
via the Frank free energy. We used a central difference
algorithm to compute the derivatives of the director field.
The total free energy was computed using numerical inte-
gration over all the lattice sites inside the disk. Director
defects can appear at the cusps and we include a defect
core energy

∑

Kdefθ
2
z where θz is the angle made by the

director with respect to the z-axis. The summation runs
over all the lattice sites whose distances from a cusp in
both the x− and y-directions are less than one lattice
constant. The energy Kdef is chosen to be equal to the
Frank constant K which is unity in our system of units.
Experimentally crenellated disks are observed to main-

tain constant area after their formation and thus as we
varied the geometric parameters of the shape we adjusted
the radius R so that the total area of the disk is kept con-
stant. For each set of geometric parameters we carried
out 100000 MC cycles where each director is allowed to
move once during each cycle and data are collected over
the last 50000 cycles. The step size of the test move was
chosen so that the overall acceptance ratio is approxi-
mately 50%.
Since we are effectively solving the Euler-Lagrange

equations whose solution corresponds to the zero-
temperature ground states of the system, we collected
the orientations of each director in each cycle and com-
puted the averaged orientations for each of them and then
used this averaged configuration to compute the free en-
ergy instead of the usual method that collects the free
energy every cycle and then averages that quantity. We
have checked the validity of this method by considering a
flat circular disk and obtaining good agreement between
the results of our MC simulations and the results ob-
tained numerically in Ref. [9] where the Euler-Lagrange
equation was solved explicitly.

III. RESULTS

We consider a crenellated disk with four uniformly dis-
tributed cusps. The area of the disk is approximately 100
corresponding to a radius of approximately 5 in units of
the twist penetration depth. Significantly larger disks re-

X

YZ

(a)

FIG. 3: (a)An example of the simulated director field on a
crenellated disk with R = 5.41, Az = 0.6, Ar = 0.4, b = 0.2
in units of the penetration depth with four cusps distributed
uniformly along the edge. (b)The corresponding simulated
birefringence image where the gray scale is proportional to
sin2 θ; θ is the angle the director makes with the z axis.

quire computational resources beyond what are available
to us. Given this radius we have chosen four cusps so
that the spacing between cusps, approximately 8 units of
the penetration depth (corresponding to 4 µm [5]), is in
agreement with the spacing observed in experiments [6].
The decay length b is chosen to be 0.2, of the order of
magnitude observed in experiments. An example of the
simulated director field on a “crenellated” structure is
shown in Fig. 3(a). Near the center of the disk the direc-
tors are approximately perpendicular to the x–y plane
as expected because of the tilt energy term in the free
energy. The boundary condition at the edge forces the
directors there to lie tangent to the edge. It is seen from
the figure that there is a defect in the director field at
each cusp where the chirality of the director tilt near the
edge changes sign from one side of the cusp to the other.
The director twist on either side of the cusp relaxes over
a length scale of order the penetration depth. Fig. 3(b)
shows the simulated birefringence image where the gray
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FIG. 4: (color online)(a) Free energy per unit area of a
crenellated disk as a function of height of the cusps Az with
Ar = 0.7, b = 0.2, k̄ = 1.5, γ = 1.6, and a uniform distribu-
tion of the cusps along the edge of the disk. (b) Free energy
per unit area of the disk as a function of the size of the radial
bulges Ar with Az = 0.6, and k̄, b and γ fixed as in (a). (c)
Free energy of the disk as a function of the angular separa-
tion between adjacent cusps with Az = 0.6, Ar = 0.7, and k̄,
b and γ fixed as in (a). The angular separation is given in
units of π; e.g., a separation of 0.4 means that the four cusps
are placed at φ = 0.0, 0.4π, 0.8π, 1.2π. Uniform distribution
of the cusps corresponds to ∆φ = 0.5. The lines in all of the
figures are guides to the eye.

scale is proportional to sin2 θ. The bright regions corre-
spond to the radial bulges of the membrane where the
directors tilt more while the dark regions correspond to
the cusps where the director is nearly vertical (i.e., point-
ing in the z-direction). This is qualitatively in agreement
with experimental observations [6].
To understand why these achiral membranes would

prefer to form cusps and bulges instead of remaining flat
and circular, we analyze the contributions from different
terms to the total free energy when Az or Ar is var-

ied. In Fig. 4(a), the variation of the total free energy
per unit area with the height of the cusps Az is shown
with Ar = 0.7 and the cusps are distributed uniformly
along the edge. We have chosen k̄ = 1.5 and γ = 1.6;
our results, however, are representative of a wide range
of values for these parameters as we discuss below. We
have assumed that the mean curvature modulus k is zero
to simplify our analysis. Neither k nor k̄ has been mea-
sured experimentally in the fd systems but experimental
evidence suggests that it is the Gaussian curvature that
plays a dominant role. In the case of twisted ribbons [10]
a small second-order Gaussian curvature term was added
to the Helfrich energy in order to stabilize the energy. In
the present case the negative Gaussian energy propor-
tional to k̄ does not lead to any instabilities and thus we
have not included a higher order term in our analysis.
Contributions from the different terms in the free energy
are shown in Fig. 5(a). It is seen that the Frank free en-
ergy assumes a parabolic shape like the total free energy,
i.e., there is a minimum at a nonzero value of Az, because
the out-of-plane cusp structure relaxes the mismatch of
the directors in the right-handed and left-handed regions
flanking the cusp. This optimal value of Az is not arbi-
trarily large because a large value would lead to a large
deformation in the director field in the neighborhood of
the cusp. It is also seen that both the absolute value
of Gaussian curvature (note that Gaussian curvature is
always negative in this structure) and the length of the
edge increase monotonically with Az . For low values of
Az, the Frank energy dominates and at large Az , both
the edge and Frank free energy combine to overcome the
gain in Gaussian curvature free energy. Thus, a mini-
mum in the total free energy is produced at Az ≈ 0.6 for
the the given values of k̄ and γ. .

The behavior of the free energy when the radial ex-
tent, Ar, of the in-plane radial bulge between neighboring
cusps is varied is shown in Fig. 4(b) with Az = 0.6, the
value found to minimize the free energy. The parameters
k̄ and γ were again chosen to be 1.5 and 1.6 respectively.
Compared to the dependence of the free energy on the
out-of-plane height, Az , of the cusps, the dependence on
the size of the radial bulges is much weaker, possibly be-
cause the cusps are sharply defected structures while the
radial bulges are much smoother. The contributions to
the free energy from the Frank, Gaussian curvature and
edge energies are shown in Fig. 5(b). Larger bulges in-
troduce larger deformations in the director field far from
the cusps because the directors are forced to follow a
more curved edge at the boundary, but larger bulges
can also reduce the mismatch between the directors near
the cusps by forcing the directors on both sides of the
cusps to become more parallel. These two competing
effects appear to essentially cancel each other, and the
Frank free energy is only weakly dependent on Ar , with
some numerical fluctuations. The absolute value of the
Gaussian curvature increases with Ar. The edge energy
initially decreases slightly with increasing Ar and then
for Ar

>∼ 0.15, the edge energy increases. The tradeoff
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FIG. 5: (color online)Contributions of the Frank (fn), Gaussian curvature (fH) and edge (fE) energy densities to the total free
energy per unit area for the crenellated disk as functions of (a) the height of the cusps Az, (b) the size of the radial bulges
Ar, and (c) the angular spacing ∆φ (measured in units of π) between adjacent cusps. As in Fig. 4 we have set k̄ = 1.5 and
γ = 1.6. Note that the ranges of the y-axes in the three figure parts are different but the spans of energy are equal, allowing
easy comparison of the magnitudes of the variation of each term.

between increasing edge energy and the gain of Gaus-
sian curvature energy leads to a free energy minimum at
Ar ≈ 0.7.

In experiments on large crenellated disks cusps have
been observed to lie on only a portion of the disk’s edge
rather than being distributed along the entire edge of
the membrane. We consider this possibility for our small
disks as shown in Fig. 4(c) where we plot the free en-
ergy per unit area as a function of the angular separa-
tion between the cusps, assuming Az = 0.6, Ar = 0.7,
b = 0.2, k̄ = 1.5 and γ = 1.6. The separation is plotted
in units of π and thus a separation of 0.5 corresponds
to the configuration where the four cusps are placed uni-
formly along the edge. The contributions to the total
energy per unit area from the Frank, Gaussian curvature
and edge energies are shown in Fig. 5(c). While squeez-
ing the cusps into a small segment of the edge creates a
flatter segment elsewhere which reduces the Frank free
energy there, it also creates a more curved geometry in
the region where the cusps are located which increases
the Frank free energy in that location. From the general
trend of the Frank free energy shown in the figure, we
see that the latter effect overcomes the former so that
the Frank free energy increases as the cusps are brought
together. As expected, the edge length and the Gaussian
curvature both increase in absolute value upon squeezing
the cusps together because the membrane is more curved
in the squeezed region and this region provides the main
contribution to these two terms compared to the flatter
region. For the k̄ and γ values selected, the trend of

the change in the free energy is dominated by the Frank
free energy and is minimized when the four cusps are
placed uniformly as shown in Fig. 4(c). We are unable to
explain the appearance of another minimum at spacing
0.25 which may be due to the numerical fluctuations in
the Frank free energy term. It appears that our disks are
simply too small to exhibit cusps lying on a portion of
the disk perimeter as seen in experiments.
Experimental observations [6] indicate that crenellated

disks with Az comparable to but smaller than the twist
penetration depth should be at the very least metastable
structures and possibly true equilibrium shapes under
certain physical conditions. We now address the stabil-
ity and metastability of the theoretical crenellated disk
model. We consider the energetics of the disk as both
the Gaussian curvature modulus k̄ and the edge energy
modulus γ are varied.
Our results are shown in Fig. 6. “Metastable” and

“stable” in this figure refer to the crenellated disk in
comparison with a perfectly flat, circular disk of the
same area. Throughout the metastable and stable re-
gions shown, Az is approximately one half of the twist
penetration depth in accord with experiments. Our the-
oretical prediction forAr is also approximately one half of
the twist penetration depth while experimentally larger
bulges have been observed. We attribute this to the fact
that our theoretical calculations have used disks smaller
than the real disks observed in experiments. It is rea-
sonable to assume that value of Ar will increase with the
radius R of the disk. Thus, we argue that our theoretical
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FIG. 6: (color online)The phase diagram for the crenellated
disk in the k̄–γ space. “Metastable” and “stable” in this figure
refer to the crenellated disk in comparison with a perfectly
flat, circular disk of the same area. In the unstable region
either Az or Ar becomes very large, indicating an instability
toward other geometrical structures beyond the scope of our
model.

model has produced reasonable values for both Az and
Ar compared to experiments. In the “unstable” region
we have found that either Az or Ar becomes very large,
indicating an instability toward other geometrical struc-
tures which we cannot determine in our model. To get a
sense of the energetics, consider, e.g., k̄ = 3. For large γ
crenellated disks are at best only metastable because the
edge energy is too large to favor such a structure with a
high edge-to-area ratio compared to flat disks. When γ
is lowered, the crenellated disk can become stable. How-
ever, when γ is lowered further the crenellated disk be-
comes unstable to other structures with even larger edge-
to-area ratios such as helices. For fixed γ if the Gaussian
curvature modulus is too large structures with greater
negative Gaussian curvature can again appear in place
of crenellated disks. In most of the metastable region,
the energy barrier between the perfectly flat, round disks
and the crenellated disk is about several Frank constants
corresponding to several hundred kBT in physical units.

In Ref. [10] the transition from large, flat disks to
twisted ribbons in the elastic theory was determined to
occur at γ ≈ 0.28 and k̄ ≈ 0.1, corresponding to the very
bottom edge of the metastable region of our phase dia-
gram. This value of γ is one order of magnitude lower
than the experimentally measured value. The Gaussian
curvature modulus has not been measured experimen-
tally, though there is some evidence [6] that suggests its
value is larger, possibly by one order of magnitude, than
the value found in the theory of Ref. [10]. Thus, in our
phase diagram we have explored values of γ and k̄ larger
than those used to analyze the twisted ribbon. In the lat-
ter analysis free boundary conditions were used for the

orientation of the fd viruses at the edge of the monolayer
which leads to a tilt angle θ at the edge which is signifi-
cantly smaller than the 90◦ measured experimentally. In
the present case we imposed a 90◦ tilt at the edge both
to fit the experimental observations and to incorporate a
nonzero tilt in an achiral model which otherwise would
have zero tilt (at least for the simple edge model used
here and in Ref. [10]). Thus, we believe that the range
of values for γ and k̄ shown in Fig. 6 are reasonable to
explore in comparing theory with experiment.
Given the experimental measurements to date, we have

restricted our analysis to the possibility of ”crenellated
disks” with cusp heights Az, and radial bulges, Ar, no
larger than one penetration depth. We cannot exclude
the possibility that crenellated disks with larger values of
these parameters can be stable or metastable outside of
the stable and metastable regions shown in the figure, but
we have not explored this possibility due to the limitation
of our computational resources. The “crenellated” region
obtained by our current computations is quite possibly
an underestimate.
Kaplan and Meyer [19] have recently considered a

model of an array of cusps on the edge of a flat mem-
brane in the absence of the director field. Each cusp is
modeled as a generic surface of revolution with negative
Gaussian curvature (this model does not include the de-
caying exponential of Eq. (8) so as to maximize the saddle
characteristics of the geometry). By simultaneously opti-
mizing the shape of the surface and its free edges Kaplan
and Meyer obtain an analytic relation between k, k̄, γ
and Ar, which for k = 0 yields: k̄ = γAr. In the achi-
ral limit their analysis of the energy of an array of cusps
yields a transition to a crenellated disk with Ar ∼ 0.5
for k̄ ∼ 1 and γ ∼ 2, in dimensionless units, of the same
order of magnitude as our results.

IV. CONCLUSION

We have used an elastic theory of Sm-A monolayers to
study a model [15] of the crenellated disks observed in
achiral mixtures of fd viruses. The theory is the achiral
limit of one used earlier [5, 9, 10] to describe flat disks
and twisted ribbons in chiral fd monolayers. Using MC
simulations we computed the geometric parameters of the
crenellated disks, the director field of the viruses and the
relative stability of the disks. The height of the cusps was
found to be in good agreement with experimental obser-
vation. Although we obtained a smaller radial protru-
sion compared to experiments, our theoretical prediction
is still reasonable noting the smaller size of the disks we
have used in our calculations. The director field is also
in good agreement with experimental birefringence mea-
surements. The crenellated disks are found to be stable
in a region where the Gaussian curvature modulus k̄ and
γ are both one order of magnitude higher than the value
previously obtained when the elastic theory was applied
to twisted ribbons. However, the metastable region does
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include the values of the moduli used to describe ribbons.
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