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We study the gravity-exchange flow of two immiscible fluids ina porous medium and show that, in contrast
with the miscible case, a portion of the initial interface remains pinned at all times. We elucidate, by means
of micromodel experiments, the pore-level mechanism responsible for capillary pinning at the macroscale. We
propose a sharp-interface gravity-current model that incorporates capillarity and quantitatively explains the ex-
perimental observations, including thex ∼ t1/2 spreading behavior at intermediate times and the fact that
capillarity stops a finite-release current. Our theory and experiments suggest that capillary pinning is potentially
an important, yet unexplored, trapping mechanism during CO2 sequestration in deep saline aquifers.

PACS numbers: 47.56.+r, 47.55.N-, 47.55.Hd

I. INTRODUCTION

Gravity-exchange flows, in which density differences in-
duce fluid segregation and migration, occur in processes as
diverse as debris flows [1], seawater intrusion into ground-
water [2], and coating of substrates by thin films [3]. More
recently, gravity-current flows have emerged as fundamental
descriptors of the fluid mechanics of carbon dioxide (CO2)
sequestration in saline aquifers [e.g., 4–10]. While the study
of gravity-exchange flows in porous media has a long his-
tory [11], they have been investigated experimentally onlyin
the context of completely miscible fluids. Here, we investigate
the gravity-exchange flow of twoimmiscible fluids in a porous
medium using table-top experiments in a quasi-2D transparent
cell packed with glass beads.

In the classicalsingle-phase lock-exchange flow, two mis-
cible fluids of different densities are initially separatedby a
vertical “interface”. This fluid interface evolves by tilting
smoothly around a stationary point at a heighths [Fig. 1(a)].
The classical model for this problem, known as the sharp-
interface model, assumes that diffusion is slow so the fluids
may be assumed to be completely segregated, and that the
pressure distribution within both fluids is hydrostatic [11, 12].
A similarity solution of the classical model predicts that the
tip position of the fluid interface (x) propagates with respect
to time (t) asx ∼ t1/2 [11, 12], and this prediction is in ex-
cellent agreement with experiments [Fig. 1(a)].

In an immiscible lock-exchange flow, capillary forces
strongly affect the flow behavior: we observe that a portion
of the initial interface remains pinned and does not experi-
ence any macroscopic motion. Above this pinned portion of
the interface the lighter fluid spreads laterally to the right, and
below it the heavier fluid spreads to the left [Fig. 1(b)]. Here,
we show that capillary pinning is a distinct porous-medium
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FIG. 1. (Color online) Lock-exchange flow in a porous medium with
(a) miscible and (b) immiscible fluids. (a) The miscible fluids are wa-
ter (blue) spreading over a denser, more viscous mixture of glycerol
and water. A smooth macroscopic interface tilts around a stationary
point with fixed heighths. (b) The immiscible fluids are air (dark)
spreading over the same glycerol–water mixture. Part of theinitial
interface remains pinned, which leads to sharp kinks or “hinges” in
the macroscopic interface. We denote the height of the lowerhinge
by h′. Both experiments were conducted in a transparent cell packed
with 1 mm glass beads. The red curves correspond to the predictions
of sharp-interface models.

phenomenon that requires the presence of microstructure, we
explain its pore-level origin, and we develop a sharp-interface
model that is able to predict the macroscopic interface evolu-
tion of immiscible lock-exchange flow.

II. LOCK-EXCHANGE EXPERIMENTS

We conducted lock-exchange experiments in rectangular,
quasi-two-dimensional flow cells packed with glass beads.
We constructed 4 flow cells with different heights (2.5 cm,
5.2 cm,10.3 cm,20 cm) and same length (∼55 cm) and thick-
ness (0.9 cm). Each flow cell consists of three pieces of laser-
cut acrylic—solid front and rear panels, and a middle spacer
that frames the working area. The spacer is clamped between
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FIG. 2. Experimental set-up of the lock-exchange experiments in
quasi-two-dimensional flow cells packed with glass beads.
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FIG. 3. Bead size distribution for two of the nominal bead sizes used
in our experiments: (a) bead size 300 to 425µm, (b) bead size 425 to
600µm. We take the arithmetic mean of the endpoints of each range
as the characteristic grain sized.

the front and rear panels via bolts. Once assembled, we orient
the cell “vertically” [Fig. 2(a)] and fill it with glass beadsvia
a port on the spacer. We shake the cell during filling to gener-
ate a tight, consistent bead pack. The porosity of the packed
flow cell ranges from 0.38 to 0.42. Once the cell is full, we
plug this port. We use glass beads with nominal bead sizes
ranging from0.36 mm to2.1 mm, although our beads are not
monodisperse (Fig. 3). The permeability of the packed flow
cell for 1 mm beads is0.88× 10−5 cm2.

In the miscible lock-exchange experiments, we used wa-
ter with blue food dye as the buoyant fluid and a mixture of
glycerol and water (77.5% glycerol by mass,ρ=1.2 g/cm3,
µ=0.47 g/cm-s) as the ambient fluid.

In the immiscible lock-exchange experiments, we
used air as the buoyant fluid. We used silicone oil
(ρ=0.96 g/cm3, µ=0.48 g/cm-s, γ=20 dyn/cm), propy-
lene glycol (ρ=1.04 g/cm3, µ=0.46 g/cm-s,γ=41 dyn/cm),
the glycerol-water mixture (as above,γ=63 dyn/cm) as the
ambient fluid.

We measured the advancing and receding contact angles of
each of the fluid pairs used in our experiments (air and sili-
cone oil; air and a mixture of glycerol and water; and air and
propylene glycol) on both glass and acrylic substrates. Fig. 4
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FIG. 4. Measurements of the advancing contact angle (left) and re-
ceding contact angle (right) on a glass surface for the different fluid
pairs used in the experiments: (a) silicone oil, (b) glycerol-water mix-
ture, (c) propylene glycol. The glycerol-water mixture andpropylene
glycol are both partially wetting to glass with respect to air, and ex-
hibit contact angle hysteresis. Silicone oil is perfectly wetting to
glass with respect to air, having advancing and receding contact an-
gles of0◦.

below shows snapshots from the contact angle goniometer for
measurements on a glass substrate. The advancing and reced-
ing contact angles of silicon oil on acrylic are both zero. The
measurements were made using the sessile drop method, on a
ramé-hart Model 590 Advanced Automated Goniometer.

In order to add the fluids to the cell, we again orient the
cell vertically. We add the ambient fluid via a port near the
bottom in the vertical orientation [Fig. 2(a)]. We inject the
ambient fluid slowly using a syringe pump in order to measure
the volume injected. Once the ambient fluid is filled to the
desired level, we inject the buoyant fluid via a port near the
top in the vertical orientation. We then close all ports. In the
immiscible lock exchange experiments, buoyant fluid does not
need to be injected because it is air.

To initiate an experiment, we quickly rotate the cell by 90
degrees so that it lies horizontally on the table, between an
LED backlight and a digital camera [Fig. 2(b)]. We record the
experiment as a sequence of still images. We disassemble the
cell, discard the beads, and wash the acrylic plates after each
experiment.

III. INTERFACE PINNING: STATICS

A. Scaling of the hinge height

We characterize capillary pinning by the height where the
imbibition front meets the vertically pinned interface, which
we call the hinge height,h′ [Fig. 1(b)]. To determine what
controlsh′ we perform a dimensional analysis [e.g., 13]. The
variables involved in the immiscible lock-exchange flow are:
height of the flow cellH ; density difference between the
dense and buoyant fluids,∆ρ = ρ2 − ρ1; corresponding
fluid viscosities,µ2 andµ1; interfacial tensionγ between the
fluids, receding and advancing contact angles,θr andθa, re-
spectively [14, 15], bead sized, gravitational constantg, and
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time t. In the limit of d ≪ H and negligible kinetic en-
ergy, dimensional analysis indicates a relation of the form
h′/H = F (Bo,M, θr, θa), where Bo = ∆ρgH/(γ/d) is
the Bond number, which measures the relative importance of
gravity to capillary forces, andM = µ2/µ1 is the viscosity
ratio between the fluids. To vary the Bond number, we vary
the height of the cell, size of the glass beads, and fluid pair to
modify the interfacial tension. We use a viscous liquid and air.
Depending on the choice of the liquid (silicone oil, propylene
glycol, or mixtures of glycerol and water), the viscosity ratio
ranges fromM≈250 to 2500. The liquids are all wetting to
glass, and the choice of liquid exhibits only a small difference
on the receding and advancing contact angles:θr ∈ [0◦, 16◦],
θa ∈ [0◦, 23◦] (Fig. 4). Our experiments and analysis below
show that, in this range, the contact angles are not leading-
order parameters in the problem.

We understand the immiscible lock-exchange problem as a
finite perturbation with respect to the miscible problem at the
same value ofM. Assuming that the pinning length increases
linearly with the strength of capillary forces relative to grav-
ity, we suggest that(hs − h′)/H ∼ Bo−1, wherehs/H is
exclusively a function ofM. This scaling relation is con-
firmed experimentally (Fig. 5). The value ofhs/H depends
only weakly on the viscosity ratioM [12], taking values be-
tween 0.585 and 0.587 for the viscosity ratios corresponding
to our experiments (Fig. 5, inset). The lower hinge approaches
the tilting point of the miscible problem when capillarity is
negligible relative to gravity (h′ → hs as Bo−1 → 0), and is
equal to zero when the balance between capillary and gravity
forces exceeds a certain threshold (h′ = 0 for Bo−1 & 0.14).
In this latter scenario, the entire interface is pinned by capillar-
ity and does not tilt, regardless of the precise value of contact
angle.

B. Physics of capillary pinning

The scaling of the hinge height, however, says little about
the underlying reason why the hinge and the pinned interface
exist. We next show that the mechanistic cause of the pinning
behavior iscapillary pressure hysteresis. In our immiscible
gravity-exchange flows, air spreads along the top boundary
of the cell (a drainage front) while the viscous liquid spreads
along the bottom (an imbibition front). For the air to in-
vade each pore throat, its pressurePnw (assumed atmospheric,
Patm) must, locally, exceed the pressurePw in the liquid by an
amount larger than or equal to thedrainage capillary entry
pressureP dr

c [16]. Similarly, along the imbibition front, the
liquid invades ifPnw − Pw is less than theimbibition cap-
illary pressureP imb

c , which is always less than the drainage
capillary pressure [2, 16]. The pressure differenceP dr

c > P imb
c

is recovered along a pinned portion of the interface between
the drainage and imbibition fronts, which must therefore have
height∆hc = ∆Pc/(∆ρg) (Fig. 6).

Although hysteresis in capillary pressure is sometimes
caused by hysteresis in contact angle, such as for a raindrop
pinned on a flat surface, this is not the case here. In fluid
flows through porous media, capillary pressure hysteresis is
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FIG. 5. (Color online) Scaling of the pinned interface height in an
immiscible lock-exchange flow. We measure the deviation of the im-
miscible lock exchange from the miscible lock exchange via the nor-
malized difference between the lower hinge heighth′ and the height
of the miscible tilting point,hs (inset), at the same value ofM.
This quantity scales linearly with the strength of capillarity relative
to gravity, as measured by the inverse of the Bond number, up to a
point when the entire interface is pinned (h′ = 0). Here, we show ex-
perimental measurements (symbols) and a best-fit straight line (solid
black line).

caused by the fundamental difference in the details of fluid in-
vasion between drainage and imbibition: invasion of nonwet-
ting fluid produces strongly curved interfaces whereas inva-
sion of wetting fluid produces much flatter interfaces [16–20].
As a result, capillary pressure hysteresis is present even in the
absence of contact angle hysteresis.

1. Micromodel experiments

This is well illustrated by the gravity-exchange flow of air
and silicone oil in a thin acrylic cell, etched to form a regu-
lar pattern of cylindrical posts (Fig. 6). This system serves
as a porous medium analogue in the sense of introducing
microstructure, but takes away the complexity of a random
medium and permits visualizing the flow at the pore level.

At the top of the pinned portion of the vertical interface, the
air-silicone oil interface is just at the threshold of air invading
and displacing the silicone oil. For slow flows, in which pore-
scale dynamic effects due to the intermittent pressurization of
the viscous fluid are small [21, 22], the pressure differencebe-
tween the fluids is equal to thedrainage capillary entry pres-
sure,P dr

c , which, for zero contact angle (θr = 0◦), is equal to
2γ/d, whered is the distance between two neighboring posts
(and, in our micromodel system, also equal to the diameter of
the posts).

At the bottom of the pinned interface, the air-silicone oil
interface adopts a “diagonal” configuration (between posts2
and 4 in Fig. 3d), which is stable as long as the pressure dif-
ference between air and Si-oil is larger than some threshold
valueP imb

c (animbibition capillary entry pressure), which for
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FIG. 6. (Color online) (a) Presence of a pinned interface in lock-
exchange flow. Due to hysteresis effects, the capillary pressure at
the drainage front (P dr

c ) is larger than the capillary pressure at the
imbibition front (P imb

c ). Along the pinned vertical interface, the cap-
illary pressure transitions fromP imb

c at the bottom toP dr
c at the top.

(b) Snapshot of the pinned interface of an immiscible lock exchange
experiment (air/silicone oil) in a thin acrylic cell with a regular pat-
tern of cylindrical posts simulating the pore-scale microstructure of
a porous medium. The increase in capillary pressure (drop inwet-
ting fluid pressure) from left to right is visible via the decrease in
the radius of curvature along the interface. This increase in capil-
lary pressure along the pinned interface is offset by the drop in hy-
drostatic pressure. (c) The solid red line shows a simple interpreta-
tion of the wetting phase pressurealong the interface, as a function
of elevationz. We assume the pressure in the air is atmospheric
at all times. The wetting-phase interface pressureP I

w can be cal-
culated by subtracting the capillary pressure from the air pressure
(P I

w = Patm − Pc). It is constant along the active drainage and im-
bibition fronts, and varies hydrostatically along the pinned interface.
(d) Steady state interface configuration on the drainage side (solid
red) and imbibition side (solid blue) of the pinned interface, along
with the interface progression on the imbibition side (dashed blue),
for a perfectly wetting imbibing fluid. Capillary pressure hysteresis
is completely controlled by the pore geometry, due to the fundamen-
tal differences in the pore-level invasion events between drainage and
imbibition, as a result, it is apparent even in the absence ofcontact
angle hysteresis.

our micromodel geometry and for zero contact angle is equal
to 0.37γ/d. Below this threshold capillary pressure, the inter-
face is no longer pinned and would undergoimbibition.

2. Dependence of the amount of pinning on contact angle

The height of the pinned vertical interface,∆hc = (P dr
c −

P imb
c )/(∆ρg), exhibits only a small dependence on the values

of the contact angles. In the micromodel system, the height of
the pinned interface takes the form

∆ρghc = γ

(

1

rdr
− 1

rimb

)

, (1)

whereγ is the interfacial tension,rdr and rimb are the radii
of curvature achievable in drainage and in imbibition, respec-
tively, which are functions of the receding and advancing con-

1 2 3

4
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r2

φ1θa

φ2
θar

FIG. 7. (Color online) Interface configuration (solid blue)on the
imbibition side of the exchange flow. We solve for the progression
of the interface arcs as they advance through the pore by enforcing
pressure continuity between posts 1,2 and 3,4 (i.e. r1 = r2). The
interfaces merge and advance to the next set of posts when thetwo
interface arcs touch (i.e. φ1+φ2 = 3/4π). The diameter of the posts
is d and each post is one diameter away from its closest neighbors–
same as the design of the micromodel [Fig. 6(b)].

tact angles, respectively, and of the pore geometry. We can
scalehc by the cell heightH , rdr andrimb by the post diame-
terd:

hc

H
=

γ/d

∆ρgH

(

d

rdr
− d

rimb

)

. (2)

The first term in Eq. (2) is the inverse of the Bond Number.
The term in brackets measures the amount of hysteresis in the
system, and it is a function of both contact angle and pore
geometry. Here, we generalize the expressions of the radii
of curvature that corresponds to the drainage and imbibition
entry capillary pressures in the micromodel for nonzero ad-
vancing and receding contact angles.

Consider four posts of diameterd, each a distanced apart
from its nearest neighbors (Fig. 7). The interface must inter-
cept the posts at an angle equal to the contact angleθ. Basic
geometric considerations lead to expressions of the radiusof
curvature of the interfaces (r1 andr2) as a function of the con-
tact angleθ and the subtended angles (φ1 andφ2):

r1 =
(2− cos(φ1))

cos(φ1 + θ)

d

2
, (3)

r2 =
(2
√
2− cos(φ2))

cos(φ2 + θ)

d

2
. (4)

In drainage,θ = θr and the drainage capillary entry pres-
sure corresponds to the minimum radius of curvaturer1:
rdr = minφ1

r1(φ1; θr).
In imbibition, θ = θa and a sequence of stable configu-

rations can be obtained by equatingr1 = r2. This leads
to a one-parameter family of solutions shown in Fig. 6(d).
The imbibition capillary pressure corresponds to the config-
uration for which the two interfaces touch, that is,rimb =
{r1(φ1; θa) such thatr1(φ1; θa) = r2(φ2; θa) andφ1 + φ2 =
3π/4}.

In Fig. 8 below we show the dependence of the dimension-
less quantityd/rdr − d/rimb as a function of advancing con-
tact angleθa, assumingθr = 0◦. This quantity exhibits only
a small dependence on the contact angles.
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FIG. 8. (Color online) Dependence of the dimensionless quantity
d/rdr − d/rimb controlling the magnitude of the pinned interface in
our micromodel system, as a function of advancing contact angleθa,
assumingθr = 0◦.

IV. INTERFACE PINNING: DYNAMICS

A. Macroscopic sharp-interface model

To capture the dynamic macroscopic behavior of immisci-
ble gravity-exchange flows, we propose a simple theoretical
model based on the classical sharp-interface model [11, 12].
The mathematical model is a partial differential equation for
the height of the interface, which assumes a hydrostatic pres-
sure distribution everywhere (known as vertical flow equilib-
rium, or VFE [23]) and Darcy flow to link flow velocity and
pressure gradients. In a related context, the classical model
has been modified to replace the sharp interface by a cap-
illary transition zone [24–26]. Here, we extend the model
to include capillary pressurehysteresis while—in agreement
with our experiments—retaining the sharp-interface approxi-
mation.

We consider exchange flow between a buoyant nonwetting
fluid with densityρ1 = ρ and a dense wetting fluid with den-
sity ρ2 = ρ+∆ρ in a horizontal porous layer of thicknessH
(Fig. 9). We assume that the porous medium is homogeneous
and isotropic with permeabilityk and porosityφ, and that the
boundaries of the flow domain are impermeable. Since we as-
sume that the two fluids are separated by a sharp interface, the
thickness of the fluid layers must sum to the thickness of the
porous layer everywhere,h1 + h2 = H . By assuming hy-
drostatic pressure in both fluids, we can express the pressure
distribution in the layer as

P =

{

PI − ρg(z − h2) for z > h2

PI − Pc + (ρ+∆ρ)g(h2 − z) for z ≤ h2
(5)

wherePI is the unknown pressure at the interface andg is the
gravitational acceleration. By definition, the pressure differ-
ence across the interface between the non-wetting fluid and
the wetting fluid is the capillary pressurePc.

The volumetric flux per unit width of fluid phasei is given
by Darcy’s lawqi = −kλi∂P/∂x, whereλi = kri/µi is the
mobility of the fluid phase andkri is the relative permeability

h2(x, t)

h1(x, t)

x

z

H

△x

Q1(x, t)

Q2(x, t) Q2(x+△x, t)

Q1(x+△x, t)

ρ1 = ρ ρ2 = ρ+△ρ

µ1 µ2

FIG. 9. We develop a sharp interface model for the exchange flow
between a buoyant, non-wetting fluid and a dense, wetting fluid, sep-
arated initially by a vertical interface. We assume Darcy flow within
each fluid and hydrostatic pressure distribution everywhere. We then
solve for the model by enforcing conservation of volume in a control
volume (dashed blue). The resulting model is a partial differential
equation for the height of the interface as a function of time.

to that phase. Since we assume the two fluid phases to be
completely segregated, the relative permeabilities are equal to
one. The flow rate is given by the product of the thickness of
the fluid phase and its volumetric flux,Qi = hiqi. Hence, we
obtain

Q1 = −h1kλ1

(

∂PI

∂x
− ρg

∂h1

∂x

)

, (6a)

Q2 = −h2kλ2

(

∂PI

∂x
− (ρ+∆ρ)g

∂h2

∂x
− ∂Pc

∂x

)

. (6b)

Imposing global volume conservation (Q1 + Q2 = 0), we
solve for∂PI/∂x and substitute into Eq. 6 to obtain the flow
rates of both fluids. Sinceh1 + h2 = H , we can express the
flow rates in terms of onlyh2, which also represents the height
of the interface:

Q2 =
∆ρgk

µ2

(1− f)h2

(

∂h2

∂x
− ∂Pc/∆ρg

∂x

)

, (7a)

f =
h2

h2 +M(H − h2)
, (7b)

wheref is the fractional flow function andM = µ2/µ1 is
the mobility ratio. To obtain an equation for the evolution of
the interface, we consider the conservation of volume of the
dense fluid over region∆x and time∆t (Fig. 9). The change
in volume of the dense fluid is given by

∆V2 = ∆h2∆xφ = (Q2|x+∆x −Q2|x)∆t. (8)

Inserting Eq. 7 into Eq. 8 and taking limits for small∆x and
∆t, we get the partial differential equation for the evolution
of the interface heighth ≡ h2:

∂h

∂t
− κ

∂

∂x

[

(1− f)h

(

∂h

∂x
− ∂hc

∂x

)]

= 0, (9)

whereκ = ∆ρgk/(µ2φ) is the characteristic buoyancy veloc-
ity andhc = Pc/∆ρg is the capillary height.

The functiong(h;M) ≡ (1− f(h;M))h in Eq. (9) can be
interpreted as a nonlinear diffusion. It is well behaved for
all finite (even large) values ofM (Fig. 10). In the limit



6

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 

 

M = 10
3

M = 10
2

g

H

h

H

M = 10
4

M = 1

M = 10

FIG. 10. (Color online) The dimensionless nonlinear diffusion func-
tion g(h;M)/H ≡ (1 − f(h;M))h/H in Eq. (9) as a function of
the dimensionless height of the interfaceh/H for several values of
mobility ratioM.

M → ∞, application of the L’Hopital rule indicates that
g∞(h) ≡ limM→∞ g(h;M) = h, which is the well-known
limit for a viscous fluid slumping against a horizontal surface
in an inviscid ambient fluid [13, 27]. Our experiments, how-
ever, always correspond to a finite value ofM.

We takePc to be some characteristic drainage capillary
pressureP dr

c where the non-wetting fluid displaces the wet-
ting fluid, and some characteristic imbibition capillary pres-
sureP imb

c where the wetting fluid displaces the non-wetting
fluid. Across the pinned interface,Pc jumps fromP dr

c to
P imb
c . Since we have constant capillary pressures along the ac-

tive drainage and imbibition fronts,∂hc/∂x = 0. Therefore,
∂hc/∂x 6= 0 only along the pinned interface. In other words,
it introduces a jumpJhcK in the interface height of magnitude
(P dr

c − P imb
c )/(∆ρg).

We solve Eq. (9) for the interface heighth, subject to an
initial condition that approximates a step function fromh =
0 for x < 0 to h = 1 for x > 0, and no-flow boundary
conditions (∂h/∂x = 0) at the ends of the cell. We solve the
equation numerically using a centered finite volume method
in space with forward Euler time integration.

The capillary pressure term vanishes everywhere except at
the nodes that separate the portion of the interface that is in
drainage from the portion that is in imbibition. Here, the
capillary pressure term contributes a finite jump in the flux
across these two nodes, and this jump causes a sharp step in
the height of the interface.

B. Simulation of lock-exchange flows

The shape of the interface predicted by our model exhibits
good agreement with the experiment (Fig. 1). We measure
a priori all the parameters in the model (porosity, permeabil-
ity, fluid densities and viscosities) except forJhcK, which we
obtain by measuring the length of the pinned interface in the

experiment.
Additionally, the model predicts quantitatively the time

evolution of the nose position of both currents—the buoyant
nonwetting current [Fig. 11(a)] and the more dense wetting
current [Fig. 11(b)]. It is encouraging that our mathemati-
cal description, which assumes horizontal flow, predicts ac-
curately a lock-exchange where clearly there is vertical flow
since a portion of the interface remains pinned (and therefore
vertical) at all times. Capillarity reduces the gravity-exchange
flow rate—and as a result slows down the process—but the
nonwetting and wetting currents still advance in a way that is
well described by thex ∼ t1/2 scaling of the miscible lock
exchange before they hit the cell boundaries (Fig. 11).

C. Simulation of finite-release gravity currents

The impact of interface pinning effects due to capillary hys-
teresis is most pronounced when the initial interface is close to
one of the lateral boundaries. In this case, one of the currents
hits the boundary early and the process models a finite-volume
release. The finite release of a miscible buoyant fluid spreads
indefinitely [12]. In contrast, a finite volume of immiscible
fluid spreads up to a finite distance at which the hydrostatic
pressure difference that drives the flow is exactly balancedby
the difference in capillary pressures at the drainage and im-
bibition fronts. In other words, capillary hysteresis stops the
gravity current (Fig. 12).

V. DISCUSSION: RELEVANCE TO CO 2 SEQUESTRATION

The potential for capillary pinning to stop a spreading grav-
ity current is particularly relevant in the context of CO2 se-
questration, where CO2 is injected into aquifers saturated with
denser and more viscous groundwater. During and after injec-
tion, the difference in density between the two fluids will drive
a gravity-exchange flow [5–7], increasing the lateral extent of
the CO2 plume and the risk that the CO2 will encounter a fault
or fracture through which it could leak. Deep saline aquifers
are naturally water-wet and, therefore, the hysteresis behav-
ior will be similar [28–30]. The vertical-flow equilibrium as-
sumption is also appropriate in the field setting due to the very
large aspect ratioL/H of aquifers. Therefore, transfer of the
results depends on the values of Bo−1 = γ/(∆ρgHd) in the
field. The value of the interfacial tensionγ is relatively in-
sensitive to depth and is∼ 0.025N/m [31], and the density
difference∆ρ varies between 250 and 500 kg/m3 for deep
and shallow aquifers, respectively [32]. Large capillary ef-
fects occur in aquifers that are deep (∆ρ ∼ 250 kg/m3), ei-
ther thin or vertically-disconnected by low-permeabilityshale
layers (H ∼ 10m), and have small grain sizes (d ∼ 10µm).
In contrast, small capillary effects correspond to aquifers that
are shallow (∆ρ ∼ 500 kg/m3), thick (H ∼ 100m), and have
large grain sizes (d ∼ 50µm). Thus, Bo−1 ∈ [0.001, 0.1], a
range that exhibits a large overlap with our experimental con-
ditions (Fig. 5). Even though the shape of the CO2 plume
after the injection period does matter quantitatively [33], the
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FIG. 11. (Color online) Time evolution of the nose positionsof the
(a) buoyant nonwetting current, and (b) dense wetting current, mea-
sured relative to the position of the initial vertical interface. We
scale nose position by the cell heightH and time by the charac-
teristic timeT = H/κ. We show the data for five experiments
with different values of Bo−1 (black symbols:×=0.021;∗=0.028;
�=0.029;△=0.041). For a particular experiment (Bo−1 = 0.052;
M = 2580), we compare the nose positions from the experiment
(red circles) with those computed with our model (red solid line).
We also show nose positions from the numerical solution to the mis-
cible flow model (JhcK → 0; dashed line).

fundamental qualitative impact of the capillary pinning phe-
nomenon is already present in the lock-exchange flow config-
uration. This suggests that capillary pinning is possibly an im-
portant, yet unexplored, trapping mechanism during geologic
CO2 sequestration.
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