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In this paper we present an algorithm for exact generation of multivariate samples with pre-
specified marginal distributions and a given correlation matrix, based on a mixture of Fréchet-
Hoeffding bounds and marginal products. The algorithm can accommodate any among the theoret-
ically possible correlation coefficients, and explicitly provides a connection between simulation and
the minimum correlation attainable for different distribution families. We calculate the minimum
correlations in several common distributional examples, including in some that have not been looked
at before. As an illustration, we provide the details and results of implementing the algorithm for
generating three-dimensional negatively and positively correlated Beta random variables, making
it the only non-copula algorithm for correlated Beta simulation in dimensions greater than two.
This work has potential for impact in a variety of fields where simulation of multivariate stochastic
components is desired.

I. INTRODUCTION

The original question of generating multivariate proba-
bility distributions with pre-specified margins has a long
history, dating in part back to the work of E. Wigner [1]
on thermodynamic equilibria. The general form of the
problem was studied by M. Fréchet [2] and V. Hoeffd-
ing [3] in a body of work which grew out of the problem
originally posed by P. Lévy [4]. Today, this work falls un-
der the scope of Fréchet-Hoeffding classes. An excellent
overview of the developments in this field can be found in
Dall’Aglio et al. [5], Rüschendorf et al. [6], and Conway
[7].

Today, algorithms for generation of correlated random
variables with pre-specified marginal distributions play
an important role in simulation of stochastic processes,
and hybrid deterministic-stochastic systems. Such al-
gorithms are encountered in a variety of fields, for ex-
ample: statistics and applied probability [8–11], finance
[12], environmental science [13], physics [14], engineer-
ing [15], and ecology where ”demographic” or ”weather”
stochasticity is an increasingly more relevant component
of species dynamics [16]. Much of the development of
these algorithms has so far relied on coupling ideas –
or antithetic coupling for negatively-correlated variables
[17] – and copula-based methods [18, 19].

Copula methods, in particular, have recently become
widely used in generation of samples from multivariate
distributions with pre-specified marginals and a depen-
dency function [20]. Copula methodology relies on the
results of Sklar [18] who proved that a multivariate dis-
tribution can be characterized (uniquely in the case of
continuous distributions) by the set of its marginal dis-
tributions and a ”copula” function which describes the
dependence between the components. The dependence
among the original variables is then translated, via the
copula function, into the dependence on the scale of uni-
form random variables. Consequently, the entire desired

multivariate distribution is obtained via a transformation
of these correlated uniform variables. Unfortunately, the
correlation is not preserved under these transformations,
and the sampling is not exact.
In this paper we present a novel alternative algorithm

that generates exact multivariate samples with pre-
specified marginals and a given correlation matrix. We
note that specifying marginal distributions and a cor-
relation matrix is in general not enough to completely
determine the entire multivariate distribution. Nonethe-
less, specifying marginal distributions and a set of linear
relationships (through a set of correlation coefficients)
among the random variables is frequently done, perhaps
due to the strong intuitiveness of the linear relationship.
The algorithm can be used for generating a realiza-

tion of a set of random variables X1, X2, ...Xt such that
each variable Xi has a specified marginal distribution
Fi, and such that each pairwise correlation coefficient
cor(Xi, Xj) equals some set value ρij . We take the cor-
relation coefficient between two random variables Xi and
Xj to be defined as

cor(Xi, Xj) =
cov(Xi, Xj)

σXi
σXj

,

where cov(Xi, Xj) stands for covariance between Xi and
Xj .
The paper is organized as follows: Section II intro-

duces the basic idea of the algorithm, which allows for
fast simulation and can accommodate any among the
theoretically plausible correlation ranges. We discuss its
implementation and performance, and present detailed
examples for several bivariate distribution families (Uni-
form, Arcsine, Weibull, Exponential, Erlang, Beta and
Gaussian) in Section II B. We also calculate the minimal
correlations (or maximum negative correlations as they
are called in Kotz et al. [21]) for these distributions, in-
cluding some that have never been obtained before. In
Section III we present a multivariate extension of the al-
gorithm. Finally, Section IV concludes the paper with a
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brief summary of benefits and limitations of the proposed
approach.

II. THE ALGORITHM FOR GENERATING
BIVARIATE SAMPLES FROM PRESCRIBED

MARGINALS WITH SPECIFIED CORRELATION

Perhaps not surprisingly, over the years the problem
of generating bivariate distributions with fixed marginals
and a specified correlation coefficient has gotten more at-
tention from the simulation communities (e.g [22]), than
from the probability community [23]. A notable excep-
tion is a work by Johnson and Tenenbein [24], who pro-
vide a bivariate generation algorithm based on a differ-
ent method than the one presented in this paper. More-
over, bivariate distributions have been studied mostly for
marginals with common distributional form, such as the
Normal, Exponential, or Gamma (see e.g. [21]). The
case of exponential marginals is particularly well stud-
ied; however, providing a constructive algorithm that can
produce all theoretically possible correlation coefficients
still proved to be a significant theoretical advance [25].
For general marginals, Michael and Schucany [26] intro-
duced a mixture-density based (hierarchical) approach,
although this algorithm relies on finding a feasible mix-
ture density for each example, which need not always be
straightforward.
Trivariate reduction methods were introduced initially

for construction of dependent Gamma random variable
pairs (see for example [10, 27, 28]), as an alternative to
once computationally costly distribution inversion based
methods. The trivariate reduction idea relies on the use
of three independent variables in order to obtain one pair
of correlated variables. However, these methods are lim-
ited to additive families of distributions, like Gamma or
Poisson. The algorithm we present here will not have
that limitation.
The algorithm in this paper is a hybrid version of the

trivariate reduction method, as it relies on three uni-
formly distributed random variables to produce a pair,
but it is not inversion-free. It is based on the following
reasoning: with a certain probability we use the same
source of randomness in the construction of the pair, and
two independent sources otherwise. The probability used
to determine which source is used will be closely related
to the correlation coefficient.
To set notation, let F andG be cumulative distribution

functions (cdfs) with finite positive variances, and let X
and Y be random variables with distributions F and G
respectively, X ∼ F and Y ∼ G. The first question to be
asked is whether any correlation ρ ∈ [−1, 1] can be at-
tained for the pair (X,Y ). The answer to that question is
negative, and dates back to the work of Hoeffding [3] and
Fréchet [2], where the concept of extremal distributions
was originally introduced: if we let Π(F,G) be the set
of all bivariate cdfs having F and G as marginals, then
among the elements of Π(F,G), there are cdfs H∗ and

H∗ which have maximum and minimum correlation coef-
ficient (ρ∗ and ρ∗), respectively. Such extremal distribu-
tions are also called (upper and lower) Fréchet-Hoeffding
bounds. They were later characterized by Whitt [29] who
provides the following two equivalent statements.

Theorem II.1 (Hoeffding (1940)). For any F and G
with finite positive variances,

H∗(x, y) = min{F (x), G(y)}
H∗(x, y) = max{0, [F (x) +G(y)− 1]},

for all (x, y) ∈ R
2.

Theorem II.2 (Hoeffding (1940); Whitt (1976)). For
any F and G with finite positive variances

(F−1(U), G−1(U)) has cdf H∗

and (F−1(U), G−1(1 − U)) has cdf H∗

where U has uniform distribution on [0, 1] and F−1

and G−1 are inverse distribution functions, defined as
F−1(y) = inf{x : F (x) ≥ y}, and G−1(y) = inf{x :
G(x) ≥ y}, respectively.

Fréchet [2] suggested that any system of bivariate dis-
tributions with specified marginals F and G should in-
clude H∗ and H∗ as limiting cases [21]. The crux of
our algorithm is precisely in this reasoning, as we con-
struct multivariate distributions through careful blend-
ing of Fréchet-Hoeffding bounds and marginal products.
This blending, although clearly apparent in the bivariate
case, becomes less obvious in dimensions greater than
two and in the presence of negative correlations.

A. The Basics: Bivariate Algorithm

Suppose F and G are desired marginal distributions,
with finite positive variances. Then the main bivariate
problem can be stated as follows: Construct X and Y
such that X ∼ F , Y ∼ G, and correlation cor(X,Y ) = ρ.
Here, ρ ∈ [ρ∗, ρ

∗], where ρ∗ and ρ∗ are minimum and
maximum theoretically possible correlation coefficients,
respectively.
LetmF , σF andmG, σG be the first moments and stan-

dard deviations corresponding to F and G, respectively.
Let φ be an algorithm such that φ(U) ∼ F , and let ψ
be an algorithm such that ψ(U) ∼ G, where U is a uni-
formly distributed random variable on [0, 1]. (It can be
assumed, although it is not necessary, that φ = F−1 and
ψ = G−1). Let V also be a uniform random variable on
[0, 1] and define

cφ,ψ(U, V ) =
E[φ(U)ψ(V )]−mFmG

σFσG
, (1)

where E[·] is used to denote the expected value of a ran-
dom variable. To simplify notation, we will denote cφ,φ as
cφ. Also, observe that cφ(U,U) = (E(X2)−m2

F )/σ
2
F = 1,

for X = φ(U) ∼ F .
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The following construction, presented as Algorithm 1
below, will yield a pair of variables, (X,Y ), such that
X ∼ F , Y ∼ G and cor(X,Y ) = ρ for ρ ∈ [ρ∗, ρ

∗].

ALGORITHM 1: Construction of two random variables
with prescribed marginal distributions F,G and

correlation coefficient ρ

1: sample U, V,W ∼ U(0, 1), independently
2: let X = φ(U)
3: if ρ > 0 then
4: let U ′ = U .
5: else
6: let U ′ = 1− U .
7: end if
8: if W < ρ/cφ,ψ(U,U ′) then
9: let Y = ψ(U ′)

10: else
11: let Y = ψ(V )
12: end if
13: RETURN (X,Y )

Theorem II.3. If (X,Y ) is generated by Algorithm 1,
then

(a) X ∼ F , Y ∼ G and cor(X,Y ) = ρ, if
ρ/cφ,ψ(U,U ′) ≤ 1.

(b) If φ = F−1, ψ = G−1 then

i) (X,Y ) has the joint distribution H(x, y),
where:

for ρ ≥ 0 : H(x, y) =
ρ

ρ∗
H∗(x, y) + (1− ρ

ρ∗
)F (x)G(y);

for ρ ≤ 0 : H(x, y) =
ρ

ρ∗
H∗(x, y) + (1− ρ

ρ∗
)F (x)G(y).

ii) Algorithm 1 is applicable for all ρ∗ ≤ ρ ≤ ρ∗.

Proof:
(a) By construction, X ∼ F , Y ∼ G. Using 1(·) to de-
note the indicator function, E[·] to denote expected value
of a random quantity, and c in the place of ρ/cφ,ψ(U,U ′),
we have:

E[XY ] = E[XY 1(W < c)] + E[XY 1(W > c)]

= E[φ(U)ψ(U ′)1(W < c)] + E[φ(U)ψ(V )1(W > c)]

(U,V, W independent)

= P (W < c) E[φ(U)ψ(U ′)] + P (W > c) Eφ(U) Eψ(V )

= cE[φ(U)ψ(U ′)] + (1 − c)mFmG

= c(E[φ(U)ψ(U ′)]−mFmG) +mFmG.

Then, from (1), it follows that cor(X,Y ) = ρ. Ob-
serve also that when φ and ψ are non-decreasing
functions, cov(φ(U), ψ(U)) is always positive, while
cov(φ(U), ψ(1 − U)) is always negative. This can be
verified easily using a coupling argument as in [17].
Inverse distribution functions φ = F−1, ψ = G−1 are of
course non-decreasing.

(b) For positive ρ, Algorithm 1 produces

(F−1(U), G−1(U)) with probability ρ/cF
−1,G−1

(U,U).
By Theorem II.2, the pair (F−1(U), G−1(U)) has the

cdf H∗(x, y). With probability 1 − ρ/cF
−1,G−1

(U,U),
the outcome of Algorithm 1 is a pair of two independent
variables (F−1(U), G−1(V )), with the cdf that is a
product of the marginal cdfs F (x)G(y). The argument
works analogously for negative values of ρ.

When ρ > 0, by Theorem II.2, the maximum corre-
lation between F and G is attained with the coupling
(F−1(U), G−1(U)), so that

ρ∗ =
E[F−1(U)G−1(U)]−mFmG

σFσG
= cF

−1,G−1

(U,U).

(2)

It follows that ρ/cF
−1,G−1

(U,U) ≤ 1 ⇔ ρ ≤ ρ∗.

When ρ < 0, we again have, by Theorem II.2, that the
minimal correlation between F and G is attained with
the coupling (F−1(U), G−1(1− U)), and that then

ρ∗ =
E[F−1(U)G−1(1− U)]−mFmG

σFσG
=

cF
−1,G−1

(U, 1− U). (3)

In this case it follows that ρ/cF
−1,G−1

(U, 1 − U) ≤ 1 ⇔
ρ ≥ ρ∗. As noted in the last paragraph of the proof of
part (a), since φ = F−1, ψ = G−1, we have that ρ∗ > 0
and ρ∗ < 0. Therefore the algorithm works for the entire
range of possible correlations between F and G. �

Remark:
Note that we allow a possibility that φ and ψ are not
inverse distribution functions, because the main idea of
the algorithm is applicable to transformations that are
not inverse distribution functions. We will present Algo-
rithm 4 in Section 3 as an example of using such trans-
formations.

B. Examples: Finding Minimum Correlations

We now illustrate the implementation of Algorithm 1
using several common distributions as examples. We will
assume identical marginal distributions, F = G, and that
φ denotes an inverse distribution function in each case
below. Since the correlation coefficient is not preserved
under inverse distribution transformation – namely, in
general cor(F−1(U), F−1(V )) 6= cor(U, V ) – the range of
possible correlations for any individual distribution has
to be derived separately. Once the range of feasible cor-
relations is known, application of Algorithm 1 is very
simple and requires only few lines of code.
It should be noted that determination of minimum

(and maximum) possible correlation among two distri-
butions has had a theoretical value in its own right. At
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the same time it is also of practical value, as knowing
the maximum and minimum correlations allows us to
place the correlation estimates in perspective, which is
of great importance in empirical data analysis. Moran
[30] showed that only symmetric bivariate distributions
for which there exist η0 and η1 such that η0+η1Y has the
same distribution as X allow ρ to take any value in the
entire range [−1, 1]. Some ranges for correlation coeffi-
cients for bivariate distributional families are provided in
[7]; however, many ranges still remain to be computed.
When the marginals are equal, maximum correlation

ρ∗ = 1 since cor(X,X) = 1, and only ρ∗ has to be deter-
mined. We present briefly several examples and derive
the minimum correlation for each case. The first two
cases, the Uniform and Arcsine, easily follow from Moran
[30], so we show them only as illustrations.

• Uniform. In the case of Uniform distribution on
[0,1], we have that φ(U) = U and

ρ∗ =
E(U(1− U))− [E(U)]2

V ar(U)
=

1/6− 1/4

1/12
= −1.

• Arcsine. In the case of the Arcsine distribu-
tion with density 1/(π

√
1− x2) on [-1,1], φ(U) =

cos(πU) [23]. As the mean of this density is 0 and
variance 1/2, it follows that

∫ 1

0 cos(πx) cos π(1− x)dx =
∫ 1

0 cos2(πx)dx =

1
2

∫ 1

0
1 + cos(2πx)dx = 1

2 .

From here ρ∗ = −1, and that the algorithm is ap-
plicable for all ρ ∈ [−1, 1].

• Exponential. If the variables are exponentially
distributed with mean 1 (density e−x) then φ(U) =
−log(U) and ρ∗ = 1− π2/6 ≈ −0.6449, since

E[φ(U)φ(1 − U)] =
∫ 1

0
log(x) log(1− x)dx =

2− 1
6π

2.

The above integral can be solved using Maclaurin
series representation of log(x), using either double
or single series, and we present this proof in the
Appendix.

Consequently, since S ∼ Exp(λ) (for λ > 0) can be
obtained as λT where T ∼ Exp(1), the same range
of attainable correlation ρ ≥ ρ∗ = 1− π2/6 is valid
for any choice of marginal exponential distribution.

It is worth noting that many different bivariate ex-
ponential distribution algorithms have been stud-
ied, including a classic example by Gumbel [31] and
many others mentioned in [21]. Another recent con-
struction of bivariate exponential distribution that
allows an arbitrary positive or negative correlation
coefficient has been introduced by [25]. They use an

elegant concept of multivariate phase-type distri-
butions, and provide a constructive algorithm that
achieves minimum correlation ρ∗ through a limit of
a sequence.

• Erlang. As a Gamma(n, λ) distribution where
n is an integer, an Erlang(n, λ) random vari-
able (density xn−1e−x/λ/((n − 1)!λn)) can be
obtained as a sum of n independent Exponen-
tial random variables with parameter λ. Let
(S1

1 , S
2
1), (S

1
2 , S

2
2), ..., (S

1
n, S

2
n) be n independent

outputs of Algorithm 1, where each variable in
the pair has an exponential marginal distribution
(with parameter λ), and where cor(S1

i , S
2
i ) = ρ,

for i = 1, ..., n. (Notice also that for j 6= i, S1
i

and S1
j are independent, as are S1

i , and S2
j .) Let

X = S1
1 + ... + S1

n and Y = S2
1 + ... + S2

n. Then
X,Y ∼ Gamma(n, λ) and cor(X,Y ) = ρ. It follows
that the minimal possible correlation of X and Y
is 1− π2/6 ≈ −0.6449.

• Weibull. The Weibull distribution with density

kxk−1e−x
k

, for x ≥ 0, and k > 0, has φ(U) =
−log1/k(U). Here, the minimal correlation, given
in Equation (3), for different values of k could only
be evaluated numerically, and is given in Table I.
Please notice that the case k = 1 corresponds to
Exp(1) distribution that we have already discussed.

k 4 3 2 1 0.9 0.8 0.5

ρ∗ -0.999 -0.996 -0.947 -0.645 -0.574 -0.492 -0.193

TABLE I: Minimal correlation of a bivariate
distribution with marginals distributed as Weibull(k),

for different values of parameter k.

• Beta. A random variable with Beta(a, 1) distri-
bution (density axa−1 on [0, 1]) can be sampled as
U1/a and, due to symmetry, Beta(1, b) can be sam-
pled as 1 − U1/b [23]. We analyze the first case
in which φ(U) = U1/a and E(φ(U)φ(1 − U)) =
B(1/a + 1, 1/a + 1), where B stands for the beta

function B(x, y) =
∫ 1

0
tx−1(1 − t)y−1dt. For a spe-

cial case when a = 1/n, where n is an integer, the
minimum correlation can be obtained analytically

by realizing that B(n + 1, n + 1) = (n!)2

(2n+1)! . If we

let m and σ be the mean and standard deviation of
Beta(1/n,1), then

ρ∗ =
E(φ(U)φ(1 − U))−m2

σ2
=

(n!)2

(2n+1)! − 1
(1+n)2

n2

(1+n)2(1+2n)

=
[(n+ 1)!]2 − (2n+ 1)!

n2(2n)!
.

For other values of a, minimal correlations can be
obtained numerically, which we show in Table II.
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a 5 4 3 2 1 0.8 0.5 0.3

ρ∗ -0.795 -0.824 -0.867 -0.931 -1 -0.989 -0.875 -0.634

TABLE II: Minimal correlation of a bivariate
distribution with marginals distributed as Beta(a,1), for

different values of a.

• Minimum correlations for Poisson distribution are
calculated by Shin and Pasupathy [32], while log-
normal case was studied in De Veaux [33], among
others. We refer the readers to derivations in their
papers.

III. MULTIVARIATE ALGORITHM

In this section we propose an extension of the above
algorithm to the multivariate case. We start with the
simplest case, where X1, X2, ..., Xn is a set of n iden-
tically distributed random variables, each with F as the
marginal distribution, and identical positive pairwise cor-
relation coefficient for each pair, cor(Xi, Xj) = ρ2.
As before, let φ be an algorithm such that φ(U) ∼ F ,

where U is a uniform random variable on [0,1]. (Although
not necessary, we can set φ to equal F−1.) Then the
construction given in Algorithm 2 below yields a set of
n random variables, (X1, ..., Xn), such that Xi ∼ F for
each i, and cor(Xi, Xj) = ρ2 for each i 6= j, i, j ≤ n:

ALGORITHM 2: Construction of n random variables,
X1, X2, ..., Xn, identically distributed with a prescribed
marginal distribution F and identical positive pairwise

correlation coefficient ρ2

1: sample U, V1, V2...Vn,W1,W2...Wn ∼ U(0, 1), indepen-
dently

2: for i = 1 → n do
3: if Wi < |ρ| then
4: let Xi = φ(U)
5: else
6: let Xi = φ(Vi)
7: end if
8: end for
9: RETURN X1, .., Xn

Algorithm 2 will be applicable to a range of correla-
tion values, which will depend not only on F as in the
bivariate case, but also on the conditions required for
positive semi-definiteness or positive definiteness of the
correlation matrix. For example, a commonly used nec-
essary and sufficient condition for positive definiteness
of a matrix is Sylvester’s criterion, which states that a
matrix is positive definite if and only if all leading prin-
cipal minors have positive determinants. In the case of
a 3-dimensional ”compound symmetry” correlation ma-
trix – a matrix where all diagonal elements are equal to
1 and all off-diagonal elements are equal to r ∈ (−1, 1) –

Sylvester’s criterion equates to the condition that the de-
terminant, 1− 3r2 +2r3, is positive, or equivalently that
−0.5 < r < 1. The matrix structure assumed by Algo-
rithm 2 above will thus be positive definite for any ρ2 < 1.
The topic of conditions for positive semi-definiteness of a
correlation matrix can be found in [34], among others.
The next multivariate algorithm extension is to the

case when X1, X2, ..., Xn is again a set of n identi-
cally distributed random variables, each with F as the
marginal distribution. However, now we allow the pair-
wise correlation coefficient to be different for every pair,
cor(Xi, Xj) = ρij , but only if each ρij can be expressed as
ρiρj where ρi ∈ (ρ∗, ρ

∗) for all i = 1, ..., n. The construc-
tion given in Algorithm 3 below yields a set of n random
variables, (X1, ..., Xn), such that Xi ∼ F for each i, and
cor(Xi, Xj) = ρij = ρiρj for each i 6= j, i, j ≤ n:

ALGORITHM 3: Construction of n random variables,
X1, X2, ..., Xn, identically distributed with a prescribed

marginal distribution F , and pairwise correlation
coefficients ρij = ρiρj

1: sample U,V1, V2...Vn,W1,W2...Wn ∼ U(0, 1), indepen-
dently

2: for i = 1 → n do
3: if ρi > 0 then
4: let U ′ = U
5: else
6: let U ′ = 1− U
7: end if
8: if Wi < ρi/c

φ(U,U ′) then
9: let Xi = φ(U ′)

10: else
11: let Xi = φ(Vi)
12: end if
13: end for
14: RETURN X1, .., Xn

Algorithm 3 will also be applicable to a range of corre-
lation values, which will depend not only on the choice of
F , but also on the properties required of the correlation
matrix. For example, for a general 3-dimensional corre-
lation matrix, where the three correlation coefficients are
p, q, and r, with |p| < 1, |q| < 1, |r| < 1, Sylvester’s crite-
rion for positive definiteness equates to the determinant
being positive, 1− p2 − q2 − r2 + 2pqr > 0.
In addition, while Algorithm 3 allows for negative cor-

relation between variables, the correlation coefficient fac-
torization requirement imposes an added restriction. For
example, Algorithm 3 cannot accommodate cases such as
independence between X1 and X2, but dependence be-
tween X1 and X3 and between X2 and X3; nor can it
accommodate correlation matrices with an odd number
of negative correlation coefficients. This added restric-
tion in the 3-dimensional case is shown in Figure 1. In
the top plot we see the general applicable 3-dimensional
region for the 3 correlation coefficients p, q, and r re-
quired for positive definiteness. Two views of the subset
of that region where Algorithm 3 is applicable are given
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the middle and center plots.
Only subsets of this region shown in the middle and

bottom plot in Figure 1 may be applicable to specific
distributions. In the case of 3-dimensional random vari-
able with uniform marginals, the region in the middle
and bottom plots in Figure 1 is fully attainable. How-
ever, in the case of a 3-dimensional Weibull(0.5), the re-
gion shown in the middle and bottom plots in Figure
1 has to be further restricted via intersecting it with
[−0.1992, 1]× [−0.1992, 1]× [−0.1992, 1].
Finally, we note that for any given set of correlation

coefficients, ρij , i, j = 1, ..., n, the factorization into ρi
terms will generally not be unique. In particular, the
factorization can be obtained by solving a set of

(

n
2

)

equa-
tions in n unknowns which will, in the case of all non-zero
correlations, generally yield two sets of solutions with
alternate signs. Algorithm 3 will work for any of the
admissible factorizations, but choosing the factorization
with the smaller number of negative ρi coefficients is rec-
ommended, to reduce the number of comparisons with
cφ(U, 1− U). In the next section we will give a concrete
example of an implementation of Algorithm 3 starting
with a given correlation matrix.

A. Example: Algorithm for generating multivariate
correlated Beta random variables

We conclude this section with an application of Algo-
rithm 3 for sampling a 3-dimensional random variable,
(X1, X2, X3), with Beta(ν1, ν2) marginals and a set of
pairwise correlation coefficients cor(Xi, Xj) = ρij for
i, j = 1, 2, 3. Among other things, a Beta density is used
in practice to describe concentrations of compounds in a
chemical reaction. A multivariate Beta density can thus
be used to jointly describe multiple compounds, where
a negative correlation would exist between a compound
and its inhibitors, and a positive one between a com-
pound and its promoters.
Algorithm 4, given below, is the only non-copula based

algorithm for generating multivariate correlated Beta
random variables for dimensions greater than 2. This
algorithm is valid for integer ν1 and ν2, and is based
on generating two Gamma-distributed random variables,
G1 ∼ Gamma(ν1, 1) and G2 ∼ Gamma(ν2, 1), and form-
ing a new variable as B = G1/(G1 + G2), which will
be distributed as Beta(ν1, ν2). As ν1 and ν2 are inte-
gers, G1 and G2 can be obtained via a sum of ν1 and
ν2 exponential random variables with mean 1, respec-
tively. This example illustrates two facts: 1) that φ(·)
need not be an inverse cdf and b) that the source of ran-
domness used in generation of a random variable need
not be a scalar. Analogous to the quantity cφ,ψ defined
by Equation (1), we will let U = (U1, ..., Uν1+ν2) and

define φν1,ν2(U) =
∑ν1

1 logUi/
∑ν1+ν2

1 logUi.
The example with 10,000 simulated 3-dimensional vari-

ables with Beta(4, 7) marginals, ρ12 = 0.4, ρ13 = 0.3,
and ρ23 = 0.2, resulting from Algorithm 4, is shown

in Figure 2 (top). The bottom plot of Figure 2 shows
an example with 10,000 simulated 3-dimensional vari-
ables with the same marginals, but with ρ12 = −0.4,
ρ13 = −0.3, and ρ23 = 0.3. Note that for Beta(4, 7),
cφ4,7(U,1−U) ≈ −0.71, so only ρij ≥ −0.71 can be
considered for generating Beta(4, 7) using Algorithm 4.

IV. CONCLUSIONS

The algorithm presented in this paper is a simple gen-
eralization of the trivariate-reduction method for gen-
eration of multivariate samples with specified marginal
distributions and correlation matrix. In comparison
with the copulas it is simpler in that it is based only on
marginal distributions and a correlation matrix and does
not require a whole multivariate distribution specifica-
tion. On the other hand it is exact and more transparent
to implement than copulas. Additionally, we generate
samples directly from uniform random variables, the im-
mediate output from random number generators, which
may be more desirable and faster than going through
others distributions, such as Gaussians, as in many other
methods.
The algorithm is applicable to all distributions with

finite variances, and, in the bivariate case, can accom-
modate the entire range of theoretically feasible correla-
tions. Its major computational difficulty is related to de-
termination of exact pairwise correlation ranges, a ques-
tion of theoretical and practical value per se, which has
to be answered once for every set of marginal distribu-
tions. We emphasize that lower and upper bounds for
the correlation coefficient actually depend on the fam-
ily of marginal distributions in question, and that the
commonly used [−1, 1] interval can be inappropriate in
many applications. In this paper we have presented exact
ranges for some common distributional examples so that
the implementation of the algorithms is straightforward.
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FIG. 1: (Color online) General applicable region for the
3-dimensional implementation of Algorithm 3. The top
plot shows the full 3-dimensional domain of allowable
correlation coefficients p, q, and r (shown as ranging
from (-1,1) on the three coordinate axes), which
support positive definiteness of a 3-dimensional

correlation matrix. The middle and bottom plots are
alternative views of that region further restricted by the
factorization requirement in Algorithm 3; these plots
are obtained by taking the region depicted in the top
plot and removing the coordinate axes and subregions

where rpq < 0.

FIG. 2: (Color online) An example with 10,000
simulated 3-dimensional Beta(4, 7) variables resulting
from Algorithm 4. Top panel: ρ12 = 0.4, ρ13 = 0.3,

ρ23 = 0.2; Bottom panel: ρ12 = −0.4, ρ13 = −0.3, and
ρ23 = 0.3.
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ALGORITHM 4: Construction of 3-dimensional
Beta(ν1, ν2) random variable, with Beta(ν1, ν2)

marginals and with correlation coefficients ρ12, ρ13, ρ23.

1: sample U =
{

U1

1 , .., U
ν1
1
, U1

2 , .., U
ν2
2

}

,W1,W2,W3 ∼
U(0, 1), independently

2: if any of the eigenvalues of the given correlation matrix
are negative then

3: stop: matrix not positive semi-definite
4: else
5: if ρ12ρ13ρ23 < 0, only one of ρ12, ρ13, ρ23 is 0, or any
ρij ≤ cφν1,ν2 (U,1−U) then

6: stop: algorithm not applicable.
7: else
8: if ρ12 = ρ13 = ρ23 = 0 then
9: let ρ1 = ρ2 = ρ3 = 0

10: else
11: if ρij = 0, ρik = 0 and ρjk 6= 0 then
12: let ρi = 0, ρj = 1 and ρk = ρik
13: else
14: let ρ2 =

√

ρ12ρ23/ρ13, ρ1 = ρ12/ρ2, ρ3 = ρ23/ρ2
15: if ρi ≤ cφν1,ν2 (U,1−U) for any i then
16: warning: algorithm will produce only

approximate results for negative correlations.
17: else
18: for i = 1 → 3 do
19: if ρi > 0 then
20: let U′ = U
21: else
22: let U′ = 1−U
23: end if
24: if Wi < ρi/c

φν1,ν2 (U,U′) then

25: let G1 =
∑ν1
j=1

− log(U
′j
1
)

26: let G2 =
∑ν2
j=1

− log(U
′j
2
)

27: else
28: sample V 1

1 , .., V
ν1
1
, V 1

2 , .., V
ν2
2

∼ U(0, 1),
independently

29: let G1 =
∑ν1
j=1

− log(V j
1
)

30: let G2 =
∑ν2
j=1

− log(V j
2
)

31: end if
32: let Xi = G1/(G1 +G2)
33: end for
34: end if
35: end if
36: end if
37: end if
38: end if
39: RETURN X1, X2, X3
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APPENDIX

To prove the Exponential distribution result from Sec-
tion II B:

∫ 1

0

log(x) log(1− x)dx = 2− 1

6
π2,

we use a representation of log(x) as a Maclaurin series
for x ∈ (0, 1):

log(x) log(1 − x) = −∑

∞

i=1
xi

i

∑

∞

j=1(−1)j+1 (x−1)j

j =

∑

∞

i=1

∑

∞

j=1
xi

i
(1−x)j

j .

Observe that limx→0 log(x) log(1 − x) =
limx→1 log(x) log(1 − x) = 0, and the double sum

equals log(x) log(1− x) for all x ∈ [0, 1]. Furthermore,

∫ 1

0

log(x) log(1− x)dx =

∞
∑

i=1

∞
∑

j=1

1

ij
β(i + 1, j + 1)

=
∞
∑

i=1

∞
∑

j=1

1

ij

i!j!

(i + j + 1)!

=
∞
∑

i=1

∞
∑

j=1

(i− 1)!(j − 1)!

(i + j + 1)!
=

∞
∑

i=1

∞
∑

j=1

(i − 1)!

(i+ 2)!
(

i+j+1
j−1

)

=

∞
∑

i=1

1

i(i+ 1)(i+ 2)

∞
∑

j=1

1
(

i+j+1
j−1

)

,
(4)

where β(i + 1, j + 1) =
∫ 1

0 x
i(1 − x)jdx = i!j!

(i+j+1)! is a

standard presentation of beta function with i, j integers.
To proceed from here we use the Corollary 3.7 in [35]:

∞
∑

k=0

1
(

n+k
k

) =
n

n− 1

so the last j-sum in (5) equals (i+ 2)/(i+ 1) and

∫ 1

0

log(x) log(1− x)dx =

∞
∑

i=1

1

i(i+ 1)2
. (5)

To prove that the above series converges to 2−π2/6 recall
that

∑

∞

i=1 1/i
2 = π2/6. Now we add that series to (5)

and show that it adds up to 2:

∞
∑

i=1

1

i(i+ 1)2
+
π2

6
=

∞
∑

i=1

1

i(i+ 1)2
+

∞
∑

i=1

1

i2

= 1 +

∞
∑

i=1

1

(i+ 1)2
(
1

i
+ 1)

= 1 +
∞
∑

i=1

1

i(i+ 1)
= 1 +

∞
∑

i=1

(
1

i
− 1

i+ 1
) = 1 + 1 = 2.
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