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Synthetic models of Eulerian turbulence like so called “Kinematic Simulations” (KS) are often
used as computational shortcuts for studying Lagrangian properties of turbulence. These models
have been criticized by Thomson & Devenish (2005), who argued on physical grounds that sweep-
ing decorrelation effects suppress pair dispersion in such models. We derive analytical results for
Eulerian turbulence modeled by Gaussian random fields, in particular for the case with zero mean
velocity. Our starting point is an exact integrodifferential equation for the particle pair separation
distribution obtained from the Gaussian integration-by-parts identity. When memory times of par-
ticle locations are short, a Markovian approximation leads to a Richardson-type diffusion model.
We obtain a time-dependent pair diffusivity tensor of the form Kij(r, t) = Sij(r)τ (r, t) where Sij(r)
is the structure-function tensor and τ (r, t) is an effective correlation time of velocity increments.
Crucially, this is found to be the minimum value of three times: the intrinsic turnover time τeddy(r)
at separation r, the overall evolution time t, and the sweeping time r/v0 with v0 the rms veloc-
ity. We study the diffusion model numerically by a Monte Carlo method. With inertial-ranges
like the largest achieved in most current KS (about six decades long), our model is found to re-

produce the t9/2 power-law for pair dispersion predicted by Thomson & Devenish and observed in
the KS. However, for much longer ranges, our model exhibits three distinct pair-dispersion laws in
the inertial-range: a Batchelor t2-regime, followed by a Kraichnan-model-like t1 diffusive regime,
and then a t6 regime. Finally, outside the inertial-range, there is another t1 regime with particles
undergoing independent Taylor diffusion. These scalings are exactly the same as those predicted by
Thomson & Devenish for KS with large mean velocities, which we argue hold also for KS with zero
mean velocity. Our results support the basic conclusion of Thomson & Devenish (2005) that sweep-
ing effects make Lagrangian properties of KS fundamentally different from hydrodynamic turbulence
for very extended inertial-ranges.

PACS numbers: 47.27.Ak, 47.27.tb, 47.27.eb, 47.27.E-

I. INTRODUCTION

How particle pairs separate in a turbulent flow has
been a central subject of turbulence research since the
classical work of Richardson [1]. Unfortunately, the phe-
nomenon has proved quite difficult to investigate by nu-
merical solution of the fluid equations and by controlled
laboratory experiments, especially because of the very
large Reynolds numbers required. Many studies have
therefore employed “synthetic turbulence” or ensembles
of random velocity fields with some of the scaling prop-
erties of real turbulent velocities but which can be effi-
ciently sampled even for very long scaling ranges. For ex-
ample, papers [2–8] have followed this approach and have
reported substantial agreement of their numerical simu-
lations with the predictions of Richardson, especially the
famous “t3-law” for the growth in time of mean square
pair separation distances.

The asymptotic validity of a t3 scaling law for these
synthetic turbulence models at very high Reynolds num-
bers has been called into question, however. Papers
[9, 10] for example pointed out that the use of syn-
thetic turbulence to model Eulerian velocity statistics
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implies sweeping effects of large-scale eddies on particle
motions that diverge with the Reynolds number. These
authors suggested to employ synthetic ensembles, such
as multiplicative cascade models [9] or Gaussian ran-
dom fields [10], to model instead the turbulent statis-
tics of (quasi)Lagrangian velocities [47]. In a simple
one-dimensional Gaussian model of Eulerian velocities,
Chaves et al. [10] found analytically that large-scale
sweeping effects “localized” particle pairs and prevented
them from separating. Subsequently, in a very inter-
esting paper [11], Thomson & Devenish have proposed
an intuitive picture how sweeping affects particle dis-
persion in synthetic models of Eulerian turbulence. The
key point is that large-scale eddies in real turbulence ad-
vect both particles and smaller scale eddies, while large-
scale eddies in synthetic turbulence advect only parti-
cle pairs and not smaller eddies. This fact implies that
particle pairs at separations r in synthetic turbulence
should experience rapidly changing relative velocities, as
they are swept into new, statistically independent eddies.
This occurs on a “sweeping” time-scale τsw(r) ∼ r/v0,
where v0 is the rms velocity set by the largest eddies in
the synthetic ensemble. Thomson & Devenish assume
a diffusion process of pair separations with an eddy-
diffusivity K(r) ∼ δu2(r)τsw(r) and δu2(r) the mean-
square relative velocity at separation r. In an ensemble
with Kolmogorov scaling δu2(r) ∼ (εr)2/3, this yields
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dr2/dt ∼ K(r) ∼ ε2/3r5/3/v0 and the solution

〈r2(t)〉 ∼ ε4t6

v60
. (1)

Note that this implies considerably slower growth than
Richardson’s t3-law [48]. Thomson & Devenish argued
for the above prediction in the case of a large mean sweep-
ing, with v0 replaced by the mean speed u. In the case of
a zero-mean velocity ensemble, they argued instead for
a t9/2-growth law, intermediate between t3 and t6 (see
our section III below). These predictions were supported
in [11] by the numerical technique of “Kinematic Simula-
tions” (KS) [3–5, 7, 12]. The previous contrary numerical
results were explained on various grounds, e.g. the use
of an adaptive time-stepping scheme in [3] which did not
resolve the small sweeping time τsw(r) and its effect on
particle dispersion.
The issues raised by the paper of Thomson & De-

venish have still not been fully resolved. The numer-
ical simulations in [11] used another form of adaptive
time-stepping, which was suggested in [13] to be respon-
sible for the observation of a t9/2 growth. Thomson &
Devenish then repeated their simulations with a fixed
small time-step and reported the same t9/2 law [14]. The
most recent simulations of Nicolleau & Nowakowski [15]
for their longest scaling ranges show some evidence of
the Thomson-Devenish sweeping effects, but the reported
scaling laws are intermediate between those of Richard-
son and of Thomson-Devenish and agree with neither
theory. Thus, there is still considerable uncertainty in
the literature regarding the validity of the Thomson-
Devenish theory. The question is important, because
synthetic turbulence is a useful testing ground for nu-
merical and theoretical methods, and because compari-
son of particle dispersion in synthetic and real turbulence
illuminates the physical mechanisms of the latter.
Because of the disagreement of the numerical simula-

tions of different groups, it is useful to have analytic re-
sults. The Thomson-Devenish arguments apply to a wide
array of synthetic turbulence models, but Gaussian ve-
locity ensembles are the most mathematically tractable.
We therefore consider here the use of Gaussian random
fields as models of turbulent Eulerian velocities. More
precisely, we take the advecting velocity field u(x, t) to
be a Gaussian random field with mean u(x, t) and co-
variance Cij(x, t;y, s) = 〈u′

i(x, t)u
′
j(y, s)〉 for the fluctu-

ations u′ = u − u. Specific models of interest are sim-
ilar to those studied in [10], with u(x, t) = u indepen-
dent of space and time and with covariance defined for
0 < α < 2, 0 < β < 2 by

Cij(x, t;y, s)

= D2

∫
ddk e−D3k

β
L|t−s| e

ik·(x−y)

kd+α
L

Pij(k). (2)

Here k2L = k2+1/L2 and Pij(k) = δij−kikj/k
2 is the pro-

jection onto the subspace of Rd orthogonal to k. The con-
stant D2 determines the rms velocity magnitude, while

D3 determines the intrinsic turnover rate of the synthetic
turbulent eddies. The Gaussian random field u(x, t) so
defined is statistically homogeneous in space, stationary
in time, and solenoidal. The length L is proportional to
the integral length-scale. The scaling properties of the
model at scales smaller than L are similar to those of
real turbulence. For example, the single-time covariance
for r ≪ L is calculated to be

Cij(x, t;y, t) ∼ D0L
α

−D1r
α[(d+ α− 1)δij − αr̂ir̂j ] +O(r2/L2) (3)

with r = x − y. The constants D0, D1 are both multi-
ples of D2, with constants of proportionality involving
the parameters d and α. See [16], p.686. Kolmogorov
1941 dimensional scaling corresponds to the exponents
α = β = 2/3. We shall consider also in this paper Gaus-
sian velocity models whose energy spectra coincide with
KS models which have been studied numerically [11, 13–
15]. The incompressibility of these models will be used at
several points, although much of our analysis applies to
more general models, e.g. with any degree of compress-
ibility.
The principal results of this paper are as follows. For a

general Gaussian model of Eulerian turbulence we care-
fully derive the diffusion approximation for pair disper-
sion assumed in the argument of Thomson-Devenish [11],
under the assumption of short memory times for parti-
cle locations. We furthermore obtain a closed formula,
eq.(54), for the 2-particle eddy-diffusivity in a general
Gaussian model. For the specific models with covari-
ance (2) we obtained more explicit results, which, under
the conditions α < 1 and either β < 1 or frozen turbu-
lence with D3 = 0, verify the Thomson-Devenish argu-
ment about sweeping decorrelation effects. In particu-
lar, we obtain under these conditions a 2-particle eddy-
diffusivity tensor of the form Kij(r, t) = Sij(r)τ(r, t),
where Sij(r) is the structure-function tensor and τ(r, t) is
an effective correlation time of velocity increments. Cru-
cially, τ(r, t) is the minimum of the intrinsic turnover
time τeddy(r) at separation r, the overall evolution time
t, and the sweeping time r/v0. Although this result con-
firms the sweeping decorrelation effect, we argue that the
pair-dispersion law for zero mean-velocity ensembles at
high Reynolds numbers is different from the t9/2 sug-
gested by Thomson & Devenish [11]. Instead, we ar-
gue that there are distinct ranges of power-laws t2, t1,
t6 and then t1 again at successively longer times, exactly
as Thomson & Devenish argued for ensembles with large
mean velocities. We carry out careful numerical Monte
Carlo simulations with our diffusion model which verify
these behaviors in the model at very high Reynolds num-
bers. We also present Monte Carlo results for our diffu-
sion model at the Reynolds numbers employed in current
KS work, about six decades of inertial-range, and repro-
duce then both the “t3-law” and “t9/2-law” that have
been reported in KS at comparable Reynolds numbers.
We thus argue that the current KS results in the litera-
ture are not yet probing asymptotic regimes and the true
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scaling in KS at very high Reynolds numbers will be the
same as in our diffusion model.
The detailed analytical derivation of diffusion models

is presented in section II of the paper, and predictions
for their dispersion laws discussed in section III. Our
numerical methods are described and validated in section
IV , and then used to obtain results for mean-square
particle separations and other statistics. A concluding
section V briefly discusses the results.

II. DERIVATION OF THE DIFFUSION MODEL

In this section we present the derivations of our main
analytical results. A reader who is only interested in
physical conclusions and not the detailed justifications
may skip to our final formula (54) for the pair-diffusivity
and the following discussion.

A. Gaussian Integration-by-Parts Identity

We show first that the transition probability of par-
ticle pairs in Gaussian velocity ensembles obeys an ex-
act evolution equation, as a consequence of the well-
known integration-by-parts identity or Donsker-Furutsu-
Novikov relation (see [17], section 4.1). Let u(x, t) be the
random turbulent velocity field and let the fluid particle
position that satisfies

d

dt
x(t) = u(x, t), x(t0) = a (4)

be denoted as xu(a, t0|t), or x(a, t) for short. Define the
“fine-grained PDF” of 2-particle positions as

P2,u(x2,x1, t|a2, a1, t0) =
2∏

n=1

δd(xn − xu(an, t0|t)). (5)

Then the PDF of 2-particle positions is given by

P2(x2,x1, t|a2, a1, t0) = 〈P2,u(x2,x1, t|a2, a1, t0)〉, (6)

where the average is over the random velocity field u.
Taking the time-derivative of (5) and using (4) it is a

calculus exercise to show that

∂tP2,u(t) = −
2∑

n=1

∇xn· [(u(xn, t) + u′(xn, t))P2,u(t)] ,

(7)
where the velocity has been decomposed into its mean
and fluctuating part u(x, t) = u(x, t) + u′(x, t). The av-
erage of the second term on the righthand side can be
obtained using Gaussian integration-by-parts [17]

〈u′
i(x, t))P2,u(t)〉 =

∫
ddy

∫
ds Cik(x, t;y, s)

×
〈

δ

δuk(y, s)
P2,u(t)

〉
, (8)

where Cij(x, t;y, s) = 〈u′
i(x, t)u

′
j(y, s)〉. To represent the

functional derivative we introduce the Lagrangian re-
sponse function

Gij(a, t;y, s) ≡
δxi(a, t)

δuj(y, s)
, (9)

so that

δ

δuk(y, s)
P2,u(t) =

2∑

m=1

−∂xj
m
P2,u(t) ·Gjk(am, t;y, s).

(10)
The result of averaging (7) is the drift-diffusion equation

∂tP2(t) = −
2∑

n=1

∇xn· [u
∗(xn, t)P2(t)]

+

2∑

n,m=1

∂xi
n
∂xj

m
[Dij(xn,xm, t, t0)P2(t)] . (11)

with

u∗(x, t) = u(x, t) + ∂xjDij(x,x
′, t, t0)|x′=x

(12)

the mean velocity plus a fluctuation-induced drift, and
with the diffusivity tensor

Dij(xn,xm, t, t0) ≡
∫ t

t0

ds

∫
ddy Cik(xn, t;y, s)

×〈Gjk(am, t;y, s)|x2,x1, t; a2, a1, t0〉 (13)

where

〈Gjk(am, t;y, s)|x2,x1, t; a2, a1, t0〉
=

〈Gjk(am, t;y, s)P2,u(t)〉
P2(t)

(14)

is the conditional average of the response function given
that the two particles start in locations a2, a1 at time t0
and end up at locations x2,x1 at time t.
We now develop a more useful expression for the re-

sponse function (9). It is straightforward to show by
functional differentiation of the equation of motion (4)
that

∂tGij =
∂ui

∂xk
(x(a, t0|t), t)Gkj+δijδ

d(y−x(a, t0|t))δ(t−s).

(15)
This equation may be solved as

Gij(a, t;y, s) =

{
gij(y, s|t)δd(y − x(a, t0|s)) t > s > t0
0 o.w.

(16)

with g(y, s|t) = Texp
(∫ t

s
dr ∂u

∂x (x(a, t0|r), r)
)

the time-

ordered exponential matrix for the trajectory which sat-
isfies x(a, t0|s) = y. This notation is made natural by an
alternative derivation of (16) based on the flow composi-
tion identity

x(a, t0|t) = x(x(a, t0|s), s|t). (17)
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Taking the functional derivative δ/δuj(y, s) of (17) and
using the chain rule gives

δxi(a, t)

δuj(y, s)
=

∂xi

∂yk
(y, s|t)

∣∣∣∣
y=x(a,s)

δxk(a, s)

δuj(y, s)
. (18)

On the other hand, it is readily seen that the functional
derivative of the integral form of the particle equation of
motion (4), gives

δxk(a, s)

δuj(y, s)
= δjkδ

d(y − x(a, t0|s))θ(s− t0), (19)

with θ(t) the Heaviside step function. Thus, eq.(16) is
rederived with gij(y, s|t) = ∂xi

∂yj
(y, s|t). If (16) is substi-

tuted into the formula (13) it yields

Dij(xn,xm, t, t0) ≡
∫ t

t0

ds

∫
ddym Cik(xn, t;ym, s)

×〈gjk(ym, s|t)|x2,x1, t;ym, s; a2, a1, t0〉
×P (ym, s|x2,x1, t; a2, a1, t0) (20)

where P (ym, s|x2,x1, t; a2, a1, t0) is the conditional prob-
ability density of the position of particlem at time s given
the positions of both particles at times t and t0. This for-
mula for the diffusivity when substituted into (11),(12)
gives the final form of our exact evolution equation for
the 2-particle transition probability.

B. Markovian Approximation

Despite appearances, the evolution in the exact equa-
tion (11) is non-Markovian in general. It is clear from
formula (20) that the 2-particle diffusion matrix is a func-
tion not only of the particle positions x1,x2 at time t, but
also of the positions a1, a2 at time t0. This dependence
was suppressed in our notations, but the evolution, in
principle, retains a long-time memory of the initial con-
ditions. Only in special cases can the evolution be shown
to be Markovian. The famous example is the Gaussian
velocity field that is delta-correlated in time, the so-called
Kraichnan model [18, 19], for which

Cik(x, t;y, s) = Cik(x,y; t)δ(t − s). (21)

Substituting into (20) and using

gjk(ym, t|t) = δjk (22)

and

P (ym, t|x2,x1, t; a2, a1, t0) = δd(ym − xm) (23)

gives (with the “ 1
2 delta-function rule” for the upper limit

of integration)

Dij(xn,xm, t, t0) =
1

2
Cij(xn,xm, t).

Thus, in this case rigorously there is no dependence of
the diffusion matrix D on a1, a2 and the well-known dif-
fusion model is obtained [18, 19]. Another example with
Markovian particle evolution is the velocity field obtained
as the superposition of Gaussian random wave trains with
very high frequencies, so that the group velocity of the
waves greatly exceeds the root-mean-square velocity [20].
This example has direct relevance to KS simulations with
“eddy-turnover frequency” ωn = λ

√
k3nE(kn) in the limit

λ ≫ 1 of large “unsteadiness” parameter.
The description as a diffusion should generally hold

reasonably well if the correlation time of the Gaussian
velocity field is short enough, since the integrand in (20)
then becomes negligible at values of s < t for which there
is sizable dependence on a1, a2. With this motivation, we
make the Markovian approximation

Dij(xn,xm, t, t0) ≡
∫ t

t0

ds

∫
ddym Cik(xn, t;ym, s)

×〈gjk(ym, s|t)|x2,x1, t;ym, s〉P (ym, s|x2,x1, t).(24)

The physical assumption is that for times ordered as
t0 ≪ s < t the position of the particle at time s is deter-
mined mainly by its position at time t and is negligibly
dependent on the position at the initial time t0. The
worst case for this approximation is clearly the “frozen
velocity” model with infinite correlation time, when times
s & t0 in the integral are not suppressed by decay of cor-
relations. Such s values give an undamped contribution
also in general for times t− t0 much smaller than the ve-
locity correlation time. However, it is easy to check that
the exact result (13) [or (20)] and the Markovianized re-
sult (24) both give

d

dt
Dij(xn,xm, t, t0) = Cij(xn, t;xm, t) +O(t− t0) (25)

so that, for t− t0 much smaller than the correlation time,

Dij(xn,xm, t, t0) = Cij(xn, t0;xm, t0)(t−t0)+O((t−t0)
2).

(26)
Thus the Markovian approximation becomes exact in this
limit. We note in passing that the Kraichnan-Lundgren
theory of 2-particle dispersion [21, 22] when applied to
the Gaussian velocity ensemble gives a result almost iden-
tical to the formula (24) (for more discussion, see [23]).
The formula (24) from the Markovian approximation

can be further simplified. It is intuitively clear that con-
ditioning on the location of both particles is superfluous
in an average of a random variable that involves only one
of these particles. In fact, it can be easily established
from the definitions (5),(6) that

P (y, s|x′,x, t) =

∫
ddy′ P (y′,y, s|x′,x, t)

=

∫
ddy′ 〈δd(y′ − x(x′, t|s))δd(y − x(x, t|s))〉

= 〈δd(y − x(x, t|s))〉 = P (y, s|x, t). (27)

A similar argument gives

〈gjk(y, s|t)|x′,x, t;y, s〉 = 〈gjk(y, s|t)|x, t;y, s〉. (28)
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More generally, we may define the PDF

P (g, t;y′,y, s|x′,x, t) =
〈δd×d(g − g(y, s|t))δd(y′ − x(x′, t|s))δd(y − x(x, t|s))〉

(29)

and mimic the previous argument to show that

P (g, t;y, s|x′,x, t) = P (g, t;y, s|x, t). (30)

Then

P (g, t|y, s;x′,x, t) =
P (g, t;y, s|x′,x, t)

P (y, s|x′,x, t)

=
P (g, t;y, s|x, t)
P (y, s|x, t)

= P (g, t|y, s;x, t). (31)

It follows from these facts that

Dij(xn,xm, t, t0) ≡
∫ t

t0

ds

∫
ddym Cik(xn, t;ym, s)

×〈gjk(ym, s|t)|xm, t;ym, s〉P (ym, s|xm, t), (32)

which is the final form of the Markovian approximation
for the diffusion tensor.
We now consider the special case when the velocity

field is statistically homogeneous in space. In that case,
the drift velocity in (12) is independent of x and sim-
plifies to u∗(t) = u(t), due to homogeneity and incom-
pressibility [49]. Furthermore, a simplified equation can
be derived for the transition probability of the 2-particle
separation vector r = x2 − x1, defined by

P2(r, t|r0, t0) =

∫
dda P2(x+ r,x, t|a + r0, a, t0)

=

∫
dda P2(x,x − r, t|a+ r0, a, t0),

(33)

which is also independent of x. Since the diffusion tensor
Dij(xn,xm, t) depends only on the difference xn−xm in
the homogeneous case, the equation (11) with the sub-
stitutions r = x2 − x1 and

∇x2 −→ ∇r, ∇x1 −→ −∇r, (34)

yields the diffusion equation

∂tP2(r, t|r0, t0) = ∂ri∂rj [Kij(r, t, t0)P2(r, t|r0, t0)] ,
(35)

with the eddy-diffusivity tensor

Kij(r, t, t0)
= 2Dij(0,0, t, t0)−Dij(r,0, t, t0)−Dij(0, r, t, t0)

=

∫ t

t0

ds

∫
ddy Sik(r;y, t, s)

×〈gjk(y, s|t)|0, t;y, s〉P (y, s|0, t)
(36)

and we define the 2nd-order structure function of velocity
increments at two points 0,y and two times t, s :

Sik(r;y, t, s) = 〈[u′
i(r, t)−u′

i(0, t)][u
′
k(y+r, s)−u′

k(y, s)]〉.
(37)

If furthermore the velocity field is assumed to be sta-
tistically stationary in time, then we can take t− t0 −→ t
and t0 −→ 0, to obtain

∂tP2(r, t|r0, 0) = ∂ri∂rj [Kij(r, t)P2(r, t|r0, 0)] , (38)

with

Kij(r, t) =

∫ 0

−t

dτ

∫
ddy Sik(r;y, 0, τ)

×〈gjk(y, τ |0)|0, 0;y, τ〉P (y, τ |0, 0) (39)

by the change of variables τ = s− t.

C. Structure Function and One-Particle

Distribution Function

The integral over y in the above formula (39) con-
verges at large y because of decay in the two-point struc-
ture function and in the 1-particle transition probability.
Physically, rapid decay is due to the facts that increments
separated by great distances are uncorrelated and parti-
cles have low probability to be swept to large distances.
Both of these effects can be easily quantified.
To evaluate the two-point structure function, we use a

standard identity that expresses it in terms of the single-
point 2nd-order structure function ([24], p.102):

Sik(r;y, 0, τ) =
1

2
[Sik(y + r, 0, τ) + Sik(y − r, 0, τ)

−2Sik(y, 0, τ)] . (40)

We first consider the single-time case with τ = 0. For
the spatial power-law covariance (3) with 0 < α < 2, the
single-point structure function becomes

Sij(r) = 2 [Cij(0, τ) − Cij(r, τ)]|τ=0

∼ 2D1r
α [(d+ α− 1)δij − αr̂ir̂j ] +O(r2/L2)(41)

for r ≪ L. The formula (40) implies in general that
Sik(r;y, 0, τ = 0) ∼ Sik(r) for y ≪ r, whereas in the
particular case (41) it gives

Sik(r;y, 0, τ = 0) = O(r2/y2−α) (42)

for r ≪ y ≪ L. When y ≫ L, there is generally expo-
nential or fast power-law decay, depending on the precise
assumptions about the fall-off of the spectrum at low k.
The 2-time structure function Sij(r; 0, τ) shows a simi-
lar behavior as the single-time structure function, except
that there is a new length Lβ(τ) = (D3|τ |)1/β with ed-
dies smaller than this scale decorrelated by time |τ |. As
seen from (2), the decorrelation is associated with an ex-
ponential decay of the cospectrum, with Lβ(t) acting as
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an effective “dissipation scale.” Thus, Sij(r; 0, τ) scales
∝ r2 for r ≪ Lβ(τ), while formula (41) holds for Lβ(τ) ≪
r ≪ L. Thus, the decay law (42) is found when τ 6= 0
only for the range of values max{r, Lβ(τ)} ≪ y ≪ L and
is limited to times |τ | < Lβ/D3. For y ≪ max{r, Lβ(τ)}
instead Sik(r;y, 0, τ) is independent of y and for y ≫ L
the decay is again like that for τ = 0.
The 1-particle transition probability should be domi-

nated by large-scale sweeping and thus have the form

P (y, τ |0, 0) = 1

(2π)d/2vd0 |τ |d
exp(−|y − uτ |2/2v20τ2)

(43)
to a good approximation, with v0 the root mean square
velocity. We hereafter consider mainly the case u = 0.
For the Gaussian random field with mean zero and co-
variance (2), v0 ∝ D2L

α. In that case, it has been verified
by a formal scaling analysis in [10], section 7, that the
leading-order motion of particles for large L is indeed bal-
listic with a constant, random velocity v = y/τ chosen
from a Gaussian ensemble with rms value v0. Subleading
corrections were also obtained in [10] to account for the
effects of the change of the velocity in space and time.
Note that (43) decays rapidly for y ≫ v0|τ |.

D. Stability Matrix

The most difficult term to evaluate in (39) is the condi-
tional average of the stability matrix g(y, τ |0). Existence
of this matrix requires a short-distance cutoff η on the
“inertial-range” scaling behavior in the model covariance
(2) and (3), which otherwise corresponds to velocity fields
only Hölder continuous and non-differentiable in space.
Even with the cutoff, the matrix g(y, τ |0) will grow ex-
ponentially in |τ | almost surely, with rate determined by
the leading Lyapunov exponent λ ∝ (D1/η

2−α)1/2. It is
thus far from clear a priori that the conditional average
even remains finite in the limit η → 0.
We begin by evaluating this term for the “frozen” ve-

locity field with infinite correlation time (or D3 = 0 in
eq.(2)). A key observation here is that the Gaussian tran-
sition probability (43) implies that particles are swept
from point y to 0 in time |τ | along straight lines with
a constant speed v = y/τ generally of order v0. The
velocity-gradient field ∇u(x, t) has a spatial correlation
of order η, so that the particle trajectories contributing
in (39) will see a constant in space but rapidly changing
velocity-gradient with a correlation time ∼ η/v0. Thus,
one can expect that the Lagrangian velocity-gradient will
be well approximated by the model of a Gaussian field
that is delta-correlated in time, for which the statistics
of the stability matrix have been much studied.
To make this argument more formally, consider

the spatial covariance of the velocity-gradient in the
frozen case Cij,mn(r) = 〈u′

i,m(r)u′
j,n(0)〉, where u′

i,m =
∂u′

i/∂xm. By twice differentiating (3) and then averag-
ing over the direction of the unit vector r̂, it is calculated

to be

Cij,mn(r) = D′
1r

α−2 [(d+ 1)δijδmn

−(δimδjn + δinδjm)](44)

with D′
1 = D1α(α−2)

d

[
α−4
d+2 + 2 + d

α−2

]
> 0 for d ≥ 2 and

0 < α < 2. This covariance holds for r > η, whereas the
covariance for r < η is essentially constant and can be
taken to be given by (44) with r = η. A particle swept
with velocity v will see a random velocity-gradient with
temporal correlation obtained by substituting r = vt in
(44). Thus, the (Eulerian) velocity-gradients in a La-
grangian frame can be taken as Gaussian with covariance

〈u′
i,m(t)u′

j,n(0)〉 = D′′
1

ηα−1

v
δη(t) [(d+ 1)δijδmn

−(δimδjn + δinδjm)] (45)

with D′′
1 = 2

(
2−α
1−α

)
D′

1 and δη(t) = 1
tη
∆( 1

tη
), for tη =

η/v and

∆(t) =
1− α

2(2− α)
×
{

1 for |t| < 1
tα−2 for |t| > 1

. (46)

Since ∆(t) is integrable for α < 1 with
∫ +∞
−∞ dt ∆(t) = 1,

one then has limη→0 δη(t) = δ(t). It follows from these
arguments that the velocity-gradient experienced by the
particle should be approximated by a Gaussian matrix-
valued process, constant in space and delta-correlated in
time, if α < 1. This approximation could break down
for fixed η ≪ L if there happens to be a small advection
speed v ≪ v0.
Now consider the non-frozen velocity field, with covari-

ance given by (2) and (3) for D3 6= 0. In this case the
single-point, 2-time covariance of the velocity-gradient
averaged over directions has the form

Cij,mn(r = 0, τ) = D′
1η

α−2e−D3|τ |/ηβ

[(d+ 1)δijδmn

−(δimδjn + δinδjm)] (47)

There is now a short correlation time tη = ηβ/D3, which
allows us to write

〈u′
i,m(t)u′

j,n(0)〉 =
2D′

1

D3
ηα+β−2δη(t) [(d+ 1)δijδmn

−(δimδjn + δinδjm)] (48)

with δη(t) = 1
tη
∆( t

tη
) for ∆(t) = (1/2) exp(−|t|). Thus,

the single-point statistics of the velocity-gradient be-
comes temporally delta-correlated for vanishing η. In ad-
dition, there is the same decorrelation effect of rapid
sweeping through space that occurs in the frozen-field
case. The latter will dominate when η/v ≪ ηβ/D3 at
small η and when the spatial decay of correlations is fast
enough, that is, when both β < 1 and α < 1. In any
case, we obtain again a model for Lagrangian velocity-
gradients that are Gaussian, constant in space and delta-
correlated in time. There is here no problem with small
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speeds v ≪ v0, since the correlation time will never be
larger than ηβ/D3.
The stability matrix has been well-studied for Gaus-

sian velocity-gradient fields, constant in space and white-
noise in time. In particular, it has been shown in [25]
that the matrix random process g(y, τ |0) is a diffusion
on the group SL(d) of d × d matrices with determinant
1. We shall use specifically the formula for the transition
probability density pτ (g) of this process starting at the
identity, Eq.(7.14) in [25] for n = 2 :

∫

SL(d)

pτ (g)f(gr0)dµ(g) =

∫
P2(r, τ |r0, 0)f(r) ddr

(49)
where µ is Haar measure on SL(d) and

∂τP2(r, τ |r0, 0) = M2P2(r, τ |r0, 0) (50)

for

M2f(r) = D[(d+ 1)δijr
2 − 2rirj ]∂ri∂rjf(r)

= D∂ri∂rj
{
[(d+ 1)δijr

2 − 2rirj ]f(r)
}
,(51)

where the second line follows by incompressibility. This
implies also that the operator is self-adjoint. The op-
erator M2 is the generator for the diffusion process of
particle pair-separations in the Kraichnan model with a
velocity-gradient uniform in space. Pair separations in
that model evolve by ṙ = r·∇u(t), which integrates to
r(t) = g(t)r0. The equation (49) simply expresses this
relation. Since M2f ≡ 0 for a general linear function
f(r) = a·r, and considering in (49) arbitrary choices of
a, r0, it follows that

∫

SL(d)

g pτ (g) dµ(g) = I, (52)

the identity matrix. This result is due essentially to the
fact that a diffusion leaves invariant a linear profile. Fi-
nally, we can conclude that

〈gjk(y, τ |0)|0, 0;y, τ〉 = δjk. (53)

This “martingale property”, which asserts that the ex-
pected future value of the random matrix is the ini-
tial value, holds for the matrix diffusion process in the
Kraichnanmodel but should be valid more generally. The
exponential growth of the individual realizations is offset
by their rapid rotation in space which leads to large can-
cellations in the ensemble average. Incompressibility was
employed in the argument, but it is not essential to the
conclusion (see [26]).
The result (53) is only strictly known to be valid when

the velocity covariance converges to an η-independent re-
sult as η → 0, whereas (45) diverges as ∼ ηα−1 for α < 1
and (48) diverges as ∼ ηα+β−2 for α + β < 2. However,
the final result (53) is independent of the amplitude of the
covariance (i.e. the value of D1) and thus we conjecture
that it extends even to the present cases with diverging

covariance. The result yields a simplified formula for the
2-particle eddy-diffusivity:

Kij(r, t) =

∫ 0

−t

dτ

∫
ddy Sij(r;y, 0, τ)P (y, τ |0, 0), (54)

together with (40),(43). We shall now use this formula
to obtain concrete results for the eddy-diffusivity in the
Gaussian ensembles whose covariances are given by (2).

E. The Frozen-in-Time Velocity Field

The simplest case to analyze is the “frozen” field so
that

Sij(r;y, 0, τ) = Sij(r;y). (55)

Using (43) for u = 0 and making the change of variables
u = y2/2v20τ

2,

∫ 0

−t

dτ P (y, τ |0, 0) = 1√
8πd/2

1

v0yd−1
Γ

(
d− 1

2
,

y2

2v20t
2

)

(56)
with the (upper) incomplete gamma function defined by
Γ(s, z) =

∫∞
z

du us−1e−u. Since ddy = yd−1dy dΩy, with
dΩy the element of d-dimensional solid angle, we get from
(54) that

Kij(r, t) =
1√

2Γ
(
d
2

)
∫ ∞

0

dy

v0
Sij(r; y)Γ

(
d− 1

2
,

y2

2v20t
2

)

(57)
where the angle-averaged structure function is defined by

Sij(r; y) =
1

Sd

∫
dΩySij(r;y) (58)

for Sd = 2πd/2/Γ
(
d
2

)
the (d− 1)-dimensional area of the

unit hypersphere in d-dimensional space.
When the velocity statistics are isotropic, as for the

model with zero mean and covariance (2), the eddy-
diffusivity tensor can be reduced to two scalar functions
KL,KN defined by

Kij(r, t) = KL(r, t)r̂ir̂j +KN (r, t)(δij − r̂ir̂j). (59)

These two functions are related by incompressibility as
KN = KL + rK ′

L/(d − 1) and it is convenient to base
further analysis onKL.As is well known, if the separation
statistics are also isotropic, then the diffusion equation
(35) can be expressed entirely in terms of KL, as

∂tP (r, t) =
1

rd−1

∂

∂r

(
rd−1KL(r, t)

∂P

∂r
(r, t)

)
. (60)

Here the separation PDF satisfies

∫ ∞

0

P (r, t) rd−1dr = 1. (61)
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as normalization condition.
The displacement vector y in (55) breaks rotation

invariance, but the average over solid angle restores
isotropy. We can thus decompose also

Sij(r; y) = SL(r; y)r̂ir̂j + SN (r; y)(δij − r̂ir̂j) (62)

into longitudinal and transverse contributions with re-
spect to the separation vector r. By dimensional analysis
one can write

SL(r; y) = SL(r)F

(
y

r
,
L

r

)
= SL(r)F

(y
r

)
, (63)

the latter for L ≫ r. The function F (y/r) can be in-
terpreted as the correlation coefficient of (longitudinal)
velocity increments δvL(r) at points a distance y apart.
For the velocity covariance (2) with D3 = 0 it is possible
to derive a complicated, closed-form expression for the
function F (w) as suitable combinations of Gaussian hy-
pergeometric functions of the argument w2. However, we
shall not pursue this here. The most important property
of F, which follows from (42), is

F (w) ∼
{

1 w ≪ 1
(const.)w−(2−α) w ≫ 1

. (64)

Thus, we can write KL(r, t) = SL(r)τ(r, t) where

τ(r, t) =
1√

2Γ
(
d
2

)
∫ ∞

0

dy

v0
F
(y
r

)
Γ

(
d− 1

2
,

y2

2v20t
2

)

(65)
is a 2-particle Lagrangian correlation time. With the
substitution y = rw, this becomes

τ(r, t) =
r

v0
J(x), x =

v0t

r
(66)

for

J(x) =
1√

2Γ
(
d
2

)
∫ ∞

0

dw F (w)Γ

(
d− 1

2
,
w2

2x2

)
(67)

For d = 3, Γ(1, z) = e−z and (67) is a Laplace transform
in the variable w2. The most directly useful consequence
of (67) is the asymptotic behaviors

J(x) ∼
{

x x ≪ 1
J∞ x ≫ 1

, (68)

where we have used
∫∞
0

dv Γ
(

d−1
2 , v2

2

)
=

√
2Γ

(
d
2

)
and

we have defined

J∞ =
Γ
(
d−1
2

)
√
2Γ

(
d
2

)
∫ ∞

0

dw F (w). (69)

The latter integral converges for α < 1. We conclude that

τ(r, t) ∼
{

t t ≪ r/v0
J∞

r
v0

t ≫ r/v0
. (70)

Our result is quite similar to that obtained by [11] for
the case of large mean velocity u; see their equation (8).
Some differences are that our eddy-diffusivity is isotropic
and has the short-time behavior proportional to t. How-
ever, most importantly we see the same sweeping decor-
relation effect, with the 2-particle correlation time at long
times proportional to the sweeping time r/v0. With no
such effect one would instead expect the correlation time
to be always proportional to t in the frozen-field case. It
should be emphasized that we obtain this result in the
zero mean-velocity ensemble, where [11] have predicted
different behavior. We shall compare our results with
theirs in more detail in section III, where we shall also
derive the quantitative predictions of our formula for the
growth of mean-square particle separations.

F. Finite Time-Correlated Velocity Field

We now study the Gaussian model with covariance
(2) for D3 6= 0. More generally, consider any velocity
field statistically homogeneous in space and stationary
in time. Then (32) together with (43) & (53) give

Dij(x
′ − x, t) =

∫ t

0

ds

∫
ddy Cij(x

′ − y, t− s)

× 1

[2πv20(t− s)2]d/2
exp

[
−|y − x− u(t− s)|2

2v20 |t− s|2
]
(71)

Since the y-integration has the form of a convolution, it
is easily evaluated by a Fourier transform:

D̂ij(k, t) =

∫ t

0

ds Ĉij(k, t− s)

× exp

[
ik·u(t− s)− 1

2
v20k

2(t− s)2
]

(72)

For the model in (2) note Ĉij(k, t) = Ĉij(k) exp(−γk|t|)
with Ĉij(k) = D2Pij(k)/k

d+α
L and γk = D3k

β
L. For large

u, see [11]. Hereafter we take u = 0. Then making the
change of variables σ = v0k(t− s), one obtains

D̂ij(k, t) =
1

v0k

∫ v0kt

0

dσ Ĉij(k)

× exp

[
−
(

γk
v0k

)
σ − 1

2
σ2

]
(73)

Thus, for t ≪ 1/v0k,

D̂ij(k, t) ∼ Ĉij(k)t. (74)

This implies by inverse Fourier transform that

Kij(r, t) ∼ Sij(r)t, t ≪ r/v0. (75)

On the other hand, consider fixed t and large k. Note
that the convection time is smaller than the correlation
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time, or v0k > γk, for k > k∗ = (D3/v0)
1

1−β when β < 1.
Thus, for k ≫ k∗, (73) gives

D̂ij(k, t) ∼
1

v0k
Ĉij(k) ·

√
π

2
erf

(
v0kt√

2

)
. (76)

This formula is exact in the case of frozen turbulence
(D3 = 0) when k∗ = 0. If furthermore k ≫ 1/v0t, then

D̂ij(k, t) ∼
√

π

2
· 1

v0k
Ĉij(k) (77)

becomes independent of t and scales as a power
k−(d+α+1). For α < 1, we thus obtain by inverse Fourier
transform that for r ≪ min{v0t, L∗}

Kij(r, t) ∼
√

π

2

D
(α+1)
1

v0
rα+1 [(d+ α)δij − (α+ 1)r̂ir̂j ] .

(78)
It follows that the essential behavior of the frozen field
case carries over to the finite time-correlated velocity
with α < 1 and β < 1. Just as for the frozen velocity,
KL(r, t) = SL(r)τ(r, t) and the correlation time satisfies

(66) and (68) with J∞ =
√

π
2
D

(α+1)
1

D
(α)
1

[50].

If, however, β > 1, then the behavior is quite different.
Under this assumption γk > v0k for k > k∗, so that we
now make the change of variables σ = γk(t−s) to obtain

D̂ij(k, t) =
1

γk

∫ γkt

0

dσ Ĉij(k)

× exp

[
−σ − 1

2

(
v0k

γk

)2

σ2

]
(79)

Equations (74) and (75) again hold, now for t ≪ 1/γk
and t ≪ 1/γ1/r, respectively. On the other hand, for
fixed t and k ≫ k∗ = 1/L∗,

D̂ij(k, t) ∼
1

γk
Ĉij(k) [1− exp(−γkt)] . (80)

If furthermore k ≫ 1/Lβ(t), then

D̂ij(k, t) ∼
1

γk
Ĉij(k) (81)

becomes independent of t and scales as a power
k−(d+α+β). When α + β < 2, we then obtain by inverse
Fourier transform that for r ≪ min{Lβ(t), L∗}

Kij(r, t) ∼
D

(α+β)
1

D3
rα+β [(d+ α+ β)δij − (α+ β + 1)r̂ir̂j ] .

(82)
We can again write KL(r, t) = SL(r)τ(r, t) but now

τ(r, t) ∼
{

t t ≪ rβ/D3

(const.) rβ

D3
t ≫ rβ/D3, r ≪ L∗

. (83)

Thus, the sweeping decorrelation effect is absent at suf-
ficiently small scales when β > 1 and α+ β < 2.

III. CONSEQUENCES OF DIFFUSION MODEL

In the previous section we have derived a diffusion
model which, for homogeneous and isotropic statistics,
takes the form (60). For the Gaussian velocity ensemble
having covariance (2) with Kolmogorov scaling exponent
α = 2/3, the diffusivity takes the form

KL(r, t) =
CLε

2/3r5/3

v0
J

(
v0t

r

)

∼
{

CL(εr)
2/3t t ≪ r/v0

C′
L

ε2/3r5/3

v0
t ≫ r/v0

(84)

both in the frozen case and in the temporally fluctu-
ating case with β = 2/3. Here CL is the Kolmogorov
constant in the longitudinal velocity structure function,
SL(r) ∼ CL(εr)

2/3, and C′
L = CLJ∞. In this section

we shall attempt to determine the growth law for the
mean-square separation 〈r2(t)〉 predicted by the model
(60),(84).
Does this model lead to the t9/2-law of Thomson-

Devenish [11]? To answer this question, we must briefly
review the argument for the 9/2-law. The key idea
in [11] is that the mean-square separation pointwise in
space depends on the local value v′ of the fluctuating
velocity. The sweeping effect occurs at points where
τsw(r) = r/v′ is smaller than the intrinsic correlation
time, τint(r, t) = ε−1/3r2/3 for finite-correlated velocity
(β = 2/3) and τint(r, t) = t for “frozen” velocity. The lo-
cal correlation time is argued to be the smallest of these:

τ(r, t) = min{τsw(r), τint(r, t)}. (85)

Hence, when v′ > (εr)1/3 (fluctuating) or r/t (frozen),
then the mean-square separation conditioned on v′ is af-
fected by sweeping and shows the slow growth

〈r2(t)〉v′ ∼ ε4t6

v′6
(86)

but in the opposite case exhibits the faster growth

〈r2(t)〉v′ ∼ εt3. (87)

Using these growth laws to evaluate τsw and τint in (85),
it is easily checked that the t6-law holds for points with
v′ > (εt)1/2 and the t3-law for points with v′ < (εt)1/2.
The probability for the latter condition to hold is small
but growing in time:

Prob
(
v′ < (εt)1/2

)
∼ (εt)3/2

v30
. (88)

This formula holds for a Gaussian distribution of 3D
velocities v′, or for any similar distribution p(v′) =
(1/v30)f(v

′/v0) with variance v20 and non-vanishing den-
sity at the origin. The unconditional mean-square sepa-
ration can then be estimated from (87) and (88) as

〈r2〉 ∼ εt3 · (εt)
3/2

v30
=

ε5/2t9/2

v30
. (89)
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The same result can be obtained from the t6 dispersion
law (86) by noting that it is a rapidly decreasing func-
tion of v′, so that the dominant contribution is obtained
from the points with v′ & (εt)1/2 which also occur with
probability ∼ (εt)3/2/v30 .
At first sight, it appears that the model (60),(84) may

embody these ideas of [11]. The diffusion model implies
the exact equation

d

dt
〈r2(t)〉 = 2

∫
KT (r, t)P (r, t)rd−1dr, (90)

where KT = KL + (d − 1)KN is the trace of the diffu-
sion tensor. The average over r in (90) can thus play
the same role as did the average over v′ in the argument
of [11]. The eddy-diffusivity (84) is equivalent to the
correlation time (70). The population of particle pairs
with separations r > v0t should exhibit a growth law
〈r2(t)〉> ∼ εt3, while the pairs with r < v0t should ex-

hibit 〈r2(t)〉< ∼ ε4t6

v6
0
. It appears possible that averaging

over the entire range of pair separations could give rise
to the 9/2-law (89) with an intermediate growth rate.
The above reasoning is, however, essentially wrong.

The diffusion model (60),(84) does possess a t3 regime,
but only in an unphysical way. To see this, note that for
both the t3 and the t6 growth laws the condition r > v0t
is first satisfied only at such long times that t > v20/ε.
Substituting the standard relation ε ∼ v30/L (which fol-
lows from the assumed Kolmogorov scaling of the energy
spectrum) implies that the t3 law can be self-consistently
satisfied only for times greater than a large-eddy turnover
time, t > L/v0. In that case, 〈r2(t)〉 exceeds L2 and the
particle pairs have left the inertial range. As we shall ver-
ify below, the model (60),(84) does indeed possess a t3

range when t > v20/ε but this exceeds the validity of the
model, which was derived only for the range r < L. In the
range r > L the two particles should instead execute in-
dependent Brownian motions with a constant diffusivity
DT and the mean-square separation grow diffusively as
〈r2〉 ∼ 4DT t. Thus, the t

3 range is an unphysical artefact
of the model (60),(84).
The argument for the asymptotic t9/2 law by Thom-

son & Devenish [11] thus fails for the model (60),(84).
Very importantly, however, we shall show below that our
diffusion model can produce an apparent t9/2 law over
a finite range of scales at relatively low Reynolds num-
bers, for similar choices of parameters with which such
growth laws have been observed in kinematic simulations
[11, 14, 15]. In this case, the eddy-diffusivity in the equa-
tion (60) is not given by the formula (84), which is asymp-
totically valid only for L ≫ r, but instead directly from
the expression (73), which holds in general. We shall thus
suggest that the 9/2 growth law observed in several kine-
matic simulations is a finite-Reynolds-number effect and
does not represent the asymptotic behavior that would
be observed with very long inertial ranges.
We argue that the true high-Reynolds-number

behavior—both in our diffusion model and in the kine-
matic simulations—is essentially the same as that found

by Thomson & Devenish for the situation of large mean

velocity u ([11], section 3.1). The principal difference
is that we obtain also an early-time Batchelor ballistic
range [27, 28] with t2 growth. This is followed, as argued
in [11], by ranges of diffusive t1 growth, t6 growth and
finally by a range of t1 or t3 growth, depending upon
whether the correct diffusivity (73) is used for that range
or whether the r ≪ L approximation (84) is used (in-
appropriately, since r ≫ L). We have not been able to
find an analytical solution of our model (60),(84) which
exhibits all of the above ranges. In this section we shall
instead argue using a simple mean-field approximation

d

dt
r2 = 2KT (r, t), r(0) = r0 (91)

which ignores fluctuations in the random separation r.
In the following section IV we shall verify our theoretical
conclusions by a numerical Monte Carlo solution of the
diffusion model.
The Batchelor t2 regime is the only one which we can

derive directly from our diffusion model (60) without any
approximation. We take as our initial condition for the
diffusion equation the spherical delta function

P0(r) =
δ(r − r0)

rd−1
0

(92)

with all pairs initially at separation r0. If this is substi-
tuted into the exact equation (90), it yields

d

dt
〈r2(t)〉

∣∣∣∣
t=0

= 0,
d2

dt2
〈r2(t)〉

∣∣∣∣
t=0

= 2ST (r0) (93)

where the trace of the short-time result (75) was used,

KT (r, t) ∼ 2ST (r)t, (94)

for t ≪ r0/v0. Taylor series expansion then gives

〈r2(t)〉 − r20 = ST (r0)t
2 +O(t3), (95)

which is the well-known result of Batchelor [27, 28]. The
mean-field approximation (91) is exact in this regime,
since sufficient time has not passed to change r substan-
tially from its initial (deterministic) value r0.
As noted in [11], there is an interval of times t > r0/v0

when r has still not changed substantially from its initial
value r0. For r ≈ r0 but t ≫ r0/v0, the result (94) is
replaced with

KT (r0, t) ∼ KT (r0,∞) = C′
T

ε2/3r
5/3
0

v0
(96)

where C′
T = 14

3 C′
L as a consequence of incompressibility.

The growth law then becomes diffusive

〈r2(t)〉 − r20 ∼ 2KT (r0,∞)t, (97)

this period lasting until the “takeoff time” tto when
KT (r0,∞)tto ∼ r20 , or

tto ∼ v0r
1/3
0

ε2/3
. (98)
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See [11]. Together with the previous Batchelor regime,
this diffusive range is obtained from the mean-field model
(91) simplified to dr2/dt = 2KT (r0, t). It is interest-
ing that the diffusive behavior (97) at early times is the
analogue in the Kraichnan white-noise advection model
[18, 19] of the Batchelor ballistic range (e.g. see [29], sec-
tion II.B). This is not an accident. The large-scale sweep-
ing of particle pairs through stationary eddies produces
an effective small correlation time r0/v0 which makes
the velocity field appear to be temporally white-noise for
times t ≫ r0/v0. This is closely connected with previous
attempts to simulate the Kraichnan white-noise ensem-
ble by sweeping fixed large-scale velocity fields rapidly
across the computational domain [30, 31].
For times greater than the “takeoff time” tto but

smaller than the “end-of-sweeping time” tes = v20/ε, one
must solve the mean-field equation (91) with

dr2/dt = 2C′
T

ε2/3r5/3

v0
, (99)

which leads to the t6-law (1). Instead for t > tes one
must solve

dr2/dt = 2CT (εr)
2/3t, CT =

11

3
CL (100)

at least for the model (84). As previously discussed, this
leads to the Richardson t3-law but in an unphysical way,
since r > L lies outside the validity of the model (84).
For t > tes and r > L in reality KT (r, t) ∼ 2DT , where
DT is the 1-particle diffusivity of Taylor [32]. Thus, one
must solve

dr2/dt = 4DT (101)

which yields the very long-time diffusive range.
Our picture of particle dispersion in the zero-mean syn-

thetic turbulence ensembles is thus very close to that in
the large mean-velocity ensembles. This is in contrast
to Thomson & Devenish [11], who argue for a distinct
behavior of particle dispersion in the two cases. To un-
derstand better why we reach a different conclusion, it is
useful to rederive our results for the eddy-diffusivity in a
slightly different way. For convenience we consider only
the case of frozen velocity fields. Taking the longitudinal
component of the formula (54) yields

KL(r, t) =

∫ 0

−t

dτ

∫
ddy SL(r;y)P (y, τ |0, 0). (102)

As discussed in section II C the factor P (y, τ |0, 0) arises
as the density of the Gaussian large-scale velocity v =
y/τ. Changing to this variable in the above integral yields

KL(r, t) =

∫
KL(r, t|v) exp

(
− v2

2v20

)
ddv

(2πv20)
d/2

(103)

with

KL(r, t|v) = SL(r)τ(r, t|v) (104)

and

τ(r, t|v) =
∫ 0

−t

dτ F

(
v|τ |
r

)
∼

{
t t ≪ r/v
I∞

r
v t ≫ r/v

(105)

for I∞ =
∫∞
0

dw F (w). Since F (v|τ |/r) is the correla-
tion coefficient of increments δu(r) at distance v|τ | apart,
KL(r, t|v) and τ(r, t|v) can be interpreted as pair diffu-
sivity and correlation time for given large-scale velocity
magnitude v. It is easy to average these quantities over v
and recover the previous results for KL(r, t) and τ(r, t),
in particular formula (70), and our predictions in this
section for 〈r2(t)〉. It was already observed in [11] (sec-
tion 3.2, p. 292) that averaging the pair-diffusivity over
the large-scale sweeping velocity would lead to the t6-law
also for the zero-mean velocity ensembles. Thomson &
Devenish argued, however, that correct results should be
obtained by averaging 〈r2(t)〉v rather than by averaging
KL(r, t|v). We find that the opposite is true. The exact
integration-by-parts identity for Gaussian velocity fields
leads to our formula (103) in which the effective diffusiv-
ity is indeed averaged over large-scale sweeping velocity.

IV. NUMERICAL SIMULATIONS

We now present numerical results for the diffusion
models derived in the previous sections, both to confirm
our theoretical predictions of their behavior and to obtain
new conclusions where no analytical results are available.

A. Methods and Tests

As in [11], we shall solve the diffusion equation (38)
using a Monte Carlo method for the equivalent (Ito)
stochastic differential equation

dri = bij(r, t)dWj(t), i, j = 1, ..., d (106)

where Einstein summation convention is used, Wj(t) is
a vector Wiener process and 2Kij = bikbjk, with lower-
triangular square-root bij calculated by Cholesky decom-
position. We can integrate the stochastic equations (106)
using the standard Euler-Maruyama scheme:

ri(tk) = ri(tk−1) + bij(r, tk−1)
√
∆tNk,j i, j = 1, ..., d

tk = tk−1 +∆t (107)

where Nk,j for j = 1, .., d, k = 1, 2, 3, ... is an indepen-
dent, identically distributed sequence of standard normal
random variables. The normal random variables are ob-
tained from uniform pseudorandom numbers generated
by the Mersenne Twister algorithm [33] which are then
transformed to normal by the Box-Muller method [34].
Unfortunately, the ranges of time that we must cover

are so large that it is completely impossible for us to use a
constant timestep ∆t. Instead we use an adaptive scheme
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similar to that of [11]. The stepsize is determined over
geometric intervals T (m) < t < T (m+ 1) with

T (m) = A · 10Bm for m = 0, 1, 2, ...,M. (108)

The choice of the constants A, B and M is explained in
Appendix A. In each such interval, we take

∆t = C∆min

(
r2

KT (r, t)
,∆T

)
(109)

where ∆T = T (m+1)−T (m) and KT is the trace ofKij .
C∆ is the main parameter controlling the size of the time
step within the intervals T (m) < t < T (m+ 1). We per-
formed convergence tests for values of C∆ ranging from
1 to 10−6 to evaluate the quality of the timestepping.
The results of these tests are presented in Appendix B.
A large number S of independent samples of the process
(106) are generated with initial separations r(t = 0) = r0
uniformly distributed over a sphere of radius |r0|, and
statistics obtained by averaging over realizations. Most
of the results presented below used S = 104.
There is considerable debate in the literature, how-

ever, whether such adaptive time-stepping schemes lead
to converged, unbiased results for the statistics [11, 13–
15]. To test our numerical methods, we found it useful
to consider somewhat simpler diffusion models where ex-
act analytical results are available for comparison. The
models with a power-law diffusivity

KL(r) = Drζ , 0 < ζ < 2 (110)

have been very well studied. It has been shown that the
long-time evolution is self-similar, with a dispersion law

〈r2(t)〉 ∼ g(Dt)2/γ , g =
γ4/γΓ

(
d+2
γ

)

Γ
(

d
γ

) (111)

and a stretched-exponential PDF

P (r, t) =
1

〈r2(t)〉d/2 exp

[
−α

( r

〈r2(t)〉1/2
)γ

+ β

]
(112)

where γ = 2− ζ,

α =

[
Γ((d+ 2)/γ)

Γ(d/γ)

]γ/2
, (113)

β = ln

[
γ(Γ((d+ 2)/γ))d/2

(Γ(d/γ))(d+2)/2

]
, (114)

with the normalization condition
∫∞
0

rd−1P (r, t)dr = 1.
See [35], eqs.(3.14),(3.22) and the general, self-similar so-
lutions found in [16] for the case of finite Corrsin in-
variant [51]. Incidentally, note that the mean-field equa-
tion (91) leads to power-law growth with the same ex-
ponent 2/γ as in (111) but with a different prefactor
gMF = (γ(d + ζ))2/γ than g. It is not hard to show

that gMF > g, with gMF → g as d → ∞ from Stirling’s
approximation.
Notice that the inertial-range model (84) reduces to

the time-independent diffusivity

KL(r,∞) = C′
Lε

2/3r5/3/v0, (115)

as long as r ≪ v0t. This is a special case of the power-law
diffusivity (110) with ζ = 5/3, or γ = 1/3, so that the
mean-square separation grows as t6. This case is thus
most suitable to test our numerical methods. For the
purposes of comparison in the next section with the more
complex model (84), we take D = C′

Lε
2/3/v0 with C′

L =
1.256 and d = 3 so that

〈r2(t)〉 ∼ gPD
6

ε4t6

v60
(116)

with the power-law diffusion model predicting gPD
6

.
=

15.968. This model also has the self-similar PDF of form
(112) with d = 3, γ = 1

3 , so α
.
= 11.3714, β

.
= 10.1767.

We now employ the numerical scheme discussed ear-
lier to see which of these exact results we can success-
fully reproduce. As we see in Fig. 1, long ranges of
perfect t6 power-laws can be obtained in log-log plots.
Furthermore, Fig. 2 is a semilog plot of the dispersion
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FIG. 1: Monte Carlo results for 〈|r(t)|2〉 in the power-law
diffusion model (115) with S = 104 and C∆ = 1.

compensated by the analytical result (116). It shows
that the prefactor gPD

6 is reasonably well calculated by
our Monte Carlo for choices of the constant C∆ equal
or smaller than 0.1 Finally, Fig. 3 shows the logarithm
of the PDF of pair separations r plotted versus r1/3 at
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FIG. 2: Monte Carlo results for 〈|r(t)|2〉 in the power-law
diffusion model (115) with S = 104 and various C∆, compen-
sated by the analytical result (116).

14 different times in the long t6-range. Self-similarity is
well confirmed by the collapse of rescaled curves for dif-
ferent times, and the analytical result (112) is accurately
reproduced up to almost 16 rms values of the separation.
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FIG. 3: Logarithm of the rescaled PDF of pair-separations at
14 different times in the t6 range, for the power-law diffusion
model (115). Monte Carlo results for S = 105 and C∆ =
1. The straight line marked with circles (◦) is the analytical
result (112) for d = 3 and γ = 1/3.

Our conclusion from these exercises is that the adap-

tive time-stepping scheme should be adequate for expo-
nents of dispersion power-laws, and even for prefactors
and PDF’s with good accuracy. Since the primary issue
in this work is the exponents, we shall employ the adap-
tive schemes when necessary to cover extensive ranges
where constant time-steps are unfeasible. As additional
checks on our numerical results for exponents from adap-
tive schemes, we test for convergence using constants C∆

ranging from 1 to 10−6. We also compare our Monte
Carlo results for the diffusion equation with a separate
numerical solution of the mean-field equation (91), in-
tegrated with a Fortran 90 implementation of the Watt
and Shampine RKF45 ODE solver [36, 37]. This stan-
dard ODE integration method is also adaptive, but with
variable time-step determined by preselected error toler-
ances. We therefore can have confidence that the numer-
ical results for the mean-field theory are well converged.

B. The Inertial-Range Model

We consider first the model (84) obtained for Kol-
mogorov scaling exponents in the limit L ≫ 1 and thus
physically applicable only for separations r in the inertial
range of scales. This diffusion model applies for both the
frozen velocity case and the finite-time correlated case
(since β = 2/3 < 1). For the purpose of simplifying
the numerical work, we opted not to use the exact scal-
ing function J(x) given by integral (67), which in three
dimensions yields a complicated expression in terms of
generalized hypergeometric functions. Instead, we built
a function with the same asymptotic behaviors (68) as
the true J(x). We took

J(x) = J∞erf(λx) =

{
x x ≪ 1
J∞ x ≫ 1

(117)

with λ =
√
π

2J∞

and J∞ =
√

π
2
D

(5/3)
1

D
(2/3)
1

.
= 0.6396. Our ex-

pectation was that only these general features should be
sufficient to observe the scaling regimes predicted in the
previous section. This idea was borne out by the nu-
merical results. In Fig. 4 we plot 〈|r(t) − r0|2〉 for the
inertial-range diffusion model with r0 = 10−20. On the
same graph we plot for comparison the numerical solu-
tion r2(t) − r20 of the mean-field equation (91). The two
agree very well, and clearly exhibit the four predicted
regimes with power-laws ∝ t2, t1, t6 and t3, successively.
A convergence analysis of our adaptive scheme for these
results is presented in Appendix B.
To further test the theoretical predictions, we inves-

tigate the crossover times between the different regimes
and the prefactors of the scaling laws. We use C∆ = 0.1,
the largest value that gave accurate results for pref-
actors in the test problem. In Fig. 5(a), for exam-
ple, we show for various values of r0/L the quantity
〈|r(t) − r0|2〉 compensated by the Batchelor-range pre-
diction 11

3 CL(ǫr0)
2/3t2 plotted versus the time t/τsw
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FIG. 4: Numerical results for 〈|r(t)−r0|
2〉 in the inertial-range

model (84): Monte Carlo solution of the diffusion equation (◦)
with C∆ = 1, S = 104 and mean-field approximation (–).

rescaled with the sweeping time τsw = r0/v0. The Batch-
elor prediction fits the Monte Carlo data to within
0.13% relative error and the end of this regime is very
close to t/τsw = 1. We similarly show in Fig. 5(b)
for the same choices of r0/L the mean-square separa-
tion 〈|r(t) − r0|2〉 compensated by the Kraichnan-like

“diffusive-range” prediction 14
3 C′

Lǫ
2/3r

5/3
0 t plotted ver-

sus t/tto with the “takeoff time” tto given by equation
(98). The diffusive-range prediction is verified with a
1.8% error and the end of this regime quite convincing
scales as ∼ 10−2tto. In Fig. 5(c) we show the corre-
sponding plot of mean-square separation compensated
by ε4t6/v60 versus t/tto. We see that a t6 range begins at
time ∼ 102tto and extends to the end-of-sweeping time
tes = v20/ε with a prefactor gMC

6 ≃ 15.97 of the t6-law.
This Monte Carlo value is equal within numerical errors
to the exact value gPD

6 for the power-law diffusion model
(115). It is interesting that the transition between the t1

and t6 scaling ranges is quite broad, covering about four
decades. We show finally in Fig. 5(d) the mean-square
separation compensated by the Richardson prediction εt3

plotted versus t/tes. For t > tes there is a clear t3 regime
with Richardson constant gMC

3 ≃ 9.00. This value agrees
very well with the exact constant for a self-similar dif-
fusion model with diffusivity KL(r, t) = CL(εr)

2/3t and
CL = 1.9636. Of course, as emphasized earlier, this entire
regime of the inertial-range diffusion model is unphysical
and will not be observed in KS model simulations.
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FIG. 5: Monte Carlo results for 〈|r(t) − r0|
2〉, C∆ = 0.1,

S = 104. Each panel shows the same curves with different
scalings. (a) Batchelor regime. (b) Kraichnan regime. (c)
t6 regime. (d) Richardson regime. The initial separations
are r0/L = 10−5(◦), 10−8(�) , 10−11(⊲), 10−14(▽), 10−17(⋄),
10−20(⊳).
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C. Comparison with KS Models

Our derivation of diffusion model approximations was
sufficiently general that we can consider cases of more di-
rect relevance for KS simulations, with any energy spec-
trum and without the approximation of large L. Using
the formula (76), which is exact for frozen turbulence,
one obtains by inverse Fourier transform in 3D that

Dij(r, t) =

√
π

2

∫
Ĉij(k)

v0k
erf

(
v0kt√

2

)
eik·r d3k. (118)

It is convenient to assume statistical isotropy, so that

Ĉij(k) =
E(k)

4πk2
Pij(k), (119)

where Pij(k) is the projection operator onto the subspace
orthogonal to k. The trace of the diffusivity tensor be-
comes

DT (r, t) =

√
2π

v0

∫ ∞

0

dk

k
E(k)erf

(
v0kt√

2

)
sin(kr)

kr
(120)

and DL(r, t) can be recovered from

DL(r, t) =
1

rd

∫ r

0

DT (ρ, t) ρ
d−1dρ.

Finally, the diffusivity that appears in equation (60) is

KL(r, t) = 2(DL(0, t)−DL(r, t)).

To apply these results to the KS models [11, 13–15],
let us recall that those models have a discrete set of
wavenumbers distributed as

kn = k1

(
kN
k1

) n−1
N−1

, (121)

for n = 1, ..., N where k1 = 2π/L, kN = 2π/η and η is
the analogue of the Kolmogorov dissipation length. The
energy spectrum generally adopted in these models is

E(k) = CKε2/3
N∑

n=1

k−5/3
n δ(k − kn)∆kn (122)

where ∆kn = (kn+1 − kn−1)/2 and CK = 1.5 is the Kol-
mogorov constant, so that CL

.
= 1.9636 [52]. Here ε is a

constant with dimensions of energy dissipation per mass
chosen to prescribe values of the rms velocity:

v0 =

√
2

3

∫ kN

k1

E(k)dk. (123)

The formula (120) with the KS spectrum (122) yields

DT (r, t) =
CKǫ2/3

v0r

√
2π

N∑

n=1

erf
(

v0knt√
2

)

k
11/3
n

sin (knr)∆kn

(124)

The assumption of isotropy in this formula is only ap-
proximately valid for KS simulations. It would be pos-
sible to use the general result (118), without assum-
ing isotropy, which would lead to a discrete sum over
wavevectors rather than wavevector magnitudes. How-
ever, this would make numerical implementation a bit
more difficult, without essentially different physics.

We now present simulation results for diffusion models
based on Gaussian velocity fields with the spectra of KS
models, or, to be brief, “KS diffusion models” . The same
Monte Carlo method was employed as for the inertial-
range model. In all of our numerical studies we take v0 =
L = 1. We tried various values for the number of modes
N and we found that the numerical results on dispersion
laws in log-log plots for N & 100 are not significantly
different (see Appendix C). All of our presented results
are for N = 500, a comparable number to that in the KS
studies [11, 13–15]. We have also followed the practice
in the KS literature of choosing the smallest length-scale
η = r0/10, for initial separation r0. We have checked
that taking η < r0/10 leads to identical results. We have
done no systematic study of the opposite case η > r0/10,
with particles starting in the “dissipation range”, when
an initial regime of exponentially rapid separation would
be expected.

Our first set of numerical experiments investigated
whether these more realistic models would exhibit the
power-law scaling ranges predicted in section III, with a
kN/k1 sufficiently large. In Fig. 6 we plot the numerical
results for the mean-square separation 〈|r(t) − r0|2〉 ob-
tained from the KS diffusion model with r0 = 10−20. We
observe very clearly the predicted ranges with power-laws
t2, t1, t6 and, lastly, the diffusive t1 range at long times
expected for a model with finite L. For comparison, we
also plot numerical solutions of the mean-field equation
(91) using the diffusivity (124). As before, the mean-
field theory predictions are quite close to the full Monte
Carlo solution of the diffusion model. Lastly, we plot
the solution of the mean-field equation for the inertial-
range large-L diffusivity, with the same choice of con-
stants L, v0 and ε. As expected, the dispersion law from
this approximation agrees quite well with that of the KS
diffusion model for r < L, but predicts a spurious t3

power-law range for r > L. The good agreement justi-
fies a posteriori our simplification of the scaling function
J(x) in section IVB. Our most important general con-
clusion from this set of experiments is that the KS diffu-
sion models and, we believe, the KS models themselves
should exhibit the above four scaling ranges with succes-
sive power-laws t2, t1, t6 and then t1 again, whenever the
scale ratio kN/k1 is sufficiently large.

In order to discriminate between various alternative
theories, it is useful to compare predictions not only for
mean-square separations but also for the full probability
density P (r, t). In Fig. 7 we plot the Monte Carlo proba-
bility distribution calculated for 23 different times spread
within the t6 range. These are rescaled to test for self-
similarity and collapse quite well. It should be empha-
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FIG. 6: Numerical results for 〈|r(t) − r0|
2〉 in the KS diffu-

sion model (124), kN/k1 = 1021: Monte Carlo solution of the
diffusion equation (◦) with C∆ = 1, S = 104 and mean-field
(–). Also MC results (· · · ) for inertial-range model (84).
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FIG. 7: Logarithm of the rescaled PDF of pair-separations
at 23 different times in the t6 range, for KS diffusion model
with kN/k1 = 1021. Monte Carlo results for S = 104 and
C∆ = 1. The straight line marked with circles (◦) is the
analytical result (112) for d = 3 and γ = 1/3.

sized that the overall evolution of our IR and KS diffusion
models is not self-similar, globally in time. This can be
seen most clearly in the existence of time ranges with dis-
tinct power-law growth laws, whereas a truly self-similar
evolution should have just one power-law. In a suffi-
ciently long t6 range, however, one should expect a self-
similar evolution. For example, the inertial-range model
(84) in the t6 range reduces to the time-independent dif-
fusivity KL(r,∞) = C′

Lε
2/3r5/3/v0, except for r ≫ v0t.

Since r ∼ v0t is nearly the maximum particle separation
that can be achieved in the time t, only a very tiny large-r
tail will experience a different eddy-diffusivity than this.
In Fig. 7 we also compare the Monte Carlo results for the
KS diffusion model with the exact parameter-free predic-
tions (113),(114) of the power-law diffusion model (110)
for d = 3 and ζ = 5/3. The agreement is reasonably
good. The curves collapse to a straight line with the
stretching exponent 1/3 but with a slightly steeper slope
than the power-law diffusion model. This suggests that
if our Monte Carlo could be carried out for a sufficiently
long t6-range, then the PDF would approach the exact
self-similar form of the power-law model.

We have conjectured that the growth laws of the KS
models themselves, asymptotically for kN/k1 ≫ 1, are
the t2, t1, t6 and t1 powers that we have found in the
KS diffusion models. How can this be reconciled with
the t9/2 law predicted in [11] and verified to greater or
lesser extent in subsequent KS simulations [11, 14, 15]?
We argue that the observed t9/2 is an artefact of the
modest kN/k1 ratios achieved in these simulations rela-
tive to ours, which tends to “blend” the distinct scaling
ranges, in particular the early-time t1 and t6 ranges, be-
tween which lies a broad transition zone. In support of
this argument, we have performed a sequence of Monte
Carlo simulations of the KS diffusion model with scale
ratios kN/k1 = 103, 104, 105, 106. The last ratio is cho-
sen to correspond roughly to that employed in the pre-
vious KS simulations [11, 14, 15]. Because the range of
time-scales is not so great, we have been able to carry out
the time-integration not only with the adaptive algorithm
employed up until now, but also with a constant time step
∆t = 0.1 η

v0
which resolves the effects of even the small-

est eddies, equivalent to that used in recent KS simula-
tions [14, 15]. The results of the two time-advancement
schemes for the dispersion curves are identical when plot-
ted in log-log. As illustrated in Fig. 8, a t9/2 regime
seems to appear as we increase the ratio kN/k1. This fig-
ure should be compared with Fig. 2 of [14] and Fig. 1
of [15], which it matches very closely. Although we see a
similar “t9/2-range” at the values of kN/k1 used in pre-
vious KS simulations, covering 1-2 decades in time, it is
clear from our results in Fig. 6 that this is only a tran-
sitional regime of the KS diffusion model. In fact, for
the case kN/k1 = 106 which shows the long “t9/2-range”
we find tto

.
= 10−2 and thus the broad transition zone

between the t1 and t6 laws covers the interval from 10−4

to 100. This includes all of the apparent “t9/2-range”. If
we go to kN/k1 = 108, the power-law steepens into a
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t5-law. At still larger values of kN/k1 four asymptotic
scaling ranges emerge, with distinct power-law scalings
of t2, t1, t6 and t1. We expect that the same is true of the
KS models themselves at sufficiently large kN/k1.
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FIG. 8: Monte Carlo results for 〈|r(t)|2〉 in KS diffusion model
for various values of kN/k1, with ∆t = 0.1 r

v0
, S = 104.

A pertinent question is where the predicted transition
away from a t9/2 power should begin. The numerical
results for our KS diffusion model imply that this tran-
sition should occur around kN/k1 = 107−8. This does
not agree with the KS results of [11], who found that
the t9/2 scaling remains valid up to kN/k1 = 1010 (see
Fig.12 and especially Fig.14b in [11]). It is possible that
those results are vitiated by the adaptive time-integration
scheme employed in that work. On the other hand, [14]
using a fixed, small time-step that resolved sweeping ef-
fects found a t9/2 power-law in KS with kN/k1 = 108,
where our diffusion model produces a distinctly differ-
ent t5 power. It is therefore worth considering possible
sources of discrepancy between our KS diffusion model
and KS itself. In the first place, it must be admitted that
the Markov approximation we invoked in section II B is a
plausible but uncontrolled approximation. It is implicit
also in the theoretical discussion of [11], but it may not
be well-satisfied in KS, particularly for the frozen veloc-
ity case [53]. In addition, there are important differences
in the underlying model assumptions of our work and the
KS models of [11, 14]. Our KS diffusion model in (124)
assumes a discrete set of wavenumbers with magnitudes
in a geometric sequence, just like KS. However, our KS
diffusion model is exactly isotropic, with the energy dis-
tributed evenly over the spheres at these radii, whereas

in KS there are only a single pair of discrete modes for
each wavenumber magnitude and isotropy is only approx-
imate at high wavenumbers. Perhaps the most significant
difference in the model assumptions is that our diffu-
sion theory assumes an exactly Gaussian random velocity
field. The KS velocity fields instead converge to Gaussian
in physical space [54] only for the limit N → ∞. Since KS
calculations in the cited works use N only a few thousand
at most, the Gaussian assumption is only approximately
valid in physical space and not at all in Fourier space.
We have employed exactly Gaussian velocity fields in our
theory because this permits analytical calculations and,
most importantly, because the Thomson-Devenish argu-
ments on sweeping effects are so general that they apply
to a wide range of models of Eulerian turbulence, includ-
ing Gaussian velocity fields. The details of the transition
to the asymptotic high Reynolds-number scalings could,
however, depend upon the precise model adopted for the
advecting velocity field.
Finally, we note that for kN/k1 < 104, the short range

of superdiffusive growth of dispersion in our KS diffusion
model approximates a t3-law. This agrees with the obser-
vations of [13, 15] for KS models. Note, however, that the
physics is completely different from turbulent Richardson
diffusion, which would allow t3 ranges of arbitrary extent.
In fact, the narrow range of such a power-law in our KS
diffusion model arises only because of the “merging” of
many distinct ranges. In particular, the exponent of the
apparent power-lawmust decrease with decreasing kN/k1
to match the t1-law starting at r = L, until finally the
superdiffusive range disappears entirely when kN/k1 ≈ 1.

V. CONCLUSIONS

We have derived in this paper a diffusion equation for
particle-pair dispersion in synthetic Eulerian turbulence
modelled by Gaussian velocity ensembles. The main an-
alytical result is the formula (54) for the 2-particle dif-
fusivity and its special cases, the associated time-scale
(65) for frozen velocities and the diffusivity (76) for fi-
nite time-correlated velocities. Although the descrip-
tion of pair-dispersion as a diffusion process is not ex-
act (except in certain limiting cases), it arises from a
well-motivated set of analytical approximations. Our re-
sults confirm the physical argument of Thomson & De-
venish [11] that pair-dispersion in such models is funda-
mentally altered by sweeping decorrelation effects, not
experienced by particle pairs in hydrodynamic turbu-
lence. Thus, the t3-law observed in previous simulations
with synthetic turbulence is quite likely an artefact ei-
ther of the numerical approximations employed [3] or of
the shortness of the inertial ranges [2, 4–8]. However, we
argue as well for a similar origin of the t9/2-law proposed
by Thomson & Devenish [11] for synthetic turbulence en-
sembles with zero mean velocities. Solutions of our diffu-
sion model for such ensembles at Reynolds numbers com-
parable to those employed in KS simulations that show
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a t9/2-law range reproduce that finding, but our model
yields instead distinct t2, t1, t6 and t1-ranges at higher
Reynolds numbers. We thus argue that the asymptotic
high Reynolds-number behavior of particle dispersion in
synthetic Eulerian turbulence with zero mean-velocities
is the same as that predicted by Thomson & Devenish
[11] for ensembles with large mean velocities.
Synthetic models of turbulence such as Kinematic Sim-

ulations have been used to investigate turbulent trans-
port of passive objects (particles, lines, etc.) in such var-
ied problems as environmental flow, aeroacoustics, kine-
matic magnetic dynamo, and superfluids [38, 39]. How-
ever, such numerical studies must clearly be employed
with utmost caution, especially to derive conclusions
about turbulent transport at very high Reynolds num-
bers. Furthermore, the difference in sweeping effects in
synthetic Eulerian turbulence and in real hydrodynamic
turbulence could imply substantially different physics
even at relatively low Reynolds numbers. It is notewor-
thy that several numerical simulations of pair dispersion
in hydrodynamic turbulence have observed not only the
t3-law but also the stretched-exponential probability den-
sity function (PDF) of separations or “distance-neighbor
graph” predicted by Richardson, already at modestly
high Reynolds numbers [29, 40, 41]. None of the KS
simulations which have observed a t3-law of which we
are aware [2–8] have also reported observing Richard-
son’s prediction for the self-similar PDF. The paper [6]
observed stretched-exponential PDFs of pair separation
distances in two-dimensional KS that are in good agree-
ment with low Reynolds-number experiments in quasi-
2D stratified layers [42, 43], but which do not have the
2/3 stretching exponent in Richardson’s PDF as observed
in the higher Reynolds-number simulations [29, 40, 41].
This is another indication that the “t3-law” observed in
those KS is a non-asymptotic and non-Richardson effect
arising from rather different physics. For engineering or
environmental modeling purposes it may frequently not
matter what is the precise origin of the t3-law. However,
in cases where knowledge of extreme or tail events is im-
portant (e.g. the range of dispersal of trace amounts of
a dangerous contaminant), KS could lead to erroneous
predictions. Discrepancies in particle dispersion proper-
ties between KS and hydrodynamic turbulence will grow
even larger as the Reynolds numbers increase. There are
flows with very extended inertial ranges in astrophysics
(e.g. over eleven decades of Kolmogorov spectrum in
the interstellar medium [44]), where actual particle dis-
persion properties must be quite different than what is
predicted by KS at the corresponding Reynolds numbers.
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Appendix A: Time-Discretization Scheme for the

Monte Carlo Integrations

To construct our time-discretization scheme, we began
by choosing the sequence of times

T (m) = A · 10Bm for m = 0, 1, 2, ...,M. (A1)

at which we wish to record our numerical observations.
To guarantee that we cover the relevant range of times
to observe all of the distinct regimes, we choose T (M) ≫
tes = v20/ε = 0.292 and T (0) ≪ tsw = r0/v0 = r0 (sub-
stituting our parameter values v0 = 1 and ε = 3.42). We
took T (M) = 104 and T (0) = 10−5r0. We chose B = 1

250
so that there are 250 recorded points per decade, remain-
ing the same as we vary r0. Thus

A = 10−5r0, M = 250 log10(
109

r0
).

Since we chose r0 to be negative integer powers of 10, M
defined as above is also an integer.
In each interval T (m) < t < T (m + 1) we took the

time-step for the numerical solution of the stochastic dif-
ferential equation to be

∆t = C∆min

(
r2

KT (r, t)
,∆T

)
(A2)

with ∆T = T (m+ 1)− T (m) and C∆ ranging from 1 to
10−6. This choice guarantees two properties. First, the
square separation r2 never changes by more than a frac-
tion C∆ of its current value in one step. Second, the time-
step never exceeds ∆T, so that every interval contains at
least one point. Since the time series of separations r(tk)
generated numerically do not hit the recording times ex-
actly, we calculate r(T (m)) by linear interpolation using
the nearest times before and after T (m).



19

Appendix B: Convergence in Time-Step

We tested the dependence of the log-log plots of dis-
persion on the value of C∆. We plot in Fig. 9 the Monte
Carlo results for values of C∆ ranging from 1 to 10−6.
There is no observable change in the behavior.

10
−20

10
−10

10
010

−20

10
−10

10
0

10
10

10
20

10
30

10
40

t/tes

〈|
r
−

r
0
|2
〉/
r2 0

 

 

C∆ = 1

C∆ = 10−1

C∆ = 10−2

C∆ = 10−3

C∆ = 10−4

C∆ = 10−5

C∆ = 10−6

FIG. 9: Monte Carlo results for 〈|r(t) − r0|
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range diffusion model calculated with S = 102 samples and
varying C∆ = 1 to C∆ = 10−6.

Appendix C: Convergence in Fourier Modes

We also tested the dependence of our dispersion results
for the KS diffusion models on the number of Fourier

modes N . We show in Fig. 10 log-log plots of the dis-
persion curves for different values of N, obtained from
Monte Carlo calculations with C∆ = 1 and S = 104.
The results are nearly indistinguishable for N & 100. All
of our simulations in the text used N = 500.
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