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We have performed a systematic study of lithium hydride (LiH), using orbital-free molecular
dynamics, with a focus on mass transport properties such as diffusion and viscosity by extending
our previous studies at the lower end of the warm, dense matter regime to cover a span of densities
from ambient to ten-fold compressed and temperatures from 10 eV to 10 keV. We determine analytic
formulas for self- and mutual-diffusion coefficients, and viscosity, which are in excellent agreement
with our molecular dynamics results, and interpolate smoothly between liquid and dense plasma
regimes. In addition, we find the orbital-free calculations begin to agree with the Brinzinskii-Landau
formula above about 250 eV at which point the medium becomes fully ionized. A binary-ion model
based on a bare Coulomb interaction within a neutralizing background with the effective charges
determined from a regularization prescription shows good agreement above about 100 eV with

the orbital-free results. Finally, we demonstrate the validity of a pressure-based mixing rule in
determining the transport properties from the pure-species quantities.

PACS numbers:

I. INTRODUCTION

The area of warm, dense matter (WDM) and high en-
ergy density physics (HEDP) [1] has received consider-
able attention recently due its identification with an as-
sortment of environments as diverse as the interiors of
exoplanets[2], the atmospheres of stars[3], inertial con-
finement fusion capsules[4], and the plasma from laser
interactions[5] with materials from clusters to nanostruc-
tures that span temperatures from a few thousand (~1
eV) to a few million (~100 eV) degrees Kelvin and den-
sities from a few hundredths solid (~ 102*atoms/cm?) to
hundreds of times compressed solid (~ 10?°atoms/cm?).
The WDM regime presents a particularly difficult chal-
lenge given that quantum mechanical effects play a cru-
cial role in the accurate representation of this complex
medium under extreme conditions. In addition, many
of these environments constitute the dynamical interplay
of mixtures of species in various physical states. While
studies have addressed various aspects of mixtures in par-
ticular WDM and HEDP cases, few systematic studies
exist that examine the efficacy of various models over an
extended range of densities and temperatures.

In our earlier studies[6, 7] on lithium hydride (LiH),
we explored the lower end of the WDM regime (2eV <
T< 10eV and p/py < 4, where po is the ambient solid
density) with quantum molecular dynamics (MD) simu-
lations employing finite-temperature versions of the two
major flavors of density functional theory (DFT), namely
orbital-based Kohn-Sham (KS) and orbital-free (OF). We
found reasonable agreement between the the two schemes
for equation-of-state, mass transport, and optical prop-
erties. However, the computational intensity of the KS-
DFT placed severe limitations on further extensions into
the WDM regime indicating that the OFMD approach|[8—

11], particularly based on the Thomas-Fermi-Dirac form,
would serve as the principal vehicle for exploring the
gulf between warm liquids and fully-ionized plasmas.
Other OFMD studies on a variety of pure species such
as hydrogen[9], aluminum[10], iron[10, 11], boron[12],
uranium[13], and plutonium[14] and of mixtures, in-
cluding deuterium/copper[15], aluminum/gold[16], and
deuterium/tritium[17] support this observation. To this
end, we have extended our investigation of mixtures, us-
ing LiH as a representative candidate, with the OFMD
formulation across a broad swath of extreme conditions
in the WDM and HEDP regimes comparing against other
approaches where appropriate. We focus on dynamical
properties such as diffusion and viscosity.

II. FORMALISM

In this section, we present a brief description of the
basic formalism employed to treat mixtures in the WDM
regime given that more comprehensive discussions ap-
pear elsewhere as indicated in the citations. The OFMD
approach forms the basis of our simulations. We also dis-
cuss the implementation of various schemes to determine
the dynamical properties such as diffusion and viscosity.
The final part treats the mixing rules that combine pure
species quantities to form properties of the composite
system.

A. Orbital Free Molecular Dynamics

We consider a a cubic volume V (=L?) containing Ny
hydrogen atoms of mass my and Np; lithium atoms of
mass my; with total number and mass densities given



by n = (Ng + NLi)/V and p = (mHNH + mLiNLi)/V
respectively and the concentrations by z, = N, /N, N=
Ny + Np;. In OFMD simulations [9, 10, 12, 15] the
kinetic energy of the electrons is treated in a semiclassical
approximation, up to first order in the partition function
of the electrons. The orbital-free procedure treats all
electrons on an equal footing, albeit approximately, with
no distinction between bound and ionized electrons. The
orbital-free electronic free energy at ion positions R is
given by

F, [R, ne] = (1)
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where 8 = 1/kgT. T is the temperature, kp is the Boltz-
mann’s constant, and I, is the Fermi integral of order v.
The screened potential ®[n.(r)] is related to the elec-
tronic density n.(r) by [15]
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with charge conservation constraining the integral
J drn.(r) to be equal to the total electronic charge.

The first integral in Eq.1 is the finite-temperature
Thomas-Fermi expression [18]. The other terms in
Eq. (1) represent the external or electron-ion interac-
tion, the Hartree contribution to the electronic energy,
and the exchange-correlation potential. The exchange-
correlation term Fj.[n.] is expressed in the local density
approximation of Perdew and Zunger [19, 20]. For this
study, we omit the von Weiszacker correctionand work in
a Thomas-Fermi-Dirac form using the formula proposed
by Perrot [22] to represent the kinetic-entropic part. We
have made spot checks and found that the von Weiszécker
correction term gives only small corrections (< 5%) in the
regimes examined. This coincides with the conclusions of
a few other studies, for example [21]. The divergence of
the electron-nucleus potential is regularized at each ther-
modynamic condition [11]. The cutoff radius is chosen
to be 30% of the Wigner-Seitz radius, sufficient to pre-
vent overlap of the regularization spheres. The number
of plane waves describing the local electronic density is
then adjusted to converge the thermodynamic properties
to within 1%. This usually requires a energy cut off of
400eV.

At each time step, the electronic free energy is mini-
mized in terms of the local electronic density. The ions
are evolved classically according to the forces due to the
electron density and the ion-ion repulsion. The system is
assumed to be in local thermodynamic equilibrium with
the electron and ion temperatures equal (T, = T; = T).
In our simulations, the electron temperature is fixed, and

the ion temperature is kept at this value through an isoki-
netic thermostat applied to each species[23].

We also perform simulations with a binary ion model
(BIM), which serves as the two-species analogue of the
usual one-component plasma scheme. In this case, the
ions interact through a Coulomb potential [ Z,Zg/r;
the inter-particle distance] with the electrons serving as
a static neutralizing background. However, the effective
charge Z, comes from the ionization degree determined
by the regularization prescription [11] for the pure species
(1) rather than the bare ion charge.

B. Static and Transport Properties

In this section, we present only a brief summary of the
basic static and dynamical properties determined in our
simulations since detailed expositions appear elsewhere
[24-26].

The total pressure of the system

P:nkBT+Pe (3)

is the sum of the ideal gas pressure of the ions and the
electron pressure P., computed via the electronic forces
from the DFT calculation and averaged over the trajec-
tory after the system has equilibrated.

The self-diffusion coefficient D, for species « is com-
puted from the trajectory for the mean square displace-
ment

Do = & (|Ri) - R 0)) @

or by the velocity autocorrelation function

where R; (V;) is the position (velocity) of the i-th par-
ticle of species a.

We computed the mutual diffusion coefficient D,g
from the autocorrelation function

Y
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We set the thermodynamic factor @ to unity[27], the
value for mixtures of ideal gases, although many other
systems and conditions warrant this choice[25, 28]. For
charged systems, Q can have both concentration and
weak-temperature dependencies[29]. If the interspecies
interactions remain small compared to the intraspecies
ones, then the mutual diffusion coefficient takes a very



simple form in terms of the concentrations and the self-
diffusion coefficients:

Dag = nga + anB. (8)

This relation does not correspond to a standard mix-
ing rule as described in the next section since the self-
diffusion coefficients arise from simulations on the full
mixture not on each pure species.

The viscosity was computed from the autocorrela-
tion function of the off-diagonal component of the stress
tensor[24]

n = lm 7(t), )
where
_ v "y qy
n(t) = T ), (P12(0)Pra(t")) dt’. (10)

We averaged the results for the five independent off-
diagonal components of the stress tensor Py, Py., P.z,
(Poa — Pyy)/2, and (Pyy — P:2)/2.

We have found that the use of empirical fits to the
integrals of the autocorrelation functions can substan-
tially shorten the length of the trajectory required.
The basic mechanics of this procedure appear in de-
tail elsewhere[7, 17]. The statistical error inherent in
computing correlation functions from molecular dynam-
ics trajectories[30] is \/27/N;d;, where N.J; is the length
of the trajectory and 7 is the correlation or e-folding time
of the autocorrelation function, calculated either directly
from the fit or from an interrogation of the function itself.
We generally fit over a time interval of [0,(4 — 5)7]. For
the viscosity and mutual diffusion coefficients, the error
computed in this way is 30% or less. On the other hand,
the error for the self-diffusion remains at less than 5%,
since the particle average introduces an additional factor
of 1/ V'N.

We follow Clerouin et al. [31] and fit the transport
properties A to an expansion of the form

A =T5/2 exp (a+blnz +cln*z +dn’z), (11)

where = p/T3. Their motivation arose from the ob-
servation that - (1/T)"/2+2/™ is a universal function of
pT—3/™ for systems with inverse interaction potentials of
order n. They noticed that with n = 1 (bare Coulomb
potential), the above formula fits the results of their clas-
sical molecular dynamics simulations extremely well for
the viscosity (A = n). We introduce a slight modification
by including terms up to In® z and suggest an analog for
diffusion coefficients A = pD, based on the fact that di-
mensionality of D coincides with that of /p. The results
of these fits for the transport properties are given in Ta-
ble I, so that the units are em?/s for D, mPas for 1, eV
for T, and g/cm? for p.

At a temperature sufficiently high to fully ionize
the medium, the viscosity should follow the Braginskii-
Landau formula[31, 32]

n 5 wl/2

nT)l T 6 312752 In(31/2 T3/2)’ (12)

where 7, is the characteristic plasma viscosity and I' is
the Coulomb coupling parameter. With T in eV and p
in g/cm3, Eq.(12) becomes

B ) 3 T5/2 A1/2 P
n=23.85x10 ’ PP mPa-s,
Z 1n { 31/2 19.63/2 73 p1/2 }
(13)

where A is the atomic weight and Z is the atomic number.
For LiH, we used A =4 and Z = 2, from a linear mixing
A=x1A1 + 2245 and Z = 2171 + x225.

C. Mixing Rules

We also test the validity of mixing rules for determin-
ing the properties of the composite from combinations of
those from the pure species. Previous studies[6, 7, 15, 16]
have found that prescriptions based on matching pres-
sures generally produce better agreement with results for
the full system. In this procedure for a fixed system vol-
ume V3,;y and number of particles Nyjy = Ny + Ny, we
must perform a series of OFMD simulations on the in-
dividual species in which their volumes [V,] with a fixed
number of particles [IV,] are varied under the constraint
[VLin = Vir+ V1] until the individual electronic pressures
agree [P = PM]. (This procedure is also know as addi-
tive volume and Amagat mixing.) Composite properties
such as mutual diffusion and viscosity are determined by
combining the individual species results according to the
volume fractions [v, = Vo /Vi5im].

Dyrin = vaDu + vniDyg (14)
NMLiH = YHNH + VLi"Li- (15)

As an aside, applying the mixing rule with the total pres-
sure, instead of the electronic pressure, gives similar re-
sults. The partial volumes are different but in the end
the results are in good agreement with the mixing rule
based on the electronic pressure and the fully mixed sim-
ulations.

These mixing rules offer a faster method to get trans-
port properties over a wider range of parameters than
the fully mixed simulations. Pure simulations are more
efficient than mixed ones, because they can be run at an
appropriate time step for the species being studied. In
contrast, the fully-mixed simulation time step must be
run at the shorter time step, but for the duration of the
longer simulation to resolve the properties. Additionally,
mixing rules are based on interpolated properties so to
build up a collection of data spanning a wide range of
parameters requires fewer simulations. Furthermore, the
mixing rules can be applied to different mixture ratios,
whereas, the full simulations have to be rerun to get such
data.



III. RESULTS AND DISCUSSION
A. Simulation details

We present the wealth of information derived from
our calculations mainly through tables and figures and
concentrate in the text on general trends and represen-
tative cases. We explore LiH mixtures in a regime of
more extreme conditions than our previous studies [6, 7]
and examine densities from 1 to 10 times solid den-
sity, po = 0.788 g/cm?®, and temperatures from 10 eV
(~100 kK) to 10 keV (~100 MK). Before analyzing the
results of the OFMD calculations, we focus on several
procedural points that underlie the computation of the
various static and dynamical properties.

In each of the 70 cases studied, we treated a system of
128 (64H+64Li) atoms initially arranged into a 4 x 4 x 4
B2 (CsCl-type) cubic lattice with a lattice constant cor-
responding to a given density. The system was then sub-
jected to a given temperature and run for a total time
of order 1 ps. The size of a time step, dt in each case
was calculated using the scaling form 6t ~ 1/(p*/3T1/2),
based on the values of 6t for densities (1-4)x pg and tem-
peratures (2-6) eV used in our previous studies. [7]. The
total number of time steps, Ny, was between ~ 10* (for
a 6t of order 0.1 fs) and ~ 10° (for a 6t of order 0.01 fs).

B. Properties

1. Pressure

In Figure 1, we present the electronic (excess) pressure
P, of the LiH mixture as a function of compression and
temperature. As anticipated, these rise monotonically
with increasing density and temperature.

2. Transport properties

Before discussing the behavior of the various trans-
port properties over the WDM and HEDP terrain, we
focus on a representative case in order to elucidate some
common features, in particular, LiH at three times solid
density (2.364 g/cm?®) and temperatures from a few eV
to a few keV as depicted in Fig. 2. The simulations for
the OF-DFT and KS-DFT agree well at low tempera-
tures as discovered in our earlier studies[7]. The modi-
fied BIM also shows relatively good agreement by about
100eV although even at 10eV the difference with OFMD
is only a factor of two. We note that the BIM was im-
plemented using effective charges derived from the regu-
larization so that some account of the degree of ioniza-
tions appears. Above about 250eV, the OFMD begins
to agree with the Braganskii-Landau form, which seems
reasonable given that the system reaches total ionization
above 100eV. Even above this point, the electrons still

have a dynamic component that responds to and par-
tially shields the ions. The basic picture though seems
clear in that the OFMD can serve as an effective and effi-
cient technique for spanning between regimes dominated
by quantum or classical mechanics.

In Figs. 3 and 4, we present the self-diffusion coeffi-
cients for hydrogen (Dy) and lithium (Dp;) as a function
of density and temperature. The colored dots display the
OFMD simulation results while the lines represent the
fit in Eq.(11) with parameters given in Table I. The fit
gives a reasonable reproduction of the results to within
20% or less of the OFMD values above 25 eV for all den-
sities. For a fixed density, the self-diffusion coefficient
rises with temperature as the atoms become more mo-
bile. On the other hand, for a given temperature, the
diffusion declines with increasing density, reflecting the
greater confinement of the atoms. Throughout the entire
temperature range, the hydrogen diffusion is faster. The
ratio of the hydrogen diffusion to that of lithium starts
at about three for the lower temperatures and steadily
climbs to a value of about fifteen to twenty above about
100 eV remaining at this value up to 10 keV. This plateau
in the ratio roughly corresponds to the point at which the
system becomes fully ionized. Calculations using the reg-
ularization prescription for Li give an effective ionization
of about 50% at 20 eV and almost 100% by 200 eV. The
trend in the ratio with temperature demonstrates little
sensitivity to density.

The statistical errors in viscosity are smaller than 10%
for T up to 500 eV at all compression, and smaller
than 40% for: T = 1 — 2 keV at compressions 1-3;
T =1-3.5keV at compression 5; and T'=1—5 keV at
compression 10. For higher T, errors increase drastically:
up to 90% for T'=5— 10 keV at compressions 1-3; up to
85% for T'=5—10 keV at compression 5; and up to 75%
for T = 10 keV at compression 10. The reason for such
a large increase in the error is limitation in the simula-
tion length. For example, in the (T' =1 keV,p/pg = 1)
case, N; =330000 with §; =0.02 fs produced an error of
90%. In order to reduce it to 50%, a simulation of one
million time steps is needed, which is infeasible to do.
Hence, for practical reasons, there is a temperature limit
of OFMD simulations, beyond which the errors increase
drastically; in the LiH case it corresponds to tempera-
tures of order 1 keV. Nevertheless, we can demonstrate
the results which correspond to larger error bars are reli-
able. We fit Eq. (11) to our results for which error bars
remained within 40%, and determined a new set of coef-
ficients a;. We then applied Eq. (11) with the new a; to
calculate viscosity in cases where error bars were 75-90%,
and in each such case the new values where within 15%
of the original values.

In Figs. 5 and 6, we display the viscosity and mutual
diffusion coefficients as a function of density and temper-
ature. The colored dots display the OFMD simulation
results while the lines represent the fit in Eq.(11) with
parameters given in Table I. The fit gives a reasonable
reproduction of the results to within 25% or less of the



OFMD values above 25 eV for all densities. Not surpris-
ingly, the general trends in density and temperature fol-
low those of the self-diffusion coefficients as discussed in
the previous section. In addition, we find that the mu-
tual diffusion coefficient agrees with Eq.(8) at the 15%
level for lower temperatures (T' < 500 eV) but departs
by as much as 50% for higher temperatures. This indi-
cates that the H-Li correlations become more important
as the temperature rises.

Fig. 7 shows that our OFMD results agree with
the Braginskii-Landau formula for temperature above
250 eV. This can be interpreted as LiH becomes fully
ionized and the density dependence of the “exact” ion-
ization temperature is rather weak. The results from the
regularization procedure, as mentioned above, support
this observation as does an argument based on the virial
theorem along the principal Hugoniot [33, 34].

As an interesting aside, we note that Eq. (11) repro-
duces the experimental value of the viscosity of LiH at
ambient conditions. Namely, the LiH viscosity above
its ambient melting point (p = pg, T=0.1 V) is 0.535
mPa-s, which agrees with the experimental value 0.539
mPa-s at 1150 K [35]. The formula, which describes
the results of OFMD simulations, appears to extrapolate
smoothly to the liquid region and reproduces experimen-
tal ambient viscosity values, not only for LiH but also for
aluminum, uranium, and plutonium [36]. Perhaps, the
general physical nature of the functional form deserves a
further detailed study.

C. Mixing rules

We apply a mixing rule to obtain an estimate of the
transport properties of a fully mixed LiH system. In or-
der to simplify the search for the matching the electronic
pressures as detailed in section I1.C, we perform a series
of OFMD calculations for the pressures and viscosities of
the pure species across a range of temperatures and den-
sities. For a fixed temperature, the property as a function
of density (volume) is fit to the simple form ap?; the re-
sults appear in Table II and are displayed in Fig. 8 for the
electronic pressure. We vary the densities of each species
until the electronic pressures match [P = P which
sets the volume fractions v;. Then from the prescription
in Eq.(15) and the single-species transport properties at
these conditions, we determine the mixture viscosity or
diffusion. The electronic pressures for both Li and H
are in Fig. 8 are shown, as are the linear fits used in
the mixing rule. Comparing the electronic pressure from
the mixing rule and the full simulation, we typically find
excellent agreement at 1% level.

Fig. 9 shows the viscosity obtained from the mixing
rule (solid lines) and the fully mixed simulation (full cir-
cles) for 10 (black dots), 40 (red triangles), and 100 (blue
squares) eV. At low temperatures the mixing rule gives
very good estimates of the viscosity. At the highest tem-
perature tested, 100 eV, the agreement is not as good as

the lower temperatures. The mixing rule over-estimates
systematically by about 20%; however the agreement is
still reasonable considering the ~ 30% error bars of the
full simulations. Additionally, the fits from Eq. (11) are
shown as dashed lines for each temperature. These fits
do a very good job of reproducing the data as a function
of temperature and compression. At the higher temper-
ature, the fits are slightly lower than the data and there-
fore lower than the estimate of the mixing rule.

Fig. 10 shows the mutual diffusion obtained from the
mixing rule (solid lines) and the full simulation for 10
(black dotes), 40 (red triangles), and 100 (blue squares)
eV. The mixing rule reproduces the fully mixed simula-
tion results very well across the whole temperature range.
The fits from Eq. (11) are shown as dashed lines for each
temperature. These fits do a very good job of reproduc-
ing the data as a function of temperature and compres-
sion. An interesting trend is that at the highest temper-
ature the fit seems systematically high compared to the
data and mixing rule.

Figs. 9 and 10 show that the mixing rule is a good
means to estimate transport properties of LiH; especially
if the mixture ratios are different than the presented full
simulations.

IV. SUMMARY

We have performed a systematic study of lithium hy-
dride (LiH) in the warm-dense-matter (WDM) regime
for a density range from one to ten times ambient solid
density and for temperatures from 10 eV to 10 keV, us-
ing orbital free molecular dynamics (OFMD) simulations.
The study concentrated on dynamical properties such as
diffusion and viscosity. We suggested analytic formulas
for self- and mutual-diffusion coefficients, and viscosity of
LiH, which are in excellent agreement with our OFMD re-
sults, and interpolate smoothly between liquid and WDM
regimes. We showed that at temperatures above 250 eV,
our results on the viscosity of LiH approach theoretical
predictions provided by the Braginskii-Landau formula
for a fully-ionized plasma. Furthermore, we studied mix-
ing rules between 10 and 100 eV over a wide range of
compressions. We found good agreement between these
estimates and the fully mixed simulation results. Finally,
we presented mixing rules results to the transport prop-
erties, and found that these methods provide a good es-
timate for the fully mixed transport properties. They
provide an efficient method to estimate such properties
over a wider range of parameters than presented here.
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function a b c d

n  -6.34716 [-1] 7.44564 [-1] 1.74637 [-2] 7.64182 [-5]
pDrim  -4.72311 [0] 6.17823 [-1] 1.31917 [-2] 6.95726[ -5]
pDri  -5.52142 [0] 5.28932 [-1] -4.69543 [-3] -4.29052 [-4]
pDy  -4.72117 [0] 4.98225 [-1] 3.799 [-3] -1.86214 [-4]

TABLE I: Fitting coefficients for the viscosity and the mutual
and self diffusion coefficients in Eq.(11) with p in g/em®, T
in €V, n in mPa s, and D in em?/s. The number in square
brackets indicate the power of 10 multipling the number.

TABLE II: Fitting parameters to the form ap® for the pure
species pressures, total (P) and electronic (P.), viscosities
(n), and self-diffusion coefficients (D) as a function of mass
density(g/cm?®) at specific temperatures.

T [eV]| aff b at bl
P[GPa] | 10 |1880.6| 1 | 429.86 1
P.|GPa] 10 ]914.85 1 290.65 1

nlmPas] | 10 | 5.481 [0.151242| 2.3890 | 0.21197
D[em?/s]| 10 |0.09328| -0.8270 | 0.04131 | -0.81973
P[GPa] | 50 [9047.07| 1 2171.8 1
P.[GPa] | 50 [4229.68] 1  |1476.15 1
nimPas] | 50 | 54.95 | 0.3262 | 8.8611 | 0.4506
D[em?/s]| 50 |0.8515 | -0.7201 | 0.1580 |-0.588852
P[GPa] | 100 |18838.1| 1  |4787.84 1
P.[GPa] | 100 |8989.57| 1  |3397.73 1
n[mPas] | 100 |175.083| 0.3262 | 20.0861 | 0.356338
D[em?/s]| 100 |2.47636| -0.7201 |0.319285| -0.60311
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FIG. 1: (color online) Electronic pressures as a function of
temperature, for six isochores of p = pox [1 (+) , 2 (x),
3 (star), 4 (open square), 5 (square), and 10 (circle)]. The
isochore p = n Xpg is shifted by (n — 1) decades relative to
the isochore for po (=0.788g/cm®).
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FIG. 2: (color online) Comparison of the viscosity at p =
3 X po as a function of temperature for several models: KSMD
(magenta triangles); OFMD (blue square with solid line);
BIM (dashed red line red); and Braginksii-Landau (green dot-
ted line)
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FIG. 3: (color online) Comparison of self-diffusion coefficient
for Li as a function of temperature, for six isochores of p =
pox [1 (4), 2 (x), 3 (star), 4 (open square), 5 (square), and
10 (circle)] to the fit of the simulations from Eq. (11). The
isochore p = n Xpq is shifted by (n — 1) decades relative to
the isochore for pg.
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FIG. 4: (color online) Comparison of self-diffusion coefficient
for H as a function of temperature, for six isochores of p = pg x
[1(+), 2 (x), 3 (star), 4 (open square), 5 (square), and 10
(circle)] to the fit of the simulations from Eq. (11). The
isochore p = n Xpo is shifted by (n — 1) decades relative to
the isochore for po.
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FIG. 5: (color online) Comparison of LiH mutual diffusion
coefficient as a function of temperature, for six isochores p =
pox [1 (4), 2 (x), 3 (star), 4 (open square), 5 (square), and
10 (circle)] to the fit of the simulations from Eq. (11). The
isochore p = n Xpq is shifted by (n — 1) decades relative to
the isochore for pg.
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FIG. 6: (color online) Comparison of LiH viscosity as a func-
tion of temperature, for six isochores p = (1,2, 3,4, 5,10) X po,
to the fit of the simulations from Eq. (11). The isochore p = n
x Solid is shifted by (n — 1) decades relative to the isochore
for po.
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FIG. 7: (color online) Comparison of LiH viscosity as a func-
tion of temperature, for six isochores of p = pox [1 (+) , 2
(x), 3 (star), 4 (open square), 5 (square), and 10 (circle)] to
the Braginskii-Landau formula, Eq. (12). The isochore p = n
X po is shifted by (n — 1) decades relative to the isochore for

po.
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FIG. 8: (color online) The electronic pressure of pure H (a)
and pure Li (b) as a function of density for T: 10 (black dots),
50 (red triangles), and 100 (blue squares) eV. The calculated
pressure is shown as points and a linear fit as a solid line.
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FIG. 9: (color online) The viscosity the full LiH simulations
(points) and mixing rule (lines) as a function of compres-
sion for T: 10 (black dots), 50 (red triangles), and 100 (blue
squares) eV from bottom to top. The fits to the fully mixed
simulations from Eq. (11) are shown as dashed lines.
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FIG. 10: (color online) The mutual diffusion coefficients for
the full LiH simulations (points) and mixing rule (lines) are
shown as a function of compression for T: 10 (black dots),
50 (red triangles), and 100 (blue squares) eV from bottom to
top. The fits to the fully mixed simulations from Eq. (11) are
shown as dashed lines.
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