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We present analytic expressions for the amplitude of perturbations 

at the interface of two viscous fluids or two metals subjected to a shock. 

We derive a scaling law by collapsing this 8-parameter problem into 2 (3) 

non-dimensional variables in the linear (nonlinear) regime. We propose a 

correspondence principle between viscosity and strength, and a new 

method for measuring viscosity at high pressure and temperature as an 

alternative to the “Sakharov method”. 

PACS numbers 47.20.Bp, 47.20.-k 

 

When a low-density ( lρ ) fluid accelerates a high-density ( hρ ) fluid perturbations 

)cos()( kxtη  at the interface grow exponentially with time, tet γη ~)( . The growth is 

much slower in fluids with viscosities lμ  or hμ : inviscidviscous γγ << , particularly for short 

wavelengths k/2πλ ≡ . Theoretical studies of the viscous Rayleigh-Taylor (RT) 

instability [1,2] have found applications in geophysical experiments [3,4] and break-up of 

viscous bubbles [5,6]. Similarly, plasticity of metals characterized by a yield strength Y  

is an obvious stabilizing property: Metals don’t flow unless subjected to a large pressure 

>> Y  and even then the subsequent growth is much slower than in ordinary fluids. Given 

Y  and/or shear modulus G  of a metal there is a critical amplitude c
0η  and wavelength cλ  
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below which perturbations will not grow [7, 8, 9]. Both cut-offs are inversely 

proportional to the acceleration g . Away from these cut-offs there is a fastest growing 

mode, similar to the viscous case, studied in detail by Terrones who extended earlier 

single-material studies to two materials but did not include plastic flow [10]. Barnes et al. 

performed RT experiments on Aluminum driven by high explosives at ~100 kb [11], and 

recent experiments use lasers to extend the same technique (suppression of RT growth as 

a measure of strength) to ~5 Mb [12]. 

One expects a similar suppression of the Richtmyer-Meshkov (RM) instability in 

viscous fluids or metals when the system is subjected to a shock, instead of a constant 

acceleration, inducing a jump velocity vΔ  (positive, in our convention, if passing from 

light to heavy, negative otherwise). Much less work has been done in this area. Three 

different expressions have been given for viscous RM [13, 14, 15]. We compare them 

and present a fourth one. Many of the break-up experiments start with a shock [6]. It is 

common to use the “Sakharov method”, viscous damping of a perturbed shock front, to 

measure viscosity at high pressure and temperature [16]. We propose an alternative 

method: Viscous damping of a perturbed interface. Its earlier proposed counterpart in 

metals [17] has been successfully carried out in recent experiments [18, 19]. Drucker 

mentions a comparison between viscosity and strength [8]. Several strength experiments 

are analyzed in terms of viscosity [12, 20]. We provide an approximate relationship 

between μ  and Y . Combining it with viscous results leads to asymptotic expressions in 

the linear ( 1<<kη ) as well as the nonlinear ( 1>>kη ) regimes, in agreement with models 

and simulations of plastic RM growth [18, 21]. 
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We address questions of scaling: What are the parameters that affect the growth 

factor )0(/)( ηη t ? This is an 8-parameter problem: )0(0 ηη ≡ , k , hρ , lρ , hμ , lμ  (or hY , 

lY ), vΔ , t . We present an explicit expression for )(tη  finding that the problem collapses 

into two or three variables only: an appropriately defined Reynolds number and a non-

dimensional time. The third variable, needed only in the nonlinear regime, is k0η . We 

answer questions such as: Does the growth depend on the product, sum, or some other 

combination of hμ  and lμ ? Ditto for Y . 

Viscosity. Based on approximate eigenvalues, the first linear treatment of the viscous 

RM instability gave [13] 

 22
00 2/)1()(

2

ket tk νηηη ν−−+= �             (1) 

where kAv00 Δ=ηη�  is the inviscid growth rate with )/()( lhlhA ρρρρ +−≡ ,

)/()( lhlh ρρμμν ++≡ . Eq. (1) asymptotes to 

 )2/v1(2/ 0
2

00 kAk νηνηηη Δ+=+=∞ � .            (2) 

Subsequently, an alternative expression was presented [15]: 

 )1()( 2/1
00 Cttt −+= ηηη �             (3) 

with )])((3/[16 lhllhhlhlhkC ρρρμρμπρρμμ ++≡ . This must not be used when 

0=hρ  or 0=lρ , or when 0=hμ  or 0=lμ  because C  depends on their product. In 

contrast, ν  in Eq. (1) depends on the sum and therefore viscous effects persist as long as 

0≠+ lh μμ . 
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Eq. (3) has another limitation: It can apply for “early” times only. It may be used, if at 

all, only for 29/4 Ct <  because it gives 0/ =dtdη  at 29/4 Ct =  and becomes negative(!) 

for 29/4 Ct > , clearly unphysical. 

Despite these shortcomings we found a few cases where Eq. (3) did better than Eq. 

(1) at early times. Our procedure was to compare Eq. (1), Eq. (3), and full Navier-Stokes 

solutions with the hydrocode CALE [22]. At present CALE can treat only constant 

viscosities but this was enough for our purpose. These simulations confirmed the above 

statements: Viscous effects persist even when only one of the fluids has viscosity, the 

controlling parameter is ν , and η�  does not reverse sign at any time. But there were also 

cases, mostly with lh μμ ~ , where Eq. (3) did better than Eq. (1) at early times. 

Our first attempt to improve upon Eq. (1) was to use exact eigenvalues. In general, 

when one of them vanishes (say 0=+γ ) the result is 

 −
−−−= γηηη γ /)1()( 00
tet � .            (4) 

In the approximation of [13] 22 kνγ −=− , hence Eq. (1). Using exact eigenvalues we find 

that 0=+γ  still, but −γ  is different. To our surprise, however, using exact eigenvalues 

gave substantially worse results. For example, for the simplest, one-fluid case we find 

223/13/1 9126.03/])17297()17297(4[2 kk ννγ −≈+−−+−=− . In fact the equation

29126.0
00 9126.0/)1()(

2

ket tk νηηη ν−−+= �  can be found in the summary by Bakhrakh et al. 

[14]. Its asymptotic growth is more than twice larger and completely ruled out by our 

numerical simulations. 

The only remaining option is to treat the problem as an initial-value problem, similar 

to the viscous RT instability [23]. This approach is substantially more complex and to 
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date there are no exact results for arbitrary lh,μ . We have succeeded, however, in 

deriving an exact and general expression for the asymptote ∞η  and the result is Eq. (2). 

As for )(tη , the general Laplacian which must be inverted is too complicated to carry out 

analytically. We found, however, the following expression extremely accurate in 

describing our CALE results: 
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where )(zerfc  is the complimentary error function )(1 zerr− , tk 2ντ ≡ , 4/12 =Z , 

9/)1147(4,3 iZ ±−= , 64/155)( 2 −=′ ZD , and 729/)11281111(8)( 4,3 iZD ∓=′ . 

Together with 11 =Z , 4)1( =′D , they satisfy the four sum rules 
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Eq. (5) has several surprising properties: the Atwood number A  does not appear in it 

except for kAv00 Δ=ηη� . It is an exact expression only if lh νν =  ( lhlhlh ,,, / ρμν ≡ ), but it 

is also an extremely good approximation for arbitrary lh,ν . Its asymptote, ∞η , agrees with 

Eq. (2), the only exact formula for arbitrary lh,ν . What is surprising is that there are 

actually infinitely many solutions, each associated with a different A  and all giving 

approximately the same result, within a few percent, which is the reason why A  does not 

appear in Eq. (5). In the exact solution for lh νν =  the 6 constants iZ  and )(' iZD , 

4,3,2=i  are determined from 0)21()2( 22223 =−++−+ AZAZAZ  and 

22223 31)13(2)1(34)( AZAZAZZD −−−+−+=′ . The solution we chose corresponds to 

6/5=A  because it gives particularly simple expressions. 
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We illustrate with an example: 4=hρ g/cm3, 1=lρ  g/cm3, 1.0v =Δ cm/ms, 5.2=λ

cm, 300 =η μm, 32.0=hμ Pa-s, and hl μμ 2= . Fig. 1 shows )(tη  as calculated by Eqs. 

(1), (3), (5), and CALE. Eq. (1) overestimates )(tη  at early times but its asymptote, Eq. 

(2), is reproduced by Eq. (5) and by CALE. Eq. (3) shows better agreement with CALE 

but only at early times – its behavior after 89 ms ( 29/4 C ) is unphysical. Only Eq. (5) 

agrees with CALE both at early and late times. The reader should be surprised at this 

because Eq. (5) is exact only for hl νν =  and 6/5=A  while in this example hl νν 8=  and 

5/3=A . We repeat that other iZ  solutions give essentially the same )(tη  when 

substituted in Eq. (5). 

Eq. (5) displays simple scaling: Out of the eight independent variables only two 

combinations are relevant: kvA/νΔ  and t2kν . It is customary to define a Reynolds 

number as a ratio of inertial to viscous forces. We propose kA/vRe νΔ=  so that 

)Re,(/)( 0 τηη ±= ft . Eq. (2) reads )2Re/1(0 ±=∞ ηη . Note that 03ηη =∞  or 0η−  when 

4Re = , a case discussed below. 

Strength. We now consider shocks in ideal elastic-plastic solids characterized by a 

constant shear modulus G  and yield strength Y . Early work, primarily experimental, is 

summarized in [14]. Here we follow-up on the suggestion that strength may be treated as 

viscosity because they found that using a Y−μ  relationship in our analytic viscous 

formulae gave reasonable results for RT strength experiments [20]. There are strength 

effects which cannot be duplicated by viscosity such as the Drucker and Miles cut-offs 

c
0η  and cλ  [24]. Since both are proportional to g/1  they vanish in the RM case where 

∫ Δ=∞→ v, gdtg , yielding kAv00 Δ=ηη�  as in the fluid case. 
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We find that no Y−μ  relationship can provide exact agreement between Yη  and μη  

– only a qualitative agreement can be obtained, within 30-40%, made possible by two 

opposing trends: Yη  grows faster but saturates earlier, while μη  grows slower but 

saturates later. The following relationship 

 3/2 0 μη kY �≈          (6) 

provides that qualitative agreement. Eq. (6) means that η  between two fluids of 

viscosities lh,μ  will evolve similar to the case of two metals whose yield strengths lhY ,  

satisfy Eq. (6). Actually, only the sum lh YY +  is important. We have verified this by 

direct numerical simulations. 

A comparison between μη  (in black) and Yη  (in red) is given in Fig. 2. The lower 

curves refer to the same problem as in Fig. 1, so the same CALE curve is reproduced in 

black. In red is the problem with strength where lhY ,  are related to lh,μ  by Eq. (6):

PaY h 24.0= , PaYY hl 48.02 == . The shear moduli are taken to be 103 times larger – 

they control mostly the oscillations after Yη  reaches its maximum [14, 21]. The two 

upper curves in Fig. 2 refer to the same problem but with the shock generated in the 

heavy fluid inducing the same vΔ , now taking 0=lμ . There is growth after the phase 

reversal ( vΔ  and hence 0η�  are negative), and a reshock occurs at 270 ms, just as μη  and 

Yη  cross. The inset shows the two interfaces at this time; they have the same amplitude 

but the shape of the Y –problem is triangular. This difference in shape persists after 

reshock but the amplitudes continue to track each other. 
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Needless to say, Eq. (6) does not mean that strength depends on 0η , vΔ , k , etc.! It is 

only a correspondence principle to convert μ –derived results toY . Substituting it in Eq. 

(2) one obtains 

)(3/)(000
lhlh YYk +++=∞ ρρηηηη ��           (7) 

to be compared with kY/29.0 2
00 ηρη �+  for a single fluid [21]. Let us apply Eq. (7) to the 

case 0ηη −=∞ , i.e. the perturbation stops growing after a complete phase change. For 

strength, the requirement in a single fluid is 

 6/)v( 2
00

ρηηη kY Δ=−=∞
.            (8) 

As shown in Fig. 12 of [17], this happens for the SG model in Aluminum. Using 7.2=ρ

g/cm3, 02.00 =η cm, 1=λ cm, 23.015/5.3v ==Δ cm/μs (all taken from [17]), the rhs of 

Eq. (8) gives 3 kb, agreeing with the 0Y  ( 9.2 kb) of SG. This after-the-fact comparison 

builds confidence that Eq. (6) is a reasonable relationship. Eq. (6) appears to work for the 

RT case also when we replace the inverse time scale k0η�  by gkA , as long as the 

amplitude and wavelengths are above the cut-offs. A similar relation was proposed by 

Colvin et al. with the strain-rate serving as the inverse time scale calculated from 

experimental conditions or numerical simulations [20]. 

Compressibility. The theory and simulations discussed so far have been limited to 

incompressible fluids – we used ideal equations-of-state with high adiabatic indices so 

the densities change very little. By running highly compressible problems and comparing 

with Eq. (5) we found that using the post-shock viscosity afterν  is a reasonable way of 

accounting for compressibility, the same way that Richtmyer and Meyer and Blewett 
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prescribed using the post-shock Atwood number afterA [25]. Note that since ρμν /~  and 

beforeafter ρρ > , compressibility decreases ν  and therefore increases the growth when 

.const=μ  The same effect will arise when shocks heat the fluids and, in general, reduce 

their viscosities. 

As an example, we ran a compressible CALE problem setting adiabatic indices equal 

to 5/3. The postshock densities increased 1.6 times and the growth factor GF was 23.3. 

Using preshockν , Eq. (5) predicted too small a GF: 18.8. Using postshockν , which of course is 

1.6 times smaller than preshockν , gave GF=23.5 in good agreement with CALE. 

The only method proposed so far to measure viscosities at high pressures and 

temperatures is the “Sakharov method” reviewed extensively in [16]: Measure the decay 

of a corrugated shock in a viscous fluid. We believe the viscous RM instability is a more 

effective way because νη /1∝∞ from Eq. (2). The growth depends on the sum of the 

viscosities on either side of the interface, but choosing one of the fluids to be inviscid 

isolates the viscosity of the other. We have verified, by numerical simulations, that the 

method proposed for strength [17] works equally well with viscosity. 

Nonlinearity. Layzer’s nonlinear model for a single inviscid fluid [26] and its 

extension to two fluids [27] are natural candidates for a nonlinear viscous model –  keep 

the viscous term in the Bernoulli equation. This was done by Sohn [28]. However, we 

find that this model is even more limited than the inviscid model, the limitations and 

failures of which were reported in [29].  
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(We should point out that in the linear limit this viscous model reduces to our model 

and that Sohn’s linear RM solution (Eq. (11) in [28]) is in error - the correct )(tη was 

given in [13], reproduced here as Eq. (1)). 

We find that the model gives reasonable results only for the bubble and only for 1=A

. If 1≠A  the model predicts “negative viscosity” for large initial amplitudes. Thus we 

concentrate on the original single-fluid Layzer model augmented by viscosity: 

,024/)2)(2/2( 2
2222

2 =++++ ηηηνηη gkckck ����         (9) 

where ( )[ ]{ } )1(4/111)( ))(1(
02

0 cekcckt ck +−++−= −+− ηηηη  and )2(1=c  for 3D(2D), as in 

the inviscid case [29]. 

Eq. (9) can be solved analytically by the *)*,( tη  technique: Use the linear solution 

until kc)1/(1* +≡=ηη  followed by the nonlinear solution (given below) which can be 

easily obtained since 2η  becomes constant for *0 ηη =  [29]. Setting 0=g  (this is not 

necessary – we will consider the RT problem elsewhere) we find 

( ) )]1(4/)1(1ln[)]/(2[)(
22

00
tkekcckkt ννηηη −−++++= �          (10) 

confirming again that “the nonlinear solution is essentially the logarithm of the linear 

solution” – compare with Eq. (1). 

From Eq. (10) the nonlinear asymptote is 

]4/)1(1ln[)]/(2[ 00 kcckk νηηη �++++=∞           (11) 

to be compared with Eq. (2). Combining this with Eq. (6) we obtain 

]6/)1(1ln[)]/(2[ 2
00 Ycckk ρηηη �++++=∞ .          (12) 

Setting 2=c  this equation agrees quite well with the asymptotic 2D bubble amplitudes 

computed by Dimonte et al. (Fig. 2 in Ref. [18]). 
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How about the spike? Zhang [30] proposed using the Layzer model with 0<η  for 

spikes, and indeed this works for the inviscid spike when 1=A  [29]. However, we find 

that the viscous model is a poorer representation of the spike when we solve Eq. (9) 

numerically with 00 <η . 

Fig. 3 illustrates the above observations. The problem is the same as the He/Xe 

problem used previously for its large Atwood number, 94.0≈A , adding viscosity (black 

curves) or strength (red curves) to the heavy “Xe”, using Eq. (6) for the Y−μ  

correspondence. These 4 curves, calculated by 2D CALE, are compared with the 

numerical solution of Eq. (9) for the spike and with the analytic solution, Eq. (10), for the 

bubble. The initial amplitude is 0.7 cm and 13=λ cm, so k3/1*0 =≈ηη , and 25.8v =Δ

cm/ms. For viscosity we chose 2.0=μ Pa-s giving 45Re = . From Eq. (6) the 

corresponding Y  is 160≈ Pa. The inset shows the interfaces as calculated by CALE at 

6=t ms when they have moved 50 cm. The Y−μ  correspondence does better for the 

bubble than for the spike in the nonlinear regime (there is no bubble/spike difference in 

the linear regime). Eq. (10) is a good model for the bubble, but the spike is overestimated. 

This may be due to 1) 1=A  vs. 0.94, 2) We have used afterν , and 3) Nonlinear effects 

suppress 0η�  [19]. 

Conclusions. The viscous RM instability in the linear and incompressible regime is 

well described by Eq. (5) and, to a lesser degree, by the much simpler Eq. (1). Eq. (2) is 

exact. The Y−μ surrogacy is approximate and based on similarity of )(tμη  and )(tYη  

when μ  and Y  satisfy Eq. (6). 
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Generally, we find μ  to have a weaker effect in nonlinear problems, which can be 

understood by comparing Eqs. (2) and (11): νη /1~∞  in the linear regime, but )/1ln(~ ν  

in the nonlinear regime. Similarly for Y . RM experiments with viscosity, as an 

alternative to the “Sakharov method”, will be more discriminating with small 0η . We 

hope our findings will spur further experimentation. 

 

This work was performed under the auspices of the U. S. Department of Energy by 

Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. 
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Figure Captions 

Fig. 1. Comparison of Eqs. (1), (3), and (5) with a CALE simulation of the problem 

discussed in the text. 

Fig. 2. Four growth factors calculated by CALE: black for μ  and red for Y . The lower 

curves refer to the same problem as in Fig. 1 and have 13Re ≈ . The upper curves 

refer to a problem with vΔ  replaced by vΔ−  (shock generated in the heavy fluid) 

and 0=lμ , hence 38Re ≈ . Reshock occurs at 270 ms. The inset shows the 

interfaces for the μ  and Y  problems at 270 ms, the vertical scale greatly enhanced 

for clarity. In both problems lhY ,  and lh,μ  are related by Eq. (6).  

Fig. 3. CALE calculation of bubbles (lower curves) and spikes (upper curves) for the 

1≈A  problem discussed in the text, black referring to μ  and red to Y , related by Eq. 

(6). Blue dashed lines are from Eq. (9) solved numerically with 7.00 −=η cm for the 

spike, and from Eq. (10) for the bubble. The inset shows the interfaces for the μ  and 

Y  problems at 6 ms. 45Re = . 
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