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A quantum system at equilibrium is represented by a corresponding classical system, chosen to
reproduce thermodynamic and structural properties. The motivation is to allow application of clas-
sical strong coupling theories and molecular dynamics simulation to quantum systems at strong
coupling. The correspondence is made at the level of the grand canonical ensembles for the two sys-
tems. An effective temperature, local chemical potential, and pair potential are introduced to define
the corresponding classical system. These are determined formally by requiring the equivalence of
the grand potentials and their functional derivatives. Practical inversions of these formal definitions
are indicated via the integral equations for densities and pair correlation functions of classical liquid
theory. Application to the ideal Fermi gas is demonstrated, and the weak coupling form for the pair
potential is given. In a companion paper two applications are described: the thermodynamics and
structure of uniform jellium over a range of temperatures and densities, and the shell structure of
harmonically bound charges.

PACS numbers:

I. INTRODUCTION AND MOTIVATION

The equilibrium properties (thermodynamics and structure) of classical systems for conditions of strong coupling
(e.g., liquids) can be described by a number of practical and accurate approximations [1]. Examples are those based on
integral equations for the pair correlation function, such as the Percus-Yevick and hypernetted chain approximations
(HNC). Thermodynamic properties are then determined from exact representations in terms of the pair correlation
function. Extensions to inhomogeneous systems have been described in terms of the pair correlation function as well.
More extensive formulations of the thermodynamics and structure for classical systems can be obtained within the
framework of classical density functional theory [2]. Molecular dynamic simulation (MD) is perhaps the most accurate
tool for the description of classical systems.

A corresponding practical description of strong coupling when quantum effects (diffraction and degeneracy) are
important is less well-developed, except when a transformation to a corresponding weak coupling quasi-particle rep-
resentation can be found (e.g., phonons, conventional Fermi liquid theory). Conditions of current interest for which
such representations are not available include those of the growing class known as ”warm, dense matter”, i.e. com-
plex ion-electron systems [3]. The ions are typically semi-classical but the electron conditions span the full range of
classical plasmas to zero temperature solids. With such potential applications in mind, the objective here is to extend
the classical approximation methods to include quantum effects. The idea is to introduce a representative classical
statistical mechanics that embodies selected quantum effects via effective thermodynamic parameters and effective
pair potentials in the classical Hamiltonian. These classical parameters and pair potential are defined formally in
such a way as to ensure the equivalence of the classical and quantum thermodynamics and structure. In this way
the established effective classical methods can be applied to describe quantum systems at strong coupling as well.
The precise definition of the effective classical statistical mechanics is given in the next section. Of course, there is
no possibility to map a quantum system entirely onto an equivalent classical system. Instead, the classical system
is defined to yield only selective quantum properties, in this case the thermodynamics and pair structure. Other
properties calculated from this effective statistical mechanics, such as higher order structure or transport properties,
constitute uncontrolled approximations, and its utility in this more general context must be obtained from experience
with applications.

The analysis here is a formalization of related partial attempts to incorporate quantum effects in classical calcula-
tions, most commonly through effective classical pair potentials. There is an extensive history for constructing such
effective potentials [4–10]. Recent reviews with references can be found in reference [11]. Such potentials have been
applied in a number of classical theories and simulations. In particular they provide a definition for the classical statis-
tical mechanics of electron-ion systems which otherwise do not exist due to the Coulomb collapse without diffraction
effects. Effective pair potentials defined from the two particle density matrix do not assure that the thermodynamics
or structure will be given correctly by the corresponding classical statistical mechanics, and those approaches pro-
vide uncontrolled approximations in most applications. In contrast, the formal approach here has the advantage of
predicting the correct thermodynamics and structure while retaining the simplicity of pair potentials for point par-
ticles without approximation. However, the additional complication implied by this is the need for effective classical
thermodynamic parameters (e.g., temperature and chemical potential) that differ from those for the given quantum
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system.
The introduction of an effective temperature in this context appears to have been done first by Perrot and Dharma-

wardana (PDW) in their classical map hypernetted chain model [12]. It provides a means to calculate a pair correlation
function gc(r) from the classical HNC integral equation with two modifications: 1) the actual pair potential is replaced
by the sum of a pair potential to give the correct ideal gas quantum pair correlation function, plus a phenomenological
modification of the actual pair interaction to account for diffraction effects (Deutsch potential [13]), and 2) an effective

temperature Tc =
(
T 2 + T 2

0

)1/2
. The single new parameter T0 is determined as a function of the density by requiring

that the classical correlation energy at T = 0 be the same as that for the quantum system. The latter is determined
from diffusion Monte Carlo simulation data. The solution to the HNC integral equation with these embedded quantum
effects combined with classical strong coupling provides an approximate gc(r) from which thermodynamic properties
can be calculated from their classical expressions (e.g., pressure from the virial equation). During the past decade this
remarkably simple and practical approach has been applied to a number of quantum systems with surprising success
for a wide range of temperatures and densities. A recent review with references is given in [14]. These successes provide
motivation and support for the work presented here, which can be considered a formalization of these concepts into
a precisely defined context.

Most practical forms of present quantum many-body theories and simulation methods have limited domains of
validity, for example: Fermi liquid theory (low temperature), quantum plasma methods (high temperature), RPA
with local field corrections (moderate coupling), quantum density functional theory (low temperature), path integral
Monte Carlo (small particle number). As noted above these limitations have become clear recently with attempts
to describe new experimental conditions of ”warm, dense matter”. The classical formulation provides new access to
these extreme conditions by incorporating accurately described classical strong coupling effects and hence provides a
complementary new tool. In addition, applications can often be numerically simpler (e.g., classical density functional
theory, molecular dynamics, classical Monte Carlo simulation).

The definition of a representative classical system in terms of selected equilibrium properties of the underlying
quantum system is given in the next section. The quantum system is represented in the grand canonical ensemble. For
generality an external single particle potential φext (r) is included so the thermodynamics is that for an inhomogeneous
system. Interactions among particles is given by a pair potential φ (r, r′). Only a single component system is considered
here for simplicity. Thermodynamic properties are functions of the temperature T and functionals of the local chemical
potential µ (r) = µ− φext (r). A corresponding classical system is specified in a classical grand canonical ensemble in
terms of an effective classical temperature Tc, classical local chemical potential µc (r) = µc − φc,ext (r), and classical
pair potential φc (r, r′). These three classical quantities are defined by three independent constraints equating chosen
classical and quantum thermodynamics and structure: equality of the grand potentials and their functional derivatives
with respect to the chemical potential and pair potential for the classical and quantum systems. Equivalently, this
requires that the the pressures, the local densities, and the pair correlation functions are the same for the two systems.

Having defined the classical system in terms of equating classical and quantum properties, there is then the practical
problem of inverting the defining equations for the classical temperature, local chemical potential, and pair potential.
Formally this is done via classical density functional theory which relates the local density and pair correlation function
to the classical potential. Inverting this and exploiting the equivalence of classical and quantum pair correlation
functions and densities gives the desired expression for the classical pair potential as a functional of the quantum pair
correlation function and density. Examples of practical implementations of this approach are given by Percus-Yevick
(PY) and HNC approximate integral equations. With the classical pair potential determined (formally), the classical
temperature is obtained from the classical virial equation for the pressure and the HNC equation for the chemical
potential.

In this way the classical temperature, chemical potential, and pair potential are given as explicit functionals of the
quantum properties. In practice, analysis of these functionals entails the full quantum many-body problem so it would
seem that little progress has been made. The key assumption in this approach is that the strong coupling effects
have a dominant classical component while dominant quantum effects are local (e.g. diffraction) or global but weakly
dependent on interactions (e.g. exchange degeneracy). Then, simple weak coupling approximations to the defining
functionals for the classical parameters are sufficient while strong coupling effects are obtained by a more complete
implementation of the classical statistical mechanics. A more ambitious approach would try to include limited strong
coupling effects in the classical parameters (e.g. T = 0 correlation energy as in the PDW model above). The formalism
here provides a basis for approximations that can be tailored to the specific system or objective considered. A brief
overview of this approach has been described elsewhere [15].

As a first application the uniform electron gas (jellium) is considered in the following companion paper [16]. The
effective pair potential used incorporates the exact ideal gas exchange and the random phase weak coupling limit.
The pair correlation function is then obtained for this potential from the HNC integral equation describing strong
classical correlations, known to be accurate for Coulomb interactions. The results are compared to earlier quantum
methods [17] and the above PDW model over a range of temperatures and densities. Good agreement with diffusion
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MC simulations at T = 0 and recent restricted path integral MC results at finite temperatures is obtained. A second
application described briefly there is to charges in a harmonic trap where classical strong correlations produce shell
structure. Qualitative effects of diffraction and exchange on the formation of shell structure are observed.

II. DEFINITION OF THE REPRESENTATIVE CLASSICAL SYSTEM

A. Thermodynamics from statistical mechanics

Consider a quantum many-body system with Hamiltonian H in a volume V at equilibrium described by the grand
canonical ensemble, with inverse temperature β and chemical potential µ . For simplicity a one component system is
considered and dependence on internal degrees of freedom such as spin is suppressed. The Hamiltonian H is of the
form

H = K + Φ + Φext, (1)

where K denotes the total kinetic energy,

K =

N∑
i=1

p2
i

2m
, (2)

Φ is the pair-wise additive potential energy among particles, Φext is an external potential coupling to each particle

Φ =
1

2

N∑
ij

φ(qi,qj), Φext =

N∑
i=1

φext (qi) , (3)

and N is the particle number. The forms for the pair potential and single particle external potential are left general
for the present (beyond well-known conditions for the existence of the grand potential defined below). The statistical
density operator for the grand ensemble depends on H in the form H − µN . It is convenient to combine the
contributions from the external potential with that from N

H − µN = K + Φ−
∫
drµ(r)n̂(r), (4)

where n̂(r) is the number density operator

n̂(r) =

N∑
i=1

δ (r− qi) , (5)

and µ(r) is a local chemical potential

µ(r) ≡ µ− φext (r) . (6)

A caret over n̂ is used to distinguish the operator from its average value n.
The thermodynamics of the system is determined from the grand potential Ω = −β−1 ln Ξ, where Ξ is the grand

partition function. The thermodynamic parameters for this function are the inverse temperature β, the local chemical
potential µ(r), and the volume V . The grand potential is

Ω(β | µ, φ) = −β−1 ln Ξ(β | µ, φ) = −β−1 ln
∑
N

TrNe
−β(K+Φ−

∫
drµ(r)n̂(r)). (7)

The symbol TrN denotes a trace over the N particle Hilbert space with appropriate symmetry restrictions for Fermions
or Bosons (equivalently, in a second quantized representation the sum over N and the TrN represent a trace over Fock
space). The vertical line in the arguments of Ω and Ξ denotes a functional of the quantity following it, e.g. Ξ(β | µ, φ)
is a function of β and a functional of µ(r) and φ(qi,qj). Its functional dependence on the pair potential φ(r, r′) has
also been made explicit in this notation, although it is not strictly a thermodynamic variable. The dependence on
the volume V is left implicit. The pressure p(β | µ) is proportional to the grand potential

p(β | µ, φ)V = −Ω(β | µ, φ). (8)
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The first order derivatives of the grand potential give the internal energy E(β | µ, φ) and average number density
n(r;β | µ, φ)

E(β | µ, φ) =
∂βΩ(β | µ, φ)

∂β
|βµ(r), (9)

n(r;β | µ, φ)V = −δΩ(β | µ, φ)

δµ(r)
|β . (10)

Higher order derivatives provide the fluctuations (susceptibilities) and structure. In particular, the second functional
derivative with respect to µ(r) is related to the response function χ(r, r′;β | µ)

1

β

δ2Ω(β | µ, φ)

δµ(r)δµ(r′)
|β= −χ(r, r′;β | µ, φ)

= − 1

β

∫ β

0

dβ′
〈
eβ

′Hδn̂(r)e−β
′H n̂(r′);β | µ, φ

〉
, (11)

where δn̂(r) = n̂(r) − n(r), and 〈X;β | µ, φ〉 denotes an equilibrium grand canonical average of the quantity X. A
related quantity is the pair correlation function, g(r, r′;β | µ, φ), obtained by functional differentiation with respect
to the pair potential

δΩ(β | µ, φ)

δφ(r, r′)
|β,µ ≡ n(r;β | µ, φ)n(r′;β | µ, φ)g(r, r′;β | µ, φ)

= 〈n̂(r)n̂(r′);β | µ, φ〉 − n(r;β | µ, φ)δ (r− r′) (12)

For the quantum system there is no simple relationship between the two measures of structure, χ(r, r′;β | µ, φ) and
g(r, r′;β | µ, φ). Instead, only their time dependent extensions are related via a fluctuation - dissipation relation.

A corresponding classical system is considered with Hamiltonian Hc in the same volume V at equilibrium described
by the classical grand canonical ensemble, with inverse temperature βc and local chemical potential µc(r) . The
Hamiltonian has the same form as (1) except that the potential energy functions (3) are different, and denoted by

Φc =
1

2

N∑
i 6=j

φc(qi,qj), Φc,ext =

N∑
i=1

φc,ext (qi) . (13)

The local chemical potential is µc(r)

µc(r) ≡ µc − φc,ext (r) . (14)

The classical grand potential is defined in terms of these quantities by

βΩc(βc | µc, φc) = − ln Ξc(βc | µc, φc) = − ln
∑
N

1

λ3N
c N !

∫
dq1..dqNe

−βc(Φc−
∫
drµc(r)n̂(r)). (15)

Here, λc =
(
2πβc~2/m

)1/2
is the thermal de Broglie wavelength associated with the classical temperature. The

integration for the partition function is taken over the N particle configuration space.
The classical thermodynamics is determined in the same way as in (8) - (10)

pc(βc | µc, φc)V = −Ωc(βc | µc, φc). (16)

Ec(βc | µc, φc) =
∂βcΩc(βc | µc, φc)

∂βc
|βcµc,φc

, (17)

nc(r;βc | µc, φc) = −δΩ(βc | µc, φc)
δµc(r)

|βc,φc . (18)
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1

βc

δ2Ω(βc | µc, φc)
δµc(r)δµc(r′)

|βc,φc
≡ −χc(r, r′;βc | µc, φc)

= −〈δn̂(r)n̂(r′);βc | µc, φc〉c (19)

δΩ(βc | µc, φc)
δφc(r, r′)

|βc,µc ≡ nc(r;βc | µc, φc)nc(r′;βc | µc, φc)gc(r, r′;βc | µc, φc)

= 〈δn̂(r)n̂(r′);βc | µc, φc〉c − nc(r;βc | µc, φc)δ (r− r′) . (20)

Here 〈X;βc | µc, φc〉c denotes the corresponding classical equilibrium grand canonical average of the quantity X.
Note the additional constraint that the derivatives are taken at constant pair potential φc. This is necessary because
the determination of βc, µc(r), and φc for the quantum correspondence in the next subsection implies φc(r, r

′) is a
function of βc and a functional of µc(r). This dependence is left implicit to simplify the notation. See Section below
for further elaboration.

B. Classical - quantum correspondence conditions

The classical system has undefined ingredients: the effective inverse temperature, βc, the local chemical potential,
µc(r), and the pair potential for interaction among the particles, φc(r, r

′). A correspondence between the classical
and quantum systems is defined by expressing these quantities as functions or functionals of β, µ(r), and φ(r, r′).
This is accomplished by requiring the numerical equivalence of two independent thermodynamic properties and one
structural property for the classical and quantum systems. The first two are chosen to be the equivalence of the grand
potential and its first functional derivative with respect to the local chemical potential.

Ωc(βc | µc, φc) ≡ Ω(β | µ, φ),
δΩc(βc | µc, φc)

δµc(r)
|βc,φc

≡ δΩ(β | µ, φ)

δµ(r)
|β . (21)

An equivalent form for these conditions can be given in terms of the pressure and density

pc(βc | µc, φc) ≡ p(β | µ, φ), nc(r;βc | µc, φc) ≡ n(r;β | µ, φ). (22)

These two relations provide two independent relations between of βc, µc(r) and the physical variables β and µ(r).
It remains to have a structural equivalence to relate the pair potential φc(r, r

′) to φ(r, r′), which are two particle
functions. This is accomplished by equating the functional derivatives of the grand potentials with respect to these
pair functions

δΩc(βc | µc, φc)
δφc(r, r′)

|βc,µc
=
δΩ(β | µ, φ)

δφ(r, r′)
|β,µ . (23)

More physically, this implies the equivalence of density fluctuations

〈δn̂(r)n̂(r′);βc | µc, φc〉c ≡ 〈δn̂(r)n̂(r′);β | µ, φ〉 . (24)

Finally, from the equivalence of densities and the definitions of pair correlation functions in (12) and (20) this third
condition becomes

gc(r, r
′;βc | µc, φc) ≡ g(r, r′;β | µ, φ). (25)

In summary, the classical - quantum correspondence conditions are the equivalence of the pressures, densities, and
pair correlation functions.

It might seem that a natural alternative choice to (25) would be to equate the second functional derivatives of the
grand potential with respect to the local chemical potential, or equivalently χc(r, r

′;βc | µc, φc) ≡ χ(r, r′;β | µ, φ).
However, the classical response function has a singular contribution proportional to δ (r− r′) that is not present in
the quantum response function. Hence their equivalence does not provide a simple mapping of the parameters. In
contrast, the classical and quantum forms for the pair correlation functions are similar and do not have this problem.

In this way the three equations of (22) and (25) determine, formally, the classical parameters βc, µc, and φc (q) as
functions of β, and functionals of µ(r), and φ (r, r′)

βc = βc(β | µ, φ), µc = µc(r;β | µ, φ), φc = φc (r, r′;β | µ, φ) . (26)

This completes the definition of the classical system representative of the given quantum system.
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C. Inversion of the correspondence conditions

To determine the classical parameters, (26), inversion of the functional forms (22) and (25) is required. This is
done on the basis of three exact results of classical statistical mechanics, for the pressure, density, and pair correlation
function respectively. The first is the virial form for the classical pressure (obtained by differentiating Ωc(βc | µc, φc)
with respect to the volume)

βcpc(βc | µc, φc) =
1

V

∫
drnc(r)

[
1 +

1

3
r · ∇βcµc (r)− 1

6

∫
dr′nc(r

′)gc(r, r
′)r′ · ∇′βcφc(r, r′)

]
(27)

(Note that this is the average pressure over the entire system. A local pressure could be identified with the integrand
of (27)). The second is an equation for the classical densities,

ln
(
nc (r)λ3

c

)
= βcµc(r) +

∫ 1

0

dα

∫
dr′′c(2)

c (r, r′′ | αnc)nc (r′′) . (28)

and the third is an equation for the pair correlation functions

ln gc(r, r
′) = −βcφc(r, r′) +

∫ 1

0

dα

∫
dr′′c(2)

c (r, r′′ | nc + αnc (gc − 1))

× nc (r′′) (gc(r
′′, r′)− 1) (29)

The direct correlation function c
(2)
c appearing in these equations is determined from gc via the Ornstein-Zernicke

equations

(gc (r, r′)− 1) = cc (r, r′ | nc)

+

∫
dr′′cc (r, r′′ | nc)nc (r′′) (gc (r′′, r′)− 1) . (30)

The constant λc in (28) is the thermal de Broglie wavelength evaluated at the classical temperature, λc =(
2π~2βc/m

)1/2
. See Appendix A for further elaboration.

These equations provide the inversion in the following way. First, (28) and (29) are solved for βcµc (r) and βcφc(r, r
′)

as functionals of nc(r) and gc(r, r
′). Then nc(r) and gc(r, r

′) are replaced by their quantum counterparts, n(r) and
g(r, r′), according to the definitions (22) and (25), giving the desired exact expressions

βcµc(r) =
3

2
ln

(
βc
β

)
+ ln

(
n (r)λ3

)
−
∫ 1

0

dα

∫
dr′′c(2)(r, r′′ | αn)n (r′′) . (31)

βcφc(r, r
′) = − ln g(r, r′) +

∫ 1

0

dα

∫
dr′′c(2)(r, r′′ | n+ αn (g − 1))

× n (r′′) (g(r′′, r′)− 1) . (32)

Here, c(2)(r, r′′ | n) is defined by the Ornstein-Zernicke equation (30) with nc (r) , gc(r, r
′) replaced by n (r) , g(r, r′)

c(2) (r, r′ | n) = (g (r, r′)− 1)−
∫
dr′′c(2) (r, r′′ | n)n (r′′) (g (r′′, r′)− 1) . (33)

Finally, an equation for βc/β is obtained by using the equivalence of the classical and quantum pressures pc = p, (22),
to write

βc
β

=
βcpc
βp

. (34)

or with (27)

βc
β

=
1

βpV

∫
drn(r)

[
1 +

1

3
r · ∇βcµc (r)− 1

6

∫
dr′n(r′)g(r, r′)r′ · ∇′βcφc(|r− r′|)

]
. (35)
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Equations (31), (32), (33), and (35) then determine the classical parameters as βc/β, βcµc(r), and βcφc(r, r
′) from

the properties of the given quantum system

βc = βc (β | n, g) , µc(r) = µc(r, β | n, g), φc(r, r
′) = φc(r, r

′, β | n, g) (36)

which is equivalent to (26) (corresponding to a change of variables from µ, φ to n, g for the quantum system).
These expressions for the classical parameters are exact, but deceptively simple, equations. Their complexity arises

from the fact that different arguments for the functional c(2)(r, r′′ | ·) occur. The relationship of two functionals at
different arguments depends on higher order correlations that are not determined by these equations. The many-body
problem has not been solved, only hidden, and approximations are required for practical applications

The application of these results proceeds in three steps. First an approximation to the classical equations (28) and
(29) is chosen such that classical correlations are well described. These are then inverted to obtain the corresponding
approximations to (31) and (32). Next, selected information about the quantum system is chosen in the form of
approximations to p, n, and g, for the calculation of the classical parameters of (36). Finally, with all classical
parameters known properties of interest are determined from classical statistical mechanics (e.g., liquid state integral
equations, classical density functional theory, molecular dynamics).

D. Hypernetted Chain Approximation

To illustrate the first step, selection of a classical approximation for (28) and (29), the HNC is noted. This results
from making them local in the function space of densities

c(2)
c (r, r′′ | αnc)→ c(2)

c (r, r′′ | nc), c(2)
c (r, r′′ | nc + αnc (gc − 1))→ c(2)

c (r, r′′ | nc). (37)

Then equations (28) and (29) become

ln
(
nc (r)λ3

c

)
= βcµc(r) +

∫
dr′c(2)

c (r, r′ | nc)nc (r′′) . (38)

ln gc(r, r
′ | nc) = −βcφc(r, r′) +

∫
dr′′c(2)

c (r, r′′ | nc)nc (r′′) (gc(r
′′, r′ | nc)− 1) . (39)

Together with the Ornstein-Zernicke equation (30) they are a closed set of equations to determine the density and pair
correlation function for given potentials. This is the HNC of liquid state theory, generalized to spatially inhomogeneous
systems [18]. It is known to give very good results for uniform Coulomb systems [1] and for inhomogenous, confined
Coulomb systems even at strong coupling conditions [19, 20].

The corresponding inverse HNC forms for (31) and (32)

βcµc(r) = ln
(
n (r)λ3

c

)
−
∫
dr′′c(2)(r, r′′ | n)n (r′′) , (40)

βcφc(r, r
′) = − ln(1 + h(r, r′ | n)) + h(r, r′ | n)− c(r, r′ | nc), (41)

and the Ornstein-Zernicke equation (32a) is unchanged

c(2) (r, r′ | n) = h (r, r′ | n)−
∫
dr′′c(2) (r, r′′ | n)n (r′′)h (r′′, r′ | n) . (42)

The ”hole function”, h (r, r′ | n) has been introduced for notational simplicity

h (r, r′ | n) = g (r, r′ | n)− 1. (43)

These equations, together with (35) for βc/β, provide practical forms to determine βc/β, βcµc(r), and βcφc(r, r
′) for

the classical system, given appropriate quantum input.
In the uniform limit (no external potential) the second term of (40) is simply related to the static structure factor

S(k) ∫
dr′′c(2)(r, r′′ | n)n (r′′)→ n

∫
dr′′c(2)(r− r′′, n) = 1− 1

S(k = 0)
. (44)
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For Coulomb systems, such as jellium considered in the following companion paper [16] and ideal Fermi fluids at zero
temperature, S(k) vanishes as k → 0 and this contribution to βcµc diverges. Therefore, instead of (40) an alternative
form obtained from a coupling constant integration and the HNC [22] is used,

βcµc = ln
(
ncλ

3
c

)
− n

∫
dr

(
c(r, n) + βcφc(r)−

1

2
h(r, n) (h(r, n)− c(r, n))

)
, (45)

III. THERMODYNAMICS - FURTHER CONSIDERATIONS

The definition of the equivalent classical system assures that the pressure and density in the grand ensemble give
the correct quantum results (in principle), e.g.

pc(βc | µc, φc)V = −Ωc(βc | µc, φc) = p(β | µ, φ)V = −Ω(β | µ, φ) (46)

However, some care is required in the definition of other thermodynamic properties. For the quantum system the
thermodynamic variables are β, µ(r) for constant φ(r, r′). However, their variation leads to a change in all three
classical variables βc, µc(r), φc(r, r

′), since all are functions of β and functionals of µ(r). Therefore, the variation of
the pressure leads to (in the following the volume V is always held constant)

δ (pcV ) =

[
∂pcV

∂βc
|µc,φc

+

∫
drdr′

δpcV

δφc(r, r′)
|βc,µc

∂φc(r, r
′)

∂βc
|µc

]
δβc

+

∫
dr

[
δpcV

δµc(r)
|βc,φc +

∫
dr′dr′′

δpcV

δφc(r′, r′′)
|βc,µc

δφc(r
′, r′′)

δµc(r)
|βc

]
δµc(r)

≡ S̃cdTc +

∫
drñc(r)δµc(r) (47)

The second equality defines the classical thermodynamic entropy and thermodynamic density in terms of the grand
potential

TcS̃c = −βc
[
∂pcV

∂βc
|µc,φc

+

∫
drdr′

δpcV

δφc(r, r′)
|βc,µc

∂φc(r, r
′)

∂βc
|µc

]
= βc

∂Ωc
∂βc

|µc
, (48)

ñc(r) =

[
δpcV

δµc(r)
|βc,φc

+

∫
dr′dr′′

δpcV

δφc(r′, r′′)
|βc,µc

δφc(r
′, r′′)

δµc(r)
|βc

]
= − δΩc

δµc(r)
|βc
, (49)

Similarly, the classical internal energy is defined by

Ẽc ≡ TcS̃c +

∫
drñc(r)µc(r)− pcV

=
∂βcΩ

∂βc
|µc −

∫
drβcµc(r)

δΩc
δβcµc(r)

|βc

=
∂βcΩc
∂βc

|βcµc (50)

Note that derivatives in the last equalities of (48) - (50) do not have the restriction of constant φc.
These same relationships hold for the quantum properties as well, since they are the general definitions of thermo-

dynamics for the chosen variables, µ, β. In the quantum case φ is independent of the thermodynamic variables and
hence is constant in the variations. This leads to the equivalent expressions in terms of equilibrium averages

n(r) = − δΩ

δµ(r)
|β= 〈n̂(r)〉 , E =

∂βΩ

∂β
|βµ=

〈
Ĥ
〉
. (51)
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However, in the classical case the above leads to

ñc(r) = 〈n̂(r)〉c −
∫
dr′dr′′

δΩc
δφc(r′, r′′)

|βc,µc

δφc(r
′, r′′)

δµc(r)
|βc

(52)

Ẽ = 〈H〉c +

∫
dr′dr′′

δβcΩc
δφc(r′, r′′)

|βcµc

δφc(r
′, r′′)

δβcµc(r)
|βc

. (53)

For example, the thermodynamic density, ñc(r), differs from the average density of the text above, nc(r), because the
latter is defined as a derivative of the grand potential at constant φc.

IV. EXAMPLE - INHOMOGENEOUS IDEAL FERMI GAS

To illustrate this definition of an equivalent classical statistical mechanics, consider the case of non-interacting
Fermions in an external potential

H − µN → K −
∫
drµ(r)n̂(r). (54)

Since H − µN is now the sum of single particle operators, the pressure, density, and pair correlation function can be
expressed in the form of single particle calculations

p(β | µ)V ≡ p(β | µ, φ = 0)V = β−1(2s+ 1)

∫
dr 〈r| ln

(
1 + e

−β
(

p̂2

2m−µ(r̂)
))
|r〉 , (55)

n(r,β | µ) ≡ n(r,β | µ, φ = 0) = (2s+ 1) 〈r|
(
e
β
(

p̂2

2m−µ(r̂)
)

+ 1

)−1

|r〉 (56)

g(r, r′;β | µ) ≡ g(r, r′;β | µ, φ = 0)

= 1− 1

2s+ 1

n(r, r′)n(r′, r)

n(r, r)n(r′, r′)
, n(r, r′) = 〈r|

(
e
β
(

p̂2

2m−µ(r̂)
)

+ 1

)−1

|r′〉 (57)

where 〈r|X |r′〉 denotes a matrix element in coordinate representation, and s is the spin.
Further reduction of these results to expose the dependence on β and µ (r) is difficult without solving the eigenvalue

problem for the single particle Hamiltonian (p̂2/2m) − µ(r̂). A useful practical approximation that captures most
of the important exchange effects (but not any bound states if supported by the external potential) is obtained by
replacing the operator µ(r̂) by its eigenvalue µ(r), a ”local density approximation”. The expectation values above
then can be calculated as simple integrals

p(β | µ)→ 1

V

∫
dr (2s+ 1)

1

h3

∫
dp

p2

2m

(
eβ( p2

2m−µ(r)) + 1

)−1

, (58)

n(r,β | µ)→ (2s+ 1)h−3

∫
dp

(
eβ( p2

2m−µ(r)) + 1

)−1

, (59)

n(r, r′) =
1

h3

∫
dpe

i
~p·(r−r′)

(
eβ( p2

2m−µ(R)) + 1

)−1

, R =
r + r′

2
. (60)

The results (58) are the familiar finite temperature Thomas-Fermi approximations for the thermodynamics, while
(60) is its extension to structure [24]. The expressions for n(r,β | µ) and n(r, r′) are no longer functionals of µ(r),
but rather local functions of µ(r) and µ(R), respectively. The change of variables from β, µ to β, n is accomplished
by inverting (59) to obtain µ(r) = µ(r,β | n). Practical fits for n(r,β | µ) and this inversion are recalled in Appendix
B, along with simplification of n(r, r′).
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The corresponding classical results are non-trivial because φc(qi,qj) 6= 0 when φ(qi,qj) = 0, because classical
pair interactions are required to reproduce quantum exchange effects. Thus the thermodynamics and structure of a
simple ideal quantum gas requires a corresponding classical system with the full complexity of an interacting many-
body system. This classical many-body problem is addressed here and below in the HNC approximation described
above by (40) and (41) together with the Ornstein - Zernicke equation (42) and (35) for βc/β. The solution for the
classical parameters is a straight forward numerical task, but the results are different for each given external potential.
To simplify the illustration here the following is further restricted to a uniform ideal Fermi gas (µ(r) = µ) in the
thermodynamic limit. See section 5 below for the non-uniform case of charges in a harmonic trap. For the uniform
gas the equations for the classical system parameters simplify to

βc
β

=
n

βp

[
1− 1

6
n

∫
drg(r)r · ∇βcφc(r)

]
. (61)

βcµc = ln
(
ncλ

3
c

)
− n

∫
dr

(
c(r) + βcφc(r)−

1

2
h(r) (h(r)− c(r))

)
, (62)

βcφc(r) = − ln (1 + h(r)) + h(r)− c(r), (63)

c (r) = h (r)− n
∫
dr′c (|r− r′|)h (r′) . (64)

The superscript (2) on c(2)(r) and the dependence of c (r) , h (r) on thermodynamic variables has been suppressed for
simplicity. These last two equations can be solved for βcφc(r) using h(r) from (57) and (60) in the uniform limit.
With that result, βc/β can be calculated from (61), and then βcµc determined from (45). Further elaboration is given
in Appendix B.

The dimensionless potential βcφc will be referred to as the Pauli potential. It is shown in Figure 1 as a function
of the dimensionless coordinate r∗ = r/r0 where r0 is the mean distance between particles defined by 4πr3

0/3 = 1/n.
The state conditions are represented by rs = r0/aB characterizing the density (where aB is the Bohr radius), and

t = βF /β for the temperature relative to the Fermi temperature (β−1
F = εF = ~2

(
3π2n

)2/3
/2m). For example, in

these units nλ3 = 8/
(
3π1/2t3/2

)
and the classical limit occurs for t >> 1 where the distance between particles is large

compared to the thermal de Broglie wavelength. It is noted that ideal gas properties expressed in terms of rs and t
become independent of rs Figure 1 shows the Pauli potential at for t = 0, 10−1, 1, and 10.

0 2 4
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0
 t = 0
 t = 0 . 1
 t = 1
 t = 1 0

r * = r / r 0

β c
φ c

(r*
)

FIG. 1: (color online) Ideal gas Pauli pair potential as a function of r∗ = r/r0 for t = 0, 0.1, 1, 10.

Generally, the potential is positive, finite at r = 0 (Pauli exclusion), and monotonically decreasing. The behavior is
exponential at small r, but an r−2 algebraic tail develops for small t. This arises from the direct correlation function
c(2)(r) in (63). Classical statistical mechanics does not exist for such a long range potential and it would appear that
the equivalent classical system proposed here fails even for this simplest case of an ideal Fermi gas. However, this
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problem is ”cured” for the corresponding case of classical Coulomb interactions with the same long range problem
by adding a uniform neutralizing background (the one component plasma). The same procedure can be used here,
i.e., a classical system is considered where the pair potential is supplemented in the Hamiltonian by a corresponding
uniform compensating background. The pressure equation (27) is modified due to this background by the replacement
of gc(r, r

′) by gc(r, r
′)− 1, and (61) becomes

βc
β

=
n

βp

[
1− 1

6
n

∫
drh(r)r · ∇βcφc(r)

]
. (65)

0 1 2 3
0

1

2

3

t c=
T c/

T F

t = T / T F

 t c
 t P D W

FIG. 2: (color online) Ideal gas reduced classical temperature tc = Tc/TF as a function of t = T/TF . Also shown is the result
of PDW.

Figure 2 shows the classical temperature relative to the Fermi temperature, βF /βc ≡ tc, as a function of t obtained
from (65). It is seen that the classical temperature Tc remains finite at T = 0 in all cases, and crosses over to Tc = T

at high temperatures. The PDW model postulates the form Tc =
(
T 2 + T 2

0

)1/2
. The model originally uses the average

energy per particle at T = 0 to evaluate T0 = 2TF /5. The result from (65) is quite close Tc (t = 0) ∼ 0.43TF . To
compare the dependence at finite t, the PDW form is also shown in Figure 2 with T0 = Tc (t = 0). It is seen that the
results are quite similar although the PDW form has a somewhat faster cross over to the classical limit.

0 1 2 3

- 5

- 4

- 3

- 2

- 1

0

1

 

t = T / T F

µ/
Ε F

 µ/ E F + t  l n ( 2 )  

 µc / E F
 

FIG. 3: (color online) Ideal gas dimensionless chemical potential µc/EF as a function of t. Also shown is the corresponding
quantum chemical potential µ/EF + t ln 2.

Figure 3 shows similar results for µc/EF as a function of t obtained from (62). Also shown is the result for the
quantum µ/EF . Both forms depend only on t (independent of rs). At high temperatures the chemical potential of
the representative system goes over to ln(nλ3) as in equation (62) while the quantum chemical potential goes over to
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ln(nλ3/2). They differ by a factor of ln(2) at high temperatures due to the internal spin degrees of freedom in the
quantum calculation. This is accommodated in the comparison shown in Figure 3.

With the parameters of the equivalent classical system determined, it is now possible to calculate any desired prop-
erty of the ideal quantum gas by classical methods. Since the pressure is given exactly by the definition of the classical
- quantum correspondence equations, it is useful to consider the internal energy. First, note that all the dimensionless
thermodynamic quantities of both the quantum and classical ideal gas depend on only one thermodynamic parameter
z = eβµ. In particular

βcpcλ
3
c = G(z). (66)

The specific form for G(z) is not required for the present discussion. The corresponding quantum result is βpλ3 =
f3/2(z), where f3/2(z) is the Fermi integral of Appendix B, (B19). Although G(z) and f3/2(z) are quite different, the
fact that they both depend only on z implies that the relationship among different thermodynamic properties is the
same in both classical and quantum cases. For example, the energy per particle is determined from the pressure via
the thermodynamic definition (50) with (62)

Ẽc = −V G(z)
∂λ−3

c

∂βc
|zc=

2

3
pcV (67)

The contribution from ∂G(z)/∂βc |zc,V vanishes since z = z(zc). This follows on dimensional grounds since z is
dimensionless, and there is no additional energy scale to make βc dimensionless. Hence the classical calculation gives
the known exact quantum result. This non-trivial result for a classical interacting system is a strong confirmation
of the effective classical map defined here. As noted in the last section, it can be verified that the classical average
of the classical Hamiltonian does not give the correct relationship to the pressure. Instead it is necessary to define
the internal energy thermodynamically, as is done in (67). In a similar way it is verified that the relationship of the
classical entropy to the pressure and density is the same as in the quantum case

TcSc =
5

2
pcV − µcN c. (68)

This is a form of the Sackur-Tetrode equation valid for the quantum case. It is emphasized that these simple ideal
quantum gas results are being retained for the more complex effective classical system with pair interactions via the
Pauli potential.

V. WEAK COUPLING PAIR POTENTIAL

For systems with real interactions φ(q1,q2) between the particles, the classical pair potential will have the form

βcφc(q1,q2) = (φc(q1,q2))
(0)

+ ∆(q1,q2), (69)

where (φc(q1,q2))
(0)

is the ideal gas Pauli potential and ∆(q1,q2) denotes the contribution to the effective potential
from the real pair potential. Obviously, in the classical limit ∆(q1,q2)→ βφ(q1,q2). Another exact limit is the weak
coupling limit for which the direct correlation function becomes proportional to the potential [1], or stated inversely,

βcφc(r)→ −c(r), (βcφc(r))
(0) → −c(0)(r). (70)

Thus a possible approximation incorporating this limit is

βcφc(r)→ (βcφc(r))
(0) −

(
c(r)− c(0)(r)

)(w)

, (71)

where
(
c(r)− c(0)(r)

)(w)
denotes a weak coupling calculation of the direct correlation functions from the Ornstein -

Zernicke equation (30)

− (βcφc(r))
(w)

= h(w) (r) + n

∫
dr′ (βcφc(|r− r′|))(w)

h(w)(r′), (72)

with hw (r) being the quantum hole function in its weak coupling form. In the following companion paper this
approximation is applied to the electron gas (jellium) for which the weak coupling form is given by the random phase
approximation.
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To further interpret approximation (71) consider a uniform system and rewrite ∆(q1,q2) = ∆(|q1 − q2|) in terms
of the static structure factor

S (k) = 1 + n

∫
dreik·rh(r), (73)

∆(|q1 − q2|) =
1

n

∫
dk

(2π)
3 e
−ik·(q1−q2)

(
1

S(k)
− 1

S(0)(k)

)(w)

= βφ(|q1 − q2|)−
∫
dqG(q)βφ(|q1 − q2 − q|) (74)

Here G(q) is known as the local field corrections in linear response for the classical system. It is seen that the quantum
corrections to βφ(|q1 − q2|) can be interpreted as local field corrections [17, 23], although due to quantum effects
rather than classical correlations. In the case of jellium, the qualitative features of (74) are a regularization of the
Coulomb singularity at q1 = q2, and cross-over to an asymptotic Coulomb decay for large |q1 − q2| with effective
coupling constant given by the exact perfect screening sum rule.

VI. DISCUSSION

The objective here has been to define an effective classical equilibrium statistical mechanics that corresponds to
a chosen quantum system of interest. The motivation is to allow application of existing strong coupling classical
methods (e.g. liquid state theory, MD simulation) to calculate properties of the quantum system under conditions
for which current theoretical approaches are not adequate. The correspondence has been defined by equivalence
of the pressures, densities, and pair correlation functions for the classical and quantum systems. In this way, the
relevant parameters for the classical grand ensemble are fixed - the temperature, local chemical potential, and pair
potential. These classical parameters were given a more explicit representation in terms of the quantum parameters by
inverting the classical many-body problem using the HNC integral equations. Formal questions such as the existence
of this inversion have not been addressed, and only presumed to hold. A counter example is given by the classical
representation of jellium, where the equivalence of pressures is not possible under conditions of negative pressures.

The three correspondence conditions of section II are not unique, and other choices may be preferred in specific
applications. Furthermore, applications require the introduction of appropriate approximate forms for these corre-
spondence conditions that should be tailored to the particular system at hand. The special case of a uniform ideal
Fermi gas was illustrated using the HNC integral equation to determine the parameters of the effective classical sys-
tem. A peculiarity is the long range nature of the effective pair potential at very low temperatures, requiring the
introduction of a compensating uniform background. The resulting classical thermodynamics was shown to reproduce
the exact relationships of various thermodynamic functionals (e.g., pressure, internal energy, entropy).

The non-uniform ideal Fermi gas is more interesting and its representation as a functional of the local density is a
fundamental problem within density functional theory [21]. Approximations such as the Thomas-Fermi representation
have limited applicability. An effective classical representation along the lines described here would provide access to
better approximations, since the functional dependence on density for the classical system is simple.

A weak coupling approximation for the effective pair potential in systems with real forces was described in the last
section. With that pair potential known, the effective chemical potential and effective temperature can be calculated.
This is illustrated in the following companion paper for the uniform electron gas [16]. The pair correlation function is
calculated for a wide range of densities and temperatures, and good agreement is obtained with diffusion Monte Carlo
results at zero temperature and recently reported Restricted Path Integral Monte Carlo results at finite temperatures.

A second application in that paper is to shell structure for charges confined in a harmonic trap. Classically, shell
structure arises only from Coulomb correlations [19]. A preliminary investigation there shows new origins of shell
structure due to diffraction and exchange, even in the absence of Coulomb correlations (mean field approximation).
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Appendix A: Exact Coupled Equations for nc(r) and gc (r, r′).

The objective of this appendix is to outline the origin of the exact equations (28) - (30) for the classical density and
pair correlation function. First, make a change of thermodynamic variables from temperature and chemical potential
βc, µc(r) to temperature and density βc, nc(r) by the Legendre transformation

Fc(βc | nc) = Ωc (βc | µc) +

∫
drµc (r)nc (r) , (A1)

where now the free energy is a functional of the classical density rather than µc (r). Their relationship is given by the
first derivative

δFc
δnc(r)

= µc(r). (A2)

Here, and throughout this Appendix derivatives are taken at constant φc, so the densities involved are those defined

as in (18). The free energy is now divided into its ideal gas contribution F
(0)
c = −β−1

c

∫
dr
[
1− ln

(
nc (r)λ3

c

)]
nc (r),

where λc =
(
2π~2βc/m

)1/2
, and the remainder Fc,ex (excess free energy), so that (A2) becomes an equation for the

density

ln
(
nc (r;βc)λ

3
c

)
= βcµc(r) + c(1)

c (r;βc | nc) . (A3)

Here c
(1)
c (r | nc) is the first of a family of functions (direct correlation functions) defined by derivatives of the free

energy

c(m)
c (r1, .., rm;βc | nc) ≡ −β

δmFc,ex
δnc(r1)..δnc(rm)

(A4)

Equation (A3) relates the density nc(r) to a given external potential (recall µc(r) = µc − φc,ext,(r)). Consider now
a different external potential given by φc,ext,(r) + φc(r, r

′) and associated density nc(r, r
′). This external potential

corresponds to the original one φc,ext,(r) plus a new source of potential of the same form as would occur if another
particle were added at the point r′. It follows that this new density is proportional to the pair correlation function
for the original system [1]

nc (r, r′) = nc (r) gc (r, r′) . (A5)

The equation corresponding to (A3) for this new external potential is

ln
(
nc (r) gc (r, r′)λ3

c

)
= βcµc(r)− βcφc(r, r′) + c(1)

c (r;βc | ncgc) . (A6)

Finally, subtracting (A3) from (A6) gives the desired equation for gc (r, r′)

ln
(
gc (r, r′)λ3

c

)
= −βcφc(r, r′) + c(1)

c (r;βc | ncgc)− c(1)
c (r;βc | nc) . (A7)

The notation used implies that the functional c
(1)
c (r;βc | ·) in both (A3) and (A6) are the same. This follows from

density functional theory where it is demonstrated that the free energy is a universal functional of the density, the
same for all external potentials. Equations (28) and (29) now follow directly from (A3) and (A7) and the identity

c(1)
c (r;βc | X) = c(1)

c (r;βc | Y ) +

∫ 1

0

dα∂αc
(1)
c (r;βc | αX + (1− α)Y )

= c(1)
c (r;βc | Y ) +

∫ 1

0

dα

∫
dr′

δc
(1)
c (r;βc | αX + (1− α)Y )

δnc (r′)
(X (r′)− Y (r′))

= c(1)
c (r;βc | Y ) +

∫ 1

0

dα

∫
dr′c(2)

c (r, r′;βc | αX + (1− α)Y ) (X (r′)− Y (r′)) (A8)

with appropriate choices for X and Y .
The Ornstein - Zernicke equation (30) is an identity obtained as follows. The second functional derivative of the

grand potential is related to the pair correlation function by
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δ2 (−βcΩc)
δµc (r)µc (r′)

=
δnc (r′)

δµc (r)
= βcnc (r′) [δ (r− r′) + nc (r) (gc (r, r′)− 1)] , (A9)

Similarly, the second derivative of the free energy is

δ2Fc
δnc (r′) δnc (r)

=
δµc(r)

δnc (r′)
= β−1

c nc (r)
−1
[
δ (r− r′)− nc (r) c(2)

c (r, r′ | nc)
]
. (A10)

Then the chain rule ∫
dr′′

δnc (r)

δµc (r′′)

δµc(r
′′)

δnc (r′)
= δ (r− r′) (A11)

can be written∫
dr′′ [δ (r− r′′) + nc (r) (gc (r, r′′)− 1)]

[
δ (r′′−r′)− nc (r′′) c(2)

c (r′′, r′ | nc)
]

= δ (r− r′) . (A12)

This gives the Ornstein-Zernicke equation (30).

Appendix B: Inhomogeneous Ideal Fermi Gas

The thermodynamic and structural properties of an inhomogeneous ideal Fermi gas are straightforward to calculate
in a representation that diagonalizes the effective single particle Hamiltonian(

p̂2

2m
− µ(r̂)

)
ψk (r) = εkψk (r) , (B1)

where k labels the corresponding quantum numbers. For Fermions with spin s, the quantum numbers are labeled by
κ = (s,k). The Hamiltonian in second quantized form is then simply

H =
∑
κ

εka
†
κaκ, (B2)

where a†κ, aκ are the creation and annihilation operators for occupation of the states {ψk}. Then the pressure is found
directly from evaluation of the grand potential Ωc

p(β | µ)V = β−1
∑
κ

ln
(
1 + e−βεk

)
= β−1Tr(1) ln

(
1 + e

−β
(

p̂2

2m−µ(r̂)
))

= (2s+ 1)β−1

∫
dr 〈r| ln

(
1 + e

−β
(

p̂2

2m−µ(r̂)
))
|r〉 , (B3)

where a coordinate representation has been used in the last expression.
The local density and pair correlation function are obtained from the one an two particle density matricies. In the

diagonal representation these are

ρ(1) (κ1;κ2) =
〈
a†κ1

aκ2

〉
=
〈
a†κ1

aκ1

〉
δκ1,κ2

(B4)

ρ(2) (κ1, κ2;κ3, κ4) =
〈
a†κ1

a†κ2
aκ4aκ3

〉
= (δκ1,κ3δκ2,κ4 − δκ1,κ4δκ2,κ3)

〈
a†κ1

aκ1

〉 〈
a†κ2

aκ2

〉
(B5)

Where the mean occupation number is 〈
a†κaκ′

〉
= δκ,κ′

(
eβεk + 1

)−1
. (B6)

The coordinate representations are

ρ(1) (r,σ1; r′, σ2) =
∑
k1,k2

ψ∗κ1
(r)ψκ2

(r′)
〈
a†κ1

aκ2

〉
= δσ1,σ2

〈r| ln
(
e
β
(

p̂2

2m−µ(r̂)
)

+ 1

)−1

|r′〉

≡ δσ1,σ2
n (r, r′) (B7)
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ρ(2) (r1, σ1, r2, σ2; r′1, σ3, r
′
2, σ4) =

∑
k1..k6

ψ∗κ1
(r1)ψ∗κ2

(r2)ψκ3
(r′1)ψκ4

(r′2)
〈
a†κ1

a†κ2
aκ4

aκ3

〉
= δσ1,σ3

δσ2,σ4

∑
k1

ψ∗κ1
(r1)ψκ1

(r′1)
〈
a†κ1

aκ1

〉∑
k2

ψ∗κ2
(r2)ψκ2

(r′2)
〈
a†κ2

aκ2

〉
− δσ1,σ4δσ2,σ3

∑
k1

ψ∗κ1
(r1)ψκ1 (r′2)

〈
a†κ1

aκ1

〉∑
k2

ψ∗κ2
(r2)ψκ2 (r′1)

〈
a†κ2

aκ2

〉
(B8)

The diagonal elements are

ρ(1) (r,σ1; r, σ1) = n (r, r) (B9)

ρ(2) (r1, σ1, r2, σ2; r1, σ1, r2, σ2) = ρ(1) (r1,σ1; r1, σ1) ρ(1) (r2,σ2; r2, σ2)

− δσ1,σ2
ρ(1) (r1,σ1; r2, σ1) ρ(1) (r2,σ2; r1, σ2) (B10)

Finally, the density and pair correlation function are identified from the summation over spin states

n(r) =
∑
σ1

ρ(1) (r,σ1; r, σ1) = (2s+ 1)n (r, r) (B11)

n(r1)n(r2)g (r1, r2) =
∑
σ1,σ2

ρ(2) (r1, σ1, r2, σ2; r1, σ1, r2, σ2) = n(r1)n(r2)− (2s+ 1)n (r1, r2)n (r2, r1) (B12)

This gives the results (56) and (57).
The local density and pair correlation function are determined from the function n (r, r′) obtained from the single

particle density matrix (B7),

n(r, r′) = 〈r|
(
e
β
(

p̂2

2m−µ(r̂)
)

+ 1

)−1

|r′〉 . (B13)

In the local density approximation of the text, µ(r̂)→ µ(R), where R = (r + r′) /2, this becomes (60)

n(r, r′) =
1

h3

∫
dpe

i
~p·(r−r′)

(
eβ( p2

2m−µ(R)) + 1

)−1

. (B14)

Further simplification is possible to get

n(r, r′)λ3 =
2λ

π |r− r′|

∫ ∞
0

dxx
(
z−1(R)ex

2

+ 1
)−1

sin
(
2
√
πx |r− r′| /λ

)
, (B15)

with

z(R) = eβµ(R) (B16)

Accordingly the density and pressure simplify to

n(r)λ3 = (2s+ 1)n(r, r)λ3 = (2s+ 1) f3/2(z(r)), (B17)

βpλ3 =
1

V

∫
dr (2s+ 1) f5/2(z(r)), (B18)

with the definitions

f3/2(z) =
4√
π

∫ ∞
0

dxx2
(
z−1ex

2

+ 1
)−1

, f5/2(z) =
8

3
√
π

∫ ∞
0

dxx4
(
z−1ex

2

+ 1
)−1

. (B19)
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