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In the presence of wave dissipation, phase-space structures emerge in nonlinear Vlasov dynamics.
A new theory gives a simple relation between the growth of these coherent structures and that of the
wave energy. The structures can drive the wave by direct momentum exchange, which explains the
existence of nonlinear instabilities in both barely unstable and linearly stable (subcritical) regimes.
When dissipation is modeled by a linear term in the field equation, simple expressions of a single hole
growth rate and of the initial perturbation threshold are in agreement with numerical simulations.
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Instability dynamics [1, 2] is of great interest in the
context of pattern formation [3], the onset of turbulence
[4], and many other subjects. While instabilities are cen-
tral to virtually every field of physics, in collisionless or
weakly collisional plasmas the disparate roles of resonant
and non-resonant particles offers an interesting variation
on time-honored methods and approaches. In this re-
spect, it has long been realized that wave and instabil-
ity dynamics and evolution in a collisionless plasma can
be described in terms of coupled, inter-penetrating en-
sembles of resonant and non-resonant particles or equiv-
alently, resonant particles and a gas of plasmon quasi-
particles. While the linear theory of the Vlasov plasma
is well established, its nonlinear theory is a rich and
still-evolving subject. Rather little, however, is under-
stood about nonlinear, or subcritical, Vlasov stability, in
which the growth process circumvents linear theory [5].
One idea concerning subcritical processes derives from
the properties of phase-space granulations or structures,
which can exchange momentum via channels which dif-
fer from that of familiar wave-particle resonance, and
so can tap free energy when wave excitation cannot [6].
Such granulations are self-bound aggregations of reso-
nant particles, which constitute a novel collective exci-
ton. In this paper, we present a new theory of subcriti-
cal Vlasov plasma instability formulated in terms of the
evolution of waves and phase-space density correlations.
Not surprisingly, the theory for 1D Vlasov plasma has
considerable overlap with those describing the evolution
of flows in a quasi-geostrophic fluid. Both are 2D sys-
tems which supports waves, and are constrained by two
invariants: energy and enstrophy in the fluid case, wave
energy and phasestrophy in the Vlasov case. The mecha-
nisms involved are relevant to many laboratory and space
plasmas, in particular in the context of energetic parti-
cle interaction with Alfvén waves, collisionless trapped
electron modes and trapped ion ITG instabilities.

To illustrate our theory, we choose two simple mod-
els that treat one-dimensional plasma. The first model

is the bump-on-tail instability, which is a fundamental
paradigm for the basic process of Langmuir waves driven
by a supra-thermal population. The Berk-Breizman
(BB) extension of the bump-on-tail model includes an ex-
ternal wave damping γd to account for linear dissipative
mechanisms of the wave energy to the background plasma
[7]. The second model is the current-driven ion-acoustic
(CDIA) instability, which is a fundamental paradigm for
sound waves driven by a velocity drift between thermal
ions and thermal electrons. In both models, finite wave
damping (externally applied in the BB model; due to ion
Landau damping in the CDIA model) allows for the spon-
taneous creation of self trapped structures (called holes
and clumps) in the two-dimensional (2D) phase-space,
whose median velocity evolves in time, resulting in spec-
tral components with a frequency shift δω(t) (chirping).
The growth of phase-space structures results from mo-
mentum exchange between the structure and the wave,
or between species, which is due to the dissipation acting
on structures. The evolution of holes and clumps is a self-
organization process, which provides the energy required
to balance dissipation.

Subcritical instabilities have been observed in BB
simulations [7, 8] and CDIA simulations [9]. Based on
the theory, we explain the mechanism of subcritical
instabilities as follows. Landau damping generates
a seed phase-space structure, whose growth rate can
be positive if the growth due to momentum exchange
overcomes decay due to collisions. In addition, our
theory predicts the persistence of nonlinear instability in
the marginally linear unstable regime. The theoretical
arguments are in good agreement with results from high
resolution numerical simulations.

For the first model, we adopt a perturbative approach,
and cast the BB model in a reduced form, which describes
the time evolution of the beam particles only [7, 10]. In
this sense, we note that the BB model with extrinsic
dissipation is also applicable to the traveling wave tube
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”quasilinear experiment” with a lossy helix [11]. In this
model, a single electrostatic wave with a wave number k
is assumed and the real frequency of the wave is set to
ω = ωp, the Langmuir plasma frequency. The evolution
of the beam distribution, f(x, v, t), is given by a kinetic
equation,
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where δf ≡ f − f0, f0(v) is the initial velocity dis-
tribution. The evolution of the pseudo-electric field
E ≡ Z exp iζ + c.c. is given by
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∫
f(x, v, t) e−iζ dxdv − γd Z, (2)

where ζ ≡ kx− ωt, and n0 is the total density.
For the second model, we include two species s = i, e,

assume collisions are negligible, and do not filter a par-
ticular wave number. The CDIA model is composed of
two kinetic equations, ∂tfs + v∂xfs + (qs/ms)E∂vfs = 0.
and a current equation,
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We use the COBBLES code [8] to solve the initial-value
problems described above. In BB simulations, the veloc-
ity distribution f0 is designed with a constant slope such
that γL0/ω = 0.1 [12], where γL0 = (πω3)/(2k2n0)∂vf0

is a measure of the slope such that γ ∼ γL0 − γd. In
CDIA simulations, the initial velocity distributions f0,s

are two Gaussians with thermal velocity vth,s centered at
v = vs. We choose mi = 4me, vth,e = 2vth,i (Te = Ti),
and a drift (ve − vi)/vth,i = 3, which is below the linear
CDIA stability threshold (3.92).

The equations below can be applied to the BB case by
removing the subscript s; or to the CDIA case by taking
γd = νa = νf = νd = 0. The evolution of phase-space
structures follows that of the phasestrophy [13, 14],
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where angle brackets denote the spatial average.
Simple algebra yields an exact relation for the evolu-

tion of phasestrophy,
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where γcol
Ψ is the decay rate of phasestrophy due to colli-
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FIG. 1. Growth of phasestrophy and wave energy in the BB
case. Inset: zoom on a smaller timescale. Simulation param-
eters are γL0/ω = 0.1, γd/γL0 = 0.7, νa/γL0 = 10−3 and
νf = νd = 0.

FIG. 2. Growth of phasestrophy and wave energy in the CDIA
case.

Note that collisional drag νf does not appear in the latter
expression.

The wave energy equation is

dW

dt
+ 2γdW = −2

∑
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usqs

∫
〈E δfs〉dv, (7)

where W = n0q
2
〈
E2
〉
/(mω2

p) is the total wave energy,
including sloshing energy. In the BB case, us = ωp/(2k).
In the CDIA case, we assumed that the dominant phase-
space structures are localized in a neighborhood of v =
us. We assume that f0,s has a constant slope in the
velocity-range spanned by evolving phase-space struc-
tures. Then, phasestrophy evolution is linked to the wave
energy evolution, by
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+ 2γdW =

∑
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Ψ +
d
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)
Ψs. (8)

In parallel with quasi-geostrophic fluids, this relation
is the kinetic counterpart of the Charney-Drazin non-
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acceleration theorem [15]. Fig. 1 shows good quanti-
tative agreement between the lhs and the rhs in a BB
simulation. Fig. 2 shows qualitative agreement between
the lhs and the rhs in a CDIA simulation, where we
have replaced us by the velocity of maximum overlap
between f0,i and f0,e, us = 1.42vth,i. For ωpet < 1000,
structures are not localized around v = us, which ac-
counts for the discrepancy.Since phasestrophy is directly
related to the perturbed momentum in the collisionless
limit, Ψs = −2dvf0,s

∫
v 〈δfs〉dv, phasestrophy growth

implies an exchange of momentum, between structures
and waves, or between species.

In the BB case, we can apply the above general theory
to obtain an expression for the nonlinear growth rate of
an isolated phase-space structure. We assume that δf
is of the form δf = 〈δf〉 [1 + cos(kx+ θ)], with a Gaus-
sian profile, 〈δf〉 = h(t) exp

[
−(v − v0(t))2/(2∆v(t)2)

]
.

This shape corresponds to a Bernstein-Green-Kruskal
mode, which was shown to be a state of maximum en-
tropy subject to constant mass, momentum, and energy
[6]. To relate W to Ψ, we use the Poisson equation, even
though (in the BB model) it is only approximately satis-
fied,
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Thus the evolution of phasestrophy follows a simple ex-
pression, dΨ/dt =

(
γΨ − γcol

Ψ

)
Ψ, where γΨ is the colli-

sionless phase-space structure growth-rate,
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To be concise, in this expression for γΨ we assumed
∆v dvf0 � kn0/ω and ∆̇v � γd∆v, which are satisfied
in our simulations. Eq. (10) is in qualitative agreement
with the collisionless structure growth-rate estimated in
Ref. [16]. However, the method used in the reference as-
sumes that ∂E0/∂t � γdE0, which is only valid in the
initial, linear phase, near marginal stability. Fig. 3 shows
the growth of phasestrophy, averaged over a time window
of duration γL0∆t = 100, where ∆v in the expression of
γΨ is estimated by fitting a Gaussian to 〈δf〉 in the vicin-
ity of the hole at each time-step. We observe quantitative
agreement between our simulations and theory for the
supercritical case (γd/γL0 = 0.5), and qualitative agree-
ment in the subcritical case (γd/γL0 = 1.05). There is a
40% discrepancy in the subcritical case, which is due in
part to the co-existence of a secondary hole with 20% as
much phasestrophy as that of the main hole. This sug-
gests that consideration of the primary-secondary hole
interaction is necessary to improve the accuracy of the
theory.

Eq. (10) shows that the growth of structures is
independent of linear stability, since it is not related to
the sign of the total linear growth rate γ ≈ γL0 − γd.

FIG. 3. Growth rate of the phasestrophy of one isolated hole.
Simulation parameters are γL0/ω = 0.1, νa = 0, νf/γL0 =
0.3, νd/γL0 = 0.17, and two different values of γd, which are
given in the legend. Points: phasestrophy growth measured
in simulations, including contribution from collisions. Dashed
curves: theory, Eq. (10).

Nonlinear growth requires a positive γd to enable
momentum exchange, a positive slope for f0 to provide
free energy, and a seed structure with a width ∆v large
enough for γΨ to overcome collisions. When the linear
growth rate γ is negative, the seed structure is the hole
(clump) corresponding to the v > vR (v < vR) part of
the plateau, which is formed by particles trapped in the
finite initial electric field. Subcritical instabilities have
also been explained in terms of a nonlinear reduction of
ion Landau damping by particle trapping [17], which is
a different mechanism.

If Krook-like collisions are negligible, then γcol
Ψ ∼

ν3
d/(k∆v)2 and k∆vmin ∼ 0.7νdγ
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width of the electrostatic potential well is 4ωb/k, which
is twice the width of a seed hole. Here, the electric
field amplitude is measured by the bounce-frequency,
ω2
b = 2k|qZ|/m. Thus, the initial amplitude threshold
ωb,min is of the order of(
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∼ 0.12
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. (11)

Fig. 4(a) shows time-series of electric field amplitude ωb
for different initial amplitudes, for the case γd/γL0 =
1.05, which is a subcritical instability with γ/γL0 =
−0.045. The threshold between damped solutions and
nonlinear instabilities is in agreement with Eq. (11). We
further investigate the validity of this scaling by perform-
ing a scan of γL0/ωp = 0.02− 0.50, γd/γL0 = 1.01− 1.20
and νd/γL0 = 2× 10−3 − 10−1. For each case, a series of
simulations with different initial amplitudes is performed,
and we measure, after one island turnover, the amplitude
of the highest stable solution and the amplitude of the
lowest stable solution. Fig. 5 shows the range of the in-
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FIG. 4. Dashed curves: time-series of electric field ampli-
tude for different initial amplitudes. (a) Subcritical case,
γd/γL0 = 1.05. (b) Supercritical case, γd/γL0 = 0.98. The
other simulation parameters are given in Fig. 3. Solid line:
theoretical nonlinear instability threshold, Eq. (11).

FIG. 5. Vertical bars: range of electric field amplitude be-
tween the highest stable and the lowest unstable simulation.
Dotted line: theory described in (a) this paper; (b) Ref. [7].

stability threshold, and compares it against (a) our the-
ory, and (b) the scaling obtained in Ref. [7] in the limit
ωb � γL,

ω2
b,min ∼ ν2

d max

[(
νd
γL0

)1/2

,

(
|γL0 − γd|

γL0

)1/2
]
. (12)

Note that the two theories are not incompatible. The
observed error in Fig. 5(a) is expected since Eq. (11)
corresponds to a single-hole limit. The picture of Lan-
dau damping seeding the structure is valid only if the
plateau shrinks slowly enough, |ω̇b| � ω2

b . This condi-
tion must be satisfied during at least one orbit, which
gives an additional condition on the initial amplitude,
namely ωb � (π + 1/2)|γ|.

In addition, our theory predicts the existence of a non-
linear instability for positive but small γ. For a plateau
of width 2∆v, Ψ ∼ ∆v3 and the growth due to the linear
instability is ∆̇v/∆v = γ/2. Then the nonlinear instabil-
ity due to phasestrophy growth is stronger than the linear
growth if γΨ− γcol

Ψ > (3/2)γ. We discovered numerically
the existence of such supercritical nonlinear instabilities
for 0 < γ/γL0 < 0.04. Fig. 4(b) shows time-series of elec-
tric field amplitude ωb for different initial amplitudes, for

γd/γL0 = 0.98, which is slightly above marginal stabil-
ity with γ/γL0 = 0.018. The threshold where the linear
growth becomes nonlinear is in agreement with Eq. (11).

To summarize, we obtain a general relation between
wave energy and phasestrophy. This relation can be
applied in the BB case to obtain a simple expression
for the growth rate of a single phase-space structure,
γΨ ∼ γdγL0∆v in the collisionless limit. This expres-
sion shows that dissipation drives a nonlinear instability
of holes and clumps via momentum exchange, regardless
of linear stability. This leads to faster-than-linear growth
in barely unstable regimes, as well as to subcritical insta-
bilities, subject to the presence of a finite seed structure.
Simulations in both subcritical and supercritical regimes
show a good agreement with analytic theory. The ex-
tension of the present work to multiple resonances [19]
would be the logical next step.
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