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We study the effects of a line of spherical interstitial particles (or intruders) placed between two
adjacent uncompressed chains of larger particles in a square packing of spheres, using experiments
and numerical simulations. We excite one of the chains of particles adjacent to the intruders with an
impact and show how energy is transmitted across the system until equipartition is reached from the
excited (or impacted) chain to the absorbing (or adjacent) chain. The coupling of the two chains,
although a purely two-dimensional effect, is modeled by a simplified one-and-a-half-dimensional
(1.5-D) system in which transverse motions of the particles are neglected.

PACS numbers: 05.45.-a, 45.70.-n, 46.40.Cd

Introduction. Granular crystals are unique nonlinear systems that exhibit interesting properties stemming from
the nonlinear contact interactions (Hertzian [1]) between two individual particles. Uniform one-dimensional chains
of spheres have been shown to support the propagation of a new type of solitary wave. The width of these waves
is independent of its velocity [2–5]. The degree of nonlinearity can be tuned from highly nonlinear to linear by the
addition of a precompression force [3, 4, 6]. Additionally, it was shown that homogeneous granular media can support
families of strongly nonlinear traveling and standing waves [7], whereas heterogeneous media can exhibit resonance [8]
and anti-resonance phenomena [9]. Another interesting property of these materials is the reflection of the solitary
waves at an interface between two granular crystals [10–12], which could be used to develop new impulse trapping
granular materials [13–15]. Several groups studied the interaction of a solitary wave with defect particles [16–19]. Two-
dimensional (2-D) granular crystals have been relatively unexplored, and prior works mainly consisted of numerical
studies or experiments visualizing dynamic stress in photo-elastic disks [20–23]. Solitary waves have been observed in
2-D square packings of spherical particles [24]. Granular crystals have been proposed as new structured materials for
the control and redirection of stress waves (see for example [10, 13, 14, 25, 28, 33]). The experiments reported in this
paper provide the first observation of energy equipartition between two adjacent and nonlinearly coupled chains of
particles. In particular, we show that when one chain is excited by an impulse while the other is as rest, the energy is
redistributed between the two chains within a short spatial distance. A similar equipartition phenomenon was studied
numerically in an earlier work [26]. This phenomenon is of interest to create new acoustic wave guides, delay lines
and stress mitigating materials. Energy transfer and equipartition phenomena in weakly coupled one-dimensional
granular chains were studied [26, 27], and in [28] through a macroscopic realization of the Landau-Zener tunneling
quantum effect. The energy equipartition principle is well known for elastic waves. Seismic waves for example have
well known regimes where the P and S wave energy density equilibrates in a unique way that is independent of the
details of the scattering. Interaction of solitons in coupled nonlinear lattices (scalar models) have been considered for
various classical configurations such as coupled Toda lattices [29], coupled nonlinear Schrodinger equations [30, 31]
or coupled Ablowitz-Ladik chains [32] for example. In the case of coupled Toda lattices, it was shown numerically
by Kevrikidis et al. [29] that solitonic excitations supplied to each one of the coupled chains may result in the two
distinct dynamical regimes (attractors). A non-uniform initial excitation (solitons with different amplitudes and/or
phase mismatches) may lead to the formation of the identical solitons on each one of the chains, propagating with
the same speed and zero phase mismatch (first attractor) as well as the formation of two unequal solitons (i.e. with
different amplitudes and phases also propagating with the same speed, second attractor). Here, we report an extension
of energy equipartition phenomena in 2-D granular media perturbed by lines of intruders.
Experimental setup. We designed a 2-D setup to study the response of a 2-D square packing of elastic spheres

with the presence of a line of interstitial defets (or intruders). It consisted of a flat polycarbonate base and four delrin
walls to support the particles. We assembled a 20 by 20 granular crystal composed of grade 316 stainless steel spheres
(R = 9.525 mm radius) organized in a square packing configuration, and no precompression force was added to the
system. A line of tungsten carbide intruders was placed in between the excited and absorbing chains, as shown in
Fig. 1. The intruders are custom made spherical particles with radius Rd = 3.943mm± 0.001mm [34]. Custom made
teflon stands were lodged in the interstitial sites below the intruders to keep the centers of mass of all the particles
in a same horizontal plane. We excited one of the chains of particles adjacent to the intruders with a striker impact.
The striker was a stainless steel sphere identical to the beads composing the square packing and its velocity was
measured by an optical velocimeter. In this study, vimpact = 0.147m/s, which corresponds to an impact force of 90N .
The stainless steel and tungsten carbide (TC) beads have densities 8000 and 15800 kg/m3 and elastic moduli 193
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and 400 GPa, respectively [35]. We built custom sensor particles using mini tri-axial accelerometers (PCB 356A01,
with sensitivity 0.51 mV/(m/s2)) embedded in spherical particles located in every other position in the excited and
absorbing chains. We then compared the output acceleration to numerical simulations.

FIG. 1: (Color online) Schematic diagram of the experimental setup. The small (black) particles correspond to the spherical
intruders. The red (gray) particles show the positions chosen for the placement of the sensor particles.

Numerical setup. We numerically model a square packing of 400 particles, plus the intruders and one striker
particle as point masses connected by nonlinear springs, accordingly to the (conservative) Hertz interaction. The
walls are modelled as still spherical particles of infinite radii. The equation of motion for particle i is:

mi
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∑

j
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3

2
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where ~Xi is the vectorial displacement of the ith particle from its equilibrium uncompressed position, j sums over
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4
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and

~eij unit vector connecting the centers of beads i and j, oriented form i to j. [Y ]+ denotes the positive part of Y
as no interaction exists between particles when they lose contact. We numerically integrated Eq. 1 using a fourth
order Runge-Kutta scheme, and chose a timestep of 5 × 10−8s . This ensures conservation of the total energy with
an accuracy better than 3× 10−7%.
Results and discussion. We study the temporal evolution of the transmitted acceleration along the x-direction

in the chains of particles adjacent to the intruders (Fig. 2). We compare results obtained from experiments (Fig. 2(a)
and Fig. 2(b)) with the corresponding numerical simulations (Fig. 2(c) and Fig. 2(d)). Each curve corresponds to a
different sensor location placed in all even particles in the impacted chain and in the chain adjacent to the intruders
(Fig. 1). Without the presence of the line of intruders, a solitary wave forms and propagates along the excited chain
(pseudo 1-D case, see [24]). The presence of intruders introduces a nonlinear coupling between the two chains, leading
to reciprocal energy and momuntum transfer between them. We observe in experiments and numerical simulations
that the input energy of the leading propagating pulse (minus what is radiated in the transverse chains) is equally
split between the excited and absorbing chains after approximately 8 particles, as two distinct pulses with similar
velocity and amplitude form and propagate down the two chains. We use the term “equipartition” to describe the
phenomenon of equal division of energy and momentum between two adjacent granular chains, after one of the two
is excited by an impulse.
The intruders are also responsible for the scattering of energy in the y-direction, and we observe the formation of

solitary waves travelling perpendicular to the excited and absorbing chains. For each particle in these two chains,
the amplitude of the velocity in the y-direction is small (≈ 20%) in comparison to that in the x direction. This
corresponds to ≈ 4% of the kinetic energy, and we neglect the leakage of energy in the transverse direction.
The amplitude of the wave traveling in the excited chain decreases drastically within the first few particles as energy

is transfered to the absorbing chain through each light intruder. It was shown in [36] that 82.3% of the energy of
a solitary wave reaching a TC intruder is transmitted along the chain after interacting with the intruder. The rest
of the energy is scattered in adjacent and perpendicular chains, or reflected. Reversely, the amplitude of the wave
propagating in the absorbing chain increases from 0 to the same level as the signal in the excited chain. It is important
to note that these systems are tunable: the material selected for the intruders affects the speed of the energy transfer
since weaker interactions between the line of intruders and the excited and absorbing chains will result in a slower
transfer of energy. Numerical simulations and experiments were performed by the authors for a line of Teflon particles
(Young modulus 1.26GPa) in order to evidence this effect (not shown here).
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FIG. 2: (Color online) Acceleration-time diagrams showing the evolution of the transmitted signal in the two chains of particles
adjacent to the line of intruders, along the x-direction. (a) Experimental results in the excited chain (at all even particles in
the chain). (b) Experimental results in the absorbing chain. (c) Numerical data corresponding to (a). (d) Numerical data
corresponding to (b). In all panels, the system is impacted by a stainless steel sphere of radius 9.525 mm with initial velocity
0.147 m/s. The horizontal black lines show the stabilized amplitude of the leading acceleration pulse (≈ 800 m/s2 in the
numerical simulations and 400 m/s2 in the experiments).

We find excellent agreement between our numerical and experimental results (compare Fig. 2(a) with Fig. 2(c)
for the excited chain; Fig. 2(b) with Fig. 2(d) for the absorbing chain). The effect of dissipation is visible in the
experimental data, and the stabilized amplitude reached in the two chains in experiments is smaller than in our
numerical calculations. After equipartition, we observe in the numerical data a slow decrease of the amplitude of the
two waves, due to radiations in the y-direction, as the central light intruders push the heavy steel particles away from
the centerline. Although we expect the same effect to be present in the experimental data, it is difficult to determine
how much of the loss is accounted for by the radiations versus dissipation.
In the next section, we present a new analytical model which explains how this fully 2-D phenomenon can be de-

scribed by a simplified 1.5-D system, and compare this simplified theoretical model to our experimental and numerical
results for the 2-D system (similar in form to the one studied in [26–28]).
Simplified 1.5-D modelization and comparison with full 2-D system. Upon arrival of the incoming pulse,

the presence of each intruder induces a displacement of the two larger spheres located after it in both the x and
y directions. However, the amplitude of the waves traveling in the y-direction is small. In our model, we neglect
the energy loss in the y-direction, constraining the particles of the excited and absorbing chains, and the intruders,
to move only horizontally. For simplicity, we limit our analysis to modeling the dynamics of the intruders and the
particles of the excited and absorbing chains. Although all particles are contrained to move in the x-direction, energy
transfer between the excited and absorbing chains in the y-direction is still possible due to the strongly nonlinear
coupling induced by the line of intruder (1.5-D system).
We denote by m, ν, E and ρ the mass, Poisson’s ratio, Young’s modulus and density of the heavy steel particles.

The same quantities with subscript d correspond to the properties of the light TC defect particles. We then use the

normalized displacement x = X
R and time τ = t

√

E
πR2ρ to rewrite the set of equations (1) into the non-dimensional

equations describing the motions of the intruders (2), the particles composing the excited chain (3) and particles
composing the absorbing chain (4):
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3/2
+ . x is the scalar non-dimensional displacement of the particles (constrained

in the x direction) and x′′ represents the second derivative with respect to the normalized time τ . The superscript d
corresponds to the defect particles, e corresponds to the particles in the excited chain, and a to the particles in the
absorbing chain. The subscript i indicates the position of every particle in their chains, oriented along the positive x
axis.
For the materials chosen in our study, ǫ = 0.134, β = 1.022 and we assume the ratio ǫ

β to be small enough to neglect

the inertia of the intruders. Equating the right term of Eq. (2) to 0 leads to:
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We numerically showed (not presented in this paper) that the two sides of Eq. (5) are independently small and we
can consequently assume:

f(xe
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This means that, to a first order approximation, the diagonal forces applied on a defect particle are independent from
each other. Eq. (6) yields:

xd
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i+1

2
≈

xa
i + xe

i+1

2
. (7)

Further analytical treatment assumes that the right-hand side and left-hand side of Eqs. (6) and (7) are equal. We
can replace xd

i and xd
i−1 in Eqs. (3) and (4) to obtain a system of equations for the excited and absorbing chains only.

To incorporate the radiation effect, we finally add a linear damping term in order to account for the decay caused by
the energy leakage in the transverse direction:
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We used a vectorized fourth order Runge-Kutta scheme to integrate this simplified set of equations. The numerical
setup consists of two adjacent chains of 20 particles each (absorbing and excited chains) and 19 interstitial intruders.
Similarly as before, the walls are modeled as fixed spherical particles of infinite radius. The excited chain is impacted
by a striker particle with initial velocity obtained from experiments. We show the numerical solution in Fig. 3.
We clearly observe the energy equipartition previously evidenced in our experiments and in the fully 2-D numerical
simulations. Similarly to what observed earlier, also in the 1.5-D model the velocity stabilizes in the two chains after
approximately 8 particles.
The results obtained from the simplified 1.5-D model are compared with the fully 2-D system in Fig. 4. The only

fitting parameter used in the 1.5-D model is the linear damping coefficient λ (dimensionless), which is taken to be
0.006. The results show that the 1.5-D approximation captures very well the main features of the 2-D system: the
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FIG. 3: (Color online) x-velocity vs time signals obtained for the 1.5-D model with linear damping coefficient λ equal to 0.006.
Each curve represents the velocity of every particle in the excited chain (a) and the absorbing chain (b). The system is impacted
by a stainless steel sphere of radius 9.525 mm with initial velocity 0.147 m/s.

FIG. 4: (Color online) Comparison of the numerical x-velocity vs time signals obtained from the 2-D and simplified 1.5-D
models (from Fig. 3). The results for the excited chain are shown in (a), and (b) shows the results for the absorbing chain.
In both plots, the curves are obtained from the 2-D model, whereas the (purple) stars indicate the peak amplitudes of the
corresponding signals obtained from the 1.5-D model.

energy equipartition is reached after the same number of particles, and the amplitudes of the leading pulses are in
very good agreement.
Conclusion. In this paper we showed with experiments and numerical simulations that the mechanism of solitary

waves equipartition previously observed in linearly coupled, nonlinear lattices persists in full 2-D granular setups with
a more complex type of coupling (strongly nonlinear, non-smooth, diagonal coupling via light interstitial intruders).
This energy equipartition phenomenon could be used for the creation of novel acoustic delay-lines, wave guides and
protective materials. The regime of the primary pulse transmission in the strongly-nonlinear, heterogeneous, 2-D
granular crystals is well captured by our simplified, reduced order model (granular scalar model). The results of the
present work will pave way for further analytical, numerical and experimental studies of the mechanisms of energy
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transfer and wave redirection in higher dimensional granular crystals. Moreover, the mechanism of equipartition
of solitary pulses in granular crystals realized through the placement of interstitial intruders is of great practical
importance in the design of granular shock absorbers being able to efficiently distribute the initially localized shock
over the entire granular medium.
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