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The nonlinear interaction of ultra-intense short laser beam and inhomogeneous electron-positron-
ion (e-p-i) plasma is investigated. It is found that the presence of positrons and inhomogeneity results
in strong modulational and filamentational instabilities, which induce strong nonlinear interaction
between the laser beam and the inhomogeneous e-p-i plasma. Light beam focusing, filamentation,
trapping and nonlinear interaction between the trapped light spots and inhomogeneous plasma
are observed. Interestingly, we find that the inhomogeneity of the plasma can not only boost a
mechanism for light beam self-focusing and filamentation, but also provide an effective way to
localize and trap the beam in the region where one wanted.
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The nonlinear interaction between ultra-intense short
laser beam and plasma is of great interest in various fun-
damental research and technological applications [1–3].
These include relativistic optical guiding, harmonic exci-
tation, wake-field generation, laser pulse frequency shift-
ing, pulse compression, and particle acceleration. Espe-
cially, the nonlinear dynamics of intense laser pulses in
electron-positron-ion (e-p-i) plasma have been received a
great deal of attention [4–10]. Light beam compression,
focusing, and trapping in self-created density holes, light
beam filamentation, stable localized solutions and self-
modulational instability in e-p-i plasmas are discussed.
In fact, propagation of intense short laser beam in plasma
can also lead to pair production resulting in a three-
component e-p-i plasma [4, 11, 12]. Abundant produc-
tion of e-p pairs in the collision of a multi-petawatt laser
beam and a solid target is predicated and it shows that
the positron density can up to 1026m−3 [13, 14]. Re-
cently, e-p plasma is produced in laboratory by irradiat-
ing a solid gold target with an intense picosecond laser
pulse[15–17]. The results show that the positron den-
sity can up to 1016 cm−3. It also predicts that, with the
increasing performance of high-energy ultra-short laser
pulses, a high-density, up to 1018 cm−3, relativistic pair-
plasma is achievable. Thus, from these theoretical and
experimental investigations we can expect that, the inves-
tigation of nonlinear interaction of pair plasma and high
intensity electromagnetic fields is significant for future
high-intensity laser experiments. However, the previous
investigations about the propagation of laser beam in e-
p-i plasma were mainly limited to homogeneous cases. In
fact, up to now, few investigations have been devoted to
the effect of plasma inhomogeneity on pulse propagation
[18–25]. It was shown that axial [18–21] or radial [23–
25] inhomogeneity can further boost the self-focusing and
compression mechanism and localize the pulse intensity,
in comparison with a homogeneous plasma.
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In this paper, taking into account the effects of equi-
librium density inhomogeneity and positron concentra-
tion, we study the nonlinear propagation of the intense
laser pulses in an inhomogeneous e-p-i plasma. Start-
ing from the Maxwell equations and Poisson’ equation,
we show that the system of the governing equations can
be reduced to a modified nonlinear Schrödinger equa-
tion (NLSE) with density inhomogeneity effect. Linear,
Gaussian, and cosine density inhomogeneities along ax-
ial direction are discussed. It is shown that the presence
of positrons and inhomogeneity results in strong mod-
ulational and filamentational instabilities, which induce
strong nonlinear interaction between the laser beam and
the inhomogeneous e-p-i plasma. Rich and interesting
phenomena are observed. We find that the inhomogene-
ity can not only boost a mechanism for light beam self-
focusing and filamentation, but also provide an effective
way to localize and trap the pulse in the region where we
wanted.

We investigate the propagation of intense laser pluses
in a smooth inhomogeneous e-p-i plasma. We assume
that the electron and the positron densities are homoge-
nous in radial r direction, but inhomogeneous in axial
z direction. The local equilibrium state of the three-
component system is characterized by the dimensionless
local charge neutrality

ne0(z) = αnp0(z) + (1− α)ni0(z), (1)

where ne0(z), np0(z), and ni0(z) are the unperturbed
number densities of the electrons, positrons, and ions re-
spectively. The coefficient α = np0(0)/ne0(0) denotes the
ratio of positron density to the electron density at z = 0.
The electrons and positrons are denoted by the subscripts
e and p respectively. The ions do not respond to the dy-
namics under consideration and provide a neutralizing
background due to their relatively large inertia.

In order to describe the nonlinear propagation of in-
tense light in such a plasma, we start with Maxwell
equations. The wave equation (in the Coulomb gauge
∇ ·A = 0) and Poisson equation of the system take the
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forms [1, 5, 7]

∂2A

∂t2
−∇2A = αnpvp − nev e, (2)

and

∇2ϕ = ne − αnp − (1− α)ni0(z). (3)

Here A and ϕ are the vector and scalar potentials respec-
tively, ne (np) is the electron (positron) number density,
ve (vp) is the electron (positron) velocity in the electro-
magnetic fields. The system is closed by invoking the
equation of motion

∂pe,p

∂t
+ (ve,p · ∇)pe,p = ∓[−∇ϕ

−∂A

∂t
+ ve,p × (∇×A)]− Te,p

ne,p
∇ne,p (4)

for each of mobile components. Here pe (pp) is the
electron (positron) momentum, Te (Tp) is the electron
(positron) temperature. Equations (1)-(4) are dimen-
sionless with the following scalings:

t ∼ ωet, r ∼ ωe

c
r , ve,p ∼ ve,p

c
,pe,p ∼

pe,p

m0c
, Te,p ∼ Te,p

m0c2
,

ni0(z) ∼
ni0(z)

ni0(0)
, ne,p ∼ ne,p

ne0,p0(0)
, Â ∼ e

m0c2
Â, (5)

where Â ≡ [A;ϕ], ωe = (4πe2ne0(0)/m0)
1/2 is the elec-

tron plasma frequency, e is the magnitude of the electron
charge, m0 is the rest mass of electrons.
For the propagation of a circularly polarized electro-

magnetic with a frequency ω0 and wave number k(r)
along the axial direction, the vector potential can be rep-
resented as

A =
1

2
a(r , t)(x̂ + iŷ) exp

(

i

∫

k(r) · dr − iω0t

)

+ c.c..

(6)
Since the dimensionless quiver velocity is given by ve,p =

pe,p/γe,p, where γe,p = (1 + p2

e,p)
1/2, Eq. (4) is satisfied

by[1]

pe,p = ±A (7)

and

∇[±ϕ− γe,p − Te,p lnne,p] = 0. (8)

It is noted that Eq. (7) governs the high-frequency re-
sponse of the electrons and the positrons with the same
frequency ω0 as that of the incident waves, and a(z , t) is
slowly varying along the axial z and time t. From Eq.
(7), the electron and positron velocities are

ve =
A

γ
, vp = −A

γ
, (9)

where γ = (1 + |A|2)1/2 ≡ γe,p. Equation (8) describes
the electron and positron low-frequency response (ne-
glecting the electron inertia for the slow motion). The

second term of Eq. (8) is the usual expression for the
relativistic ponderomotive force. The expressions for the
electron and positron number densities can be obtained
by integrating Eq. (8)

ne = ne0(z) exp

[

−γ − 1

Te
+

ϕ

Te

]

, (10a)

np = np0(z) exp

[

−γ − 1

Tp
− ϕ

Tp

]

. (10b)

Using Eq. (9), Eq. (2) becomes

∂2A

∂t2
−∇2A+

αnp + ne
√

1 + |A|2
A = 0. (11)

Substituting Eq. (6) and the dispersion relation ω2

0
−k2 =

αnp0(z) + ne0(z) into Eq. (11), we obtain

iω0

∂a

∂t
+i(k · ∇)a+

1

2
∇2a+

αnp0(z) + ne0(z)

2
a

−1

2

αnp + ne
√

1 + |a|2
a = 0. (12)

Noting that all terms in this dynamics vary on a slow
time scale, it is now convenient to induce new variables,

t = τω0, r = ~ξ + v gτω0, and denoted vg = k/ω0 as the
group velocity of light. Thus, Eq. (12) takes the form

i
∂a

∂τ
+

1

2
∇2a+

αnp0(z) + ne0(z)

2
a− 1

2

αnp + ne
√

1 + |a|2
a = 0.

(13)
We assume that the unperturbed electrons and

positrons obey the same distribution in the axial direc-
tion, viz. ne0(z) = np0(z) = n0(z). From Eqs. (1), (10),
and (3) we have

ϕ =
(

1−
√

1 + a2
)

(αβp − βe) / (αβp + βe) , (14)

where βe = 1/Te, βp = 1/Tp. Then, Eq. (13) takes the
form

i
∂a

∂τ
+

1

2
∇2a+ {α+ 1

2
− α exp[β(1−

√

1 + |a|2)]
2
√

1 + |a|2

−exp[αβ(1 −
√

1 + |a|2)]
2
√

1 + |a|2
}n0(z)a = 0, (15)

where β = 2αβpβe/(αβp + βe) denotes the temperature
parameter. The inhomogeneous is expressed by the term
n0(z). When n0(z) = 1, the system is reduced to the
homogeneous case.
The modulational instability of an arbitrary large am-

plitude electromagnetic pump wave governed by Eq. (15)
can be investigated by standard techniques. Accordingly,
we let a = (a0+a1) exp(iδτ), where a0 is a real constant,
a1(≪ a0) denotes the amplitude of the perturbation and
δ is a constant nonlinear frequency shift caused by the
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nonlinear interaction. Then from Eq. (15) the nonlinear
frequency shift δ can be obtained at the lowest order

δ =
α+ 1

2
−α exp[β(1−

√

1 + a2
0
)]

2
√

1 + a2
0

−exp[αβ(1 −
√

1 + a2
0
)]

2
√

1 + a2
0

. (16)

Letting a1 = (X + iY) exp(i
∫

K (~ξ) · d~ξ − iΩτ), where
X and Y are real constants and Ω(K ) is the frequency
(wavevector) of the low frequency modulations, and lin-
earizing Eq. (15) with respect to X and Y , we obtain
the modulational instability growth rate Γ = −iΩ

Γ =
K√
2
{[α(1 + β

√

1 + a2
0
) exp [β(1−

√

1 + a2
0
)]

+(1 + αβ
√

1 + a2
0
) exp [αβ(1 −

√

1 + a2
0
)]]

× a2
0

2(1 + a2
0
)

3

2

n0(z)−
K2

2
} 1

2 . (17)

In Fig. 1, we show the growth rate Γ as a function of K
for the position-to-electron density ratio α = 0.05, 0.10,
0.20, 0.50, 0.75, and 1.00 in the homogeneous case, i.e.,
with n0(z) = 1 in term of Eq. (17). The plasma parame-
ters are a0 = 0.1, βe = βp = 100. We see that the growth
rate increases with α. In pure e-p plasma (α = 1) we
obtain a largest instability increment, and the modula-
tional instability reaches a maximum due to the largest
positron concentration. On the other hand, the presence
of positrons has strong modification on modulational in-
stability. When the positrons are absent (α = 0), the
system would be stable. The phenomenon can be under-
stood in terms of the ponderomotive force, which appears
because of the interaction between the high-frequency
laser wave and the background plasma. The force act-
ing on particles is directed along the decreasing of the
laser field energy density, and does not depend on the
sign of electric charge of particles. Its magnitude is pro-
portional to the gradient of the intensity of laser and
is inversely proportional to the plasma particles’ mass.
Because of the large ion mass, the ponderomotive forces
acting on ions are much smaller compared with the forces
acting on electrons and positrons, thus it can be neglected
here. If the laser wave amplitude has a maximum at some
points, then the ponderomotive force tends to push elec-
tron away from that points and leaves behind ambipolar
field. The ambipolar field prevents the motion of elec-
tron. If the positron presents, positrons are pushed away
together with electrons, then, the ambipolar field will be
decreased. Due to the decreasing of the ambipolar field
induced by the increasing of positron population, more
electrons will be expulsed away by the ponderomotive
force, and then, the modulational instability of the sys-
tem can be enhanced.
In Fig. 2, we show the growth rate Γ as a function

of K and the light propagation direction z for the inho-
mogeneous cases with α = 0.5 in term of Eq. (17). In
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FIG. 1: (color online) The modulational instability growth
rate (Γ) versus the wavenumber (K), for different value of the
positron-to-electron density ratio (α).
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FIG. 2: (color online) The modulational instability growth
rate (Γ) versus the wavenumber (K) and the axial direc-
tion(z).The initial parameters are a0 = 0.1, βe = βp = 100,
α = 0.5. (a) n0(z) = 1 + bz, b = −0.02; (b) n0(z) =
exp(−z2/Lz), Lz = 16π; (c) n0(z) = 0.5(1− cos z).

order to investigate the effects of electrons and positrons
distribution on the modulational instability, three types
of inhomogeneous cases are discussed: a slow variation
of the electron and positron density along axial direction
n0(z) = 1 + bz, where b is a characteristic inhomogene-
ity parameter (Fig. 2(a)); a Gaussian density distribu-
tion n0(z) = exp(−z2/Lz), Lz = 16π, Lz is the simula-
tion box length (Fig. 2 (b)); and a cosine distribution
n0(z) = 1/2(1 − cos z) (Fig. 2 (c)). It is clear that the
inhomogeneity has strong influence on modulational in-
stability. The higher the density is, the stronger the mod-
ulational instability becomes. Figures 1-2 indicate that
the interaction between the laser beam and the inhomo-
geneity of e-p-i plasma would induce rich and interesting
phenomena.
In order to investigate the effects of positron concen-

tration and the inhomogeneity on the propagation of a
large amplitude electromagnetic beams, we assume ax-
ial symmetry around the z direction, and solve Eq. (15)
numerically for the time evolution of the amplitude of
vector potential. As an initial condition, we take a mod-
ulated beam of the form a = 0.1[1 + 0.02 sin(2πz/Lz) +
0.02 cos(4πz/Lz)+0.02 cos(6πz/Lz)] exp(−r2/32), where
Lz is the simulation box length and r is the radial space
coordinate.
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FIG. 3: (color online) The light amplitude a in log
10
-scale at

six different times τ for homogeneous case. The horizontal
axis represents the distribution along the radial (r) coordi-
nate, and the axial (z) distribution is on the vertical axis.
The upper row for α = 0, the lower row for α = 0.5.

FIG. 4: (color online) The light amplitude a (upper row)
and the normalized electron number density (lower row) as
functions of r and z at six different times τ for n0(z) = 1+bz,
b = −0.02, α = 0.5.

Figure 3 shows the time evolution of the light ampli-
tude a for the cases of without (the upper row, α = 0)
and with (the lower row, α = 0.5) positrons in homoge-
neous plasma. It is clear that, when the positrons are
absent, the light beam can not be localized and finally
defocused. However, when the positrons are present, the
light beam firstly self-focus and then breaks up into lo-
calized filaments due to modulational instability.
Figures 4-7 show the numerical simulations of time evo-

lution of a and ne for inhomogeneous cases. For a lin-
ear axial density distribution n0(z) = 1 + bz (see Fig.
4), the self-focusing and the localization of the light and
the creating of electron density holes (where the light
is trapped) take place in the region with high density
(z . 30) where modulational instability is stronger (see
Fig. 2(a)). For the Gaussian (Figs. 5-6) and cosine
(Fig. 7) types density distributions, however the self-
focusing and the light localization and the creation of

FIG. 5: (color online) The light amplitude a in log
10
-scale

(upper row) and the normalized electron number density
(lower row) as functions of r and z at six different times τ
for n0(z) = exp(−z2/Lz), Lz = 16π, α = 0.2.

FIG. 6: (color online) The light amplitude a in log
10
-scale

(upper row) and the normalized electron number density
(lower row) as functions of r and z at six different times τ
for n0(z) = exp(−z2/Lz), α = 0.5.

FIG. 7: (color online) The light amplitude a in log
10
-scale

(upper row) and the normalized electron number density
(lower row) as functions of r and z at six different times τ
for n0(z) = 0.5(1 − cos z), α = 0.5.
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electron density holes only present at the highest density
regions where modualtional instability is strongest (see
Figs. 2(b),(c)). Interestingly, for the Gaussian density
distribution with the larger positron proportion (α = 0.5,
Fig. 6), the localized light spots experience a process
from breaking up into two pieces to merge into one spot
alternately; for the cosine density distribution (Fig. 7),
merging of the periodically localized eight light spots oc-
cur; correspondingly, the electron density holes trapping
the light also exhibit the same process. These phenomena
indicate the strong nonlinear interaction between light
and inhomogeneous plasma can exist.
To summarize, the nonlinear propagation of an arbi-

trary large amplitude light pulses in an inhomogeneous
e-p-i plasma is studied. We find that the positron con-
centration and plasma inhomogeneity have strong influ-
ence on the modulational and filamentational instabili-
ties in e-p-i plasma. Light beam focusing and trapping
in self-created density holes induced by modulational and

filamentational instabilities depend on the inhomogene-
ity character of the system. The light beam localization
occurs at the highest density regions where the modula-
tional instability is strong. On the other hand, the inho-
mogeneity of the plasma can not only boost a mechanism
for light beam self-focusing and filamentation, but also
provide an effective way to localize and trap the pulse in
the region where we wanted. The present results should
be useful in understanding the dynamics of intense laser
pulses in e-p-i plasma.
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