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Using only dimensional considerations, Monin and Obukhov proposed a ‘universal’ stability cor-
rection function φc(ζ) that accounts for distortions caused by thermal stratification to the mean
scalar concentration profile in the atmospheric surface layer when the flow is stationary, planar
homogeneous, fully turbulent, and lacking any subsidence. For nearly six decades, their analysis
provided the basic framework for almost all operational models and data interpretation in the lower
atmosphere. However, the canonical shape of φc(ζ) and the departure from the Reynold’s analogy
continue to defy theoretical explanation. Here, the basic processes governing the scalar-velocity co-
spectrum, including buoyancy and the scaling laws describing the velocity and temperature spectra,
are considered via a simplified co-spectral budget. The solution to this co-spectral budget is then
used to derive φc(ζ), thereby establishing a link between the energetics of turbulent velocity and
scalar concentration fluctuations and the bulk flow describing the mean scalar concentration profile.
The resulting theory explains all the canonical features of φc(ζ), including the onset of power-laws
for various stability regimes and their concomitant exponents, as well as the causes of departure
from Reynold’s analogy.

I. INTRODUCTION

The exchange of heat, water vapor, ozone, carbon
dioxide and other greenhouse gases between the land or
ocean and the lower atmosphere is complicated by the
co-existence of shear- and buoyancy-generated (or dissi-
pated) turbulence. Monin and Obukhov Similarity The-
ory [1, 2], hereafter referred to as MOST, describes how
thermal stratification distorts the mean scalar concentra-
tion (C) profile in the so-called atmospheric surface layer
using only dimensional analysis. The atmospheric sur-
face layer is a region whose lower bound is much larger
than the height of the roughness elements at the ground
surface and whose upper bound is not too high up in
the atmosphere to be impacted by Coriolis effects. Thus,
the atmospheric surface layer region encompasses much
of the human and biological processes. Despite some
six decades after its inception, MOST remains the ba-
sic ‘work-horse’ employed when coupling land or oceanic
fluxes to the atmospheric state in virtually all climate,
oceanic, regional atmospheric, hydrological and ecologi-
cal models [3]. MOST introduces a dimensionless stabil-
ity parameter ζ that measures the height at which me-
chanical production of turbulent kinetic energy balances
the buoyancy production (or destruction). Distortions
produced by thermal stratification to the otherwise loga-
rithmic mean scalar concentration profile can then be en-
coded in a so-called ‘universal’ stability correction func-
tion φc(ζ), which so far has been empirically determined
from experiments [5]. The shape and universal character
of φc(ζ) have been documented across several field ex-
periments for heat, and other scalars (e.g. water vapor),
and embody a large corpus of data on scalar exchange in
the atmospheric surface layer as evidenced by Figure 1.

Yet, despite their wide-spread usage, the canonical form
of these scalar stability correction functions continue to
defy theory, even for the most idealized flow conditions.
The aim of this work is to present a co-spectral theory
that predicts the canonical shape of φc(ζ), and by exten-
sion, the scalar eddy-diffusivity for such idealized flow
conditions. The theory provides an analytical link be-
tween φc(ζ) and the basic turbulent processes governing
scalar transport that result in the universal character of
φc(ζ). It also establishes the organizing framework for di-
agnosing why several field experiments report anomalous
φc(ζ) over oceans and land [10, 11].

II. THEORY

As earlier noted, MOST is restricted to idealized
incompressible atmospheric surface layer flows associ-
ated with a number of simplifications to the Reynolds-
averaged longitudinal momentum balance and scalar con-
tinuity equations given by
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where t is time, xj = (x, y, z) represents the longitudi-
nal (= x), lateral (= y), and vertical (= z) directions,
respectively. The longitudinal direction is aligned along
the mean wind direction so that the mean lateral veloc-
ity is zero. The U , C, and P represent the Reynolds-
averaged longitudinal velocity, scalar concentration, and
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FIG. 1. (Color on-line): The universal shape of φc(ζ) for
air temperature determined from the Kansas experiment in
the atmospheric surface layer (lines). Note the linear increase
of φc(ζ) with increasing ζ for stable atmospheric conditions
(ζ > 0) and the power-law decline in φc(ζ) with increasing −ζ
for unstable atmospheric conditions (ζ < 0). The so-called
Businger-Dyer (BD) stability correction functions for φm(ζ)
and φc(ζ), inferred from the Kansas experiment, are shown as
lines. For stable conditions, φc(ζ)=φm(ζ), where such equal-
ity between the momentum (φm(ζ)) and scalar (φc(ζ)) sta-
bility correction functions is often referred to as Reynolds
analogy. For unstable conditions, φc(ζ)=φm(ζ)2, a signature
of a break-down of Reynold’s analogy. Other experiments
on air temperature (C=T ) and water vapor (C=q) exchange
from different geographic regions around the world are also
presented for illustration (as symbols). These experiments
include the influential Kansas data [4], the data collected in
the towns of Kerang and Hay [5] on heat and water vapor ex-
change in Australia, the data on heat exchange over the Pam-
pas in Brazil [6], the long-term (day-time only) heat exchange
data from the Steppe region in Russia [7], the long-term data
on heat exchange from the island of Gotland in the Baltic
Sea [8], data for water vapor exchange using drag plate (to
estimate u∗) and weighing lysimeter (to estimate water vapor
fluxes) from University of California Davis, California, USA
[9].

pressure, respectively, ρ is the mean air density, ν is the
air kinematic viscosity, Dm is the molecular diffusivity
of scalar C in air, u′

i = (u′, v′, w′) are the component-
wise turbulent velocity excursions in direction xi, c

′ is
the turbulent scalar concentration fluctuation, and un-
less otherwise stated, primed quantities represent turbu-
lent excursions from the Reynolds-averaged mean state
represented by overbar or capital letter symbols. Hence,
the instantaneous velocity and concentration can be ex-
pressed as ui = Ui + u′

i and c = C + c′. As discussed
elsewhere [2], the proper averaging operator that must
be employed on these equations is ensemble averaging;
however, measurements in the atmospheric surface layer

are routinely presented as time averages. Given the near
impossibility of repeating experiments for identical me-
teorological states in natural conditions to compute en-
semble averages, it is customary to assume atmospheric
surface layer flows are ergodic so that ensemble averaging
and time averaging converge. It is for this reason that
time averaging periods used in atmospheric surface layer
studies are on the order of 1 hour so as to ensure that
a single period includes an ensemble of eddies (usually
characterized by time scales of tens of seconds) collected
under similar meteorological conditions. Hereafter, the
term Reynolds averaging is used to indicate both time
averaging when interpreting field measurements, or en-
semble averaging when interpreting equations as is con-
ventional in atmospheric turbulence studies.
MOST assumes that the flow is (i) characterized by

high Reynolds and Peclet numbers (i.e. neglect molecular
viscosity and diffusivity relative to their turbulent coun-
terparts), (ii) stationary (i.e. ∂(.)/∂t = 0) and planar-
homogeneous (i.e. ∂(.)/∂x = ∂(.)/∂y = 0), and (iii)
lacking any subsidence (i.e. U3 = W = 0) and mean
horizontal pressure gradient (i.e. ∂P/∂x = 0). For these
idealized states, the mean longitudinal momentum bal-
ance and the mean scalar budget reduce to ∂w′u′/∂z = 0
and ∂w′c′/∂z = 0. Hence, the turbulent stresses (i.e.
w′u′) and scalar fluxes (i.e. w′c′) do not vary with z.
It is for this reason that the atmospheric surface layer
subjected to MOST assumptions is often labeled as the
constant-stress or constant-flux layer [5].

A. Background and Definitions

The stability correction functions for momentum
φm(ζ) and for an arbitrary scalar φc(ζ) in the atmo-
spheric surface layer are defined as
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w′u′
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where w′u′ = −u2
∗
, u∗ is the friction velocity and does

not vary with z, S(z) = ∂U(z)/∂z is the mean velocity
gradient, Γ(z) = ∂C(z)/∂z is the mean scalar concen-
tration gradient, kv ≈ 0.4 is the von Karman constant,
ζ = z/L where L = −u3

∗
/(kvβw′T ′) is the Obukhov

length [1, 12, 13], β = g/Ta, g is the gravitational accel-
eration, Ta is the absolute mean air temperature, w′T ′

is the sensible heat flux, and Fwc(z,K) and Fwu(z,K)
are the scalar flux and momentum flux co-spectra for
wavenumberK at a given height z. In principle, Fwu and
Fwc should be integrated over the surface of a sphere of
radius K, where K is the scalar wavenumber. However,
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because co-spectra reported in conventional atmospheric
surface layer studies are calculated from single point mea-
surements [14] and then converted to streamwise one-
dimensional cuts using Taylor’s frozen turbulence hy-
pothesis [15, 16], one-dimensional co-spectra (and spec-
tra) are used here and K can be interpreted as the
wavenumber in the streamwise direction. The co-spectra
are height-dependent; however, upon integrating them
across all the wavenumber range, they become indepen-
dent of z and given by w′u′ and w′c′ (both fluxes are
height independent as previously shown). A specific il-
lustration of this height independence of the integrated
co-spectra is discussed later. The atmospheric surface
layer flow is referred to as unstable when ζ < 0 (e.g. when
the surface heats up during the day so that w′T ′ > 0)
and stable when ζ > 0 (e.g. when the surface cools dur-
ing nighttime so that w′T ′ < 0). These definitions for
φm(ζ) and φc(ζ) imply that the turbulent diffusivities
for momentum and scalars are Ktm = kvu∗z/φm(ζ) and
Ktc = kvu∗z/φc(ζ).
In the inertial subrange, a range delineated by eddy

sizes much smaller than the integral length scale of the
flow but much larger than the Kolmogorov viscous dis-
sipation length scale [17, 18], the co-spectra Fwu(z,K)
and Fwc(z,K) are classically given by [14, 19]

Fwu(z,K) = CwuS(z) ε(z)
1/3K−7/3, (5)

Fwc(z,K) = CwcΓ(z) ε(z)
1/3K−7/3, (6)

where ε(z) is the mean turbulent kinetic energy dissi-
pation rate, and Cwu and Cwc are similarity constants
(discussed later). Because the flow in the inertial sub-
range is locally homogeneous and isotropic, the scalar
wavenumber K can be reasonably approximated by its
one-dimensional longitudinal cut as earlier noted. A
number of studies have also shown that inertial subrange
scaling laws are not sensitive to the local isotropy as-
sumption [20]. Stated differently, inertial subrange scal-
ing laws extend over a much broader range of K values
within the inertial subrange when compared to the range
of K values inferred from locally-isotropic predictions of
velocity components’ spectral ratios. If the turbulent flow
field is energetically near its equilibrium state with the
production and destruction of turbulent kinetic energy
in balance, the turbulent kinetic energy budget equation
results in

ε(z) =
u3
∗

kvz
(φm(ζ)− ζ) . (7)

When the integrated effects of all eddies much larger
than z do not significantly contribute to the co-spectra
Fwu(z,K) and Fwc(z,K) (this issue will also be revis-

ited later), then it follows that −w′u′ =
∞
∫

1/z

Fwu(z,K)dK

and w′c′ =
∞
∫

1/z

Fwc(z,K)dK. As earlier noted, the co-

spectral expressions explicitly contain z; however, upon

integration with respect to K, the z cancels and the
constant stress and constant flux assumptions are pre-
served provided z is treated independent of K in the
integration with respect to K. To illustrate, consider
the near-neutral condition with ε(z) = u3

∗
/(kvz) and

S(z) = u∗/(kvz), where upon integrating Fwu(z,K)
given by equation 5 within the prescribed limits, the ex-

pected −w′u′ = u2
∗
is recovered when Cwu = (4/3)k

(4/3)
v .

Similar arguments can be made for w′c′, the integrated
Fwc(z,K) and their z independence.
For any stability condition, direct links between the

co-spectra and the stability correction functions can now
be established via

φm(ζ) ≈
−kvu∗z

1
S(z)

∞
∫

1/z

Fwu(z,K)dK

≈
1

(φm(ζ)− ζ)1/3
, (8)

φc(ζ) ≈
−kvu∗z

1
Γ(z)

∞
∫

1/z

Fwc(z,K)dK

≈
1

(φm(ζ) − ζ)
1/3

. (9)

The constants Cwu and Cwc should be selected to en-
sure that φm(0) = 1 and φc(0) = 1. This constraint on
φc is repeatedly used here so that many combinations of
similarity or integration constants equate to unity mak-
ing the final outcome insensitive to the precise values of
these constants. The equations 8 and 9 can be re-written
as two OKEYPS (after Obukhov, Kazansky, Ellison, Ya-
mamoto, Panofsky, and Sellers) equations [21–23],

(φm(ζ))
3
(φm(ζ)− ζ) = 1, (10)

(φc(ζ))
3
(φm(ζ) − ζ) = 1. (11)

An obvious solution to the scalar OKEYPS equation is
the Reynolds analogy, with φc(ζ) = φm(ζ). According
to Large Eddy Simulations [24] and many field experi-
ments [3, 25–27], φm(ζ) = (1 − 16ζ)−1/4 when ζ < 0
and φm(ζ) = (1 + 4.7ζ) when ζ > 0. A derivation of
these φm(ζ) functions and their links to the energy spec-
trum is presented elsewhere [28] and is not repeated here.
The φc(ζ) = φm(ζ) solution is supported by several ex-
periments for stable atmospheric conditions as evidenced
from Figure 1, but not for unstable conditions [15].
A refinement to the previous argument is that eddies

that vertically transport scalars may be larger or smaller
than z depending on ζ. In general, with increased sur-
face heating, eddies that contribute to vertical scalar
fluxes are larger than z, and conversely, for stable at-
mospheric conditions. Let Λu(ζ)/Λu(0) = fwu(ζ) and
Λc(ζ)/Λc(0) = fwc(ζ) be the ratios of largest eddy sizes
that appreciably contribute to Fwu(K) and Fwc(K) un-
der some stability ζ normalized by the value under neu-
tral stability. Let Λu(0) = suz and Λc(0) = scz be the
neutral reference scales of the dominant eddies, which are
allowed to be proportional rather than strictly equal to z,
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where su and sc are now proportionality constants that
do not vary with atmospheric stability. Hence, fwc(ζ)
and fwu(ζ) represent relative departures in eddy sizes
from their neutral state due to thermal stratification
(i.e. fwc(0) = fwu(0) = 1). Replacing the 1/z inte-
gration limit in equations 8 and 9 by 1/(sufwu(ζ)z) and
1/(scfwc(ζ)z), it follows that

φm(ζ)3 (φm(ζ) − ζ) ≈
1

(sufwu(ζ))
4 , (12)

φc(ζ)
3 (φm(ζ)− ζ) ≈

1

(scfwc(ζ))
4 . (13)

Hereafter, the lower integral limit in equations 8 and 9 is
replaced by 1/(scfwc(ζ)z) unless otherwise stated. With
the two equations above, the turbulent Prandtl number
(Pr) is reduced to

Pr =
Ktm

Ktc

=
φc(ζ)

φm(ζ)
=

(

sufwu(ζ)

scfwc(ζ)

)4/3

. (14)

Field experiments have shown that su = sc ≈ 1 and that
fwc(ζ) ≈ fwu(ζ) for both stable and unstable conditions
[6, 15]. fwc(ζ)

−1 varies linearly with ζ for stable condi-
tions (fwc(ζ)

−1 = (1 + αζ), with the constant α ≈ 1.7
here) and remains unity (fwc(ζ) = 1) for neutral and un-
stable conditions[6, 14, 15]. The fact that su = sc ≈ 1
implies that the eddies most important for momentum
and scalar transfer under near-neutral conditions are ed-
dies touching the ground or attached eddies [29]. How-
ever, this derivation still cannot explain why Pr is differ-
ent from unity (i.e. why the Reynolds analogy fails) and
varies with atmospheric stability for unstable conditions
(ζ < 0) as evidenced by the data in Figure 1 that shows
φm(ζ) > φc(ζ). Alternative mechanisms are needed to
unlock the causal difference between φm(ζ) and φc(ζ)
for unstable conditions. The previous approach assumed
that Fwu(z,K) and Fwc(z,K) follow their inertial sub-
range scaling from K ∈ [1/Λ,∞], a result that need not
hold for scalars. Several processes regulating the magni-
tude and shape of Fwc(z,K) beyond eddy size adjustment
to changes in ζ, not considered in the discussion above,
are discussed next. The sequential inclusion of each of
these processes in a proposed budget equation describing
Fwc(z,K), and the concomitant modification to φc(ζ), is
then presented.

B. A simplified co-spectral budget

Because the terms in the co-spectral budget resemble
those in the turbulent scalar flux budget, a brief summary
of the scalar flux budget in the idealized atmospheric
surface layer, given as

∂w′c′

∂t
= 0 = −w′w′Γ(z)−

∂w′w′c′

∂z
−
1

ρ
c′
∂p′

∂z
+

g

Ta
c′T ′−Md

(15)

is first discussed. On the right hand side, the first term
represents the scalar flux production due to a finite Γ(z),
the second represents the vertical flux transport term by
turbulence, the third represents the pressure-scalar inter-
action term whose role is to de-correlate w′ and c′ and
which is thus a net sink in the equation, the fourth is the
buoyancy term that can serve as a production or dissi-
pation term depending on the scalar being analyzed, and
Md represents all the molecular destruction terms, often
much smaller than their pressure-scalar interaction coun-
terparts for very high Peclet number flows. When the
scalar being analyzed is air temperature, the buoyancy
term becomes positive and dependent on the temperature
variance (=T ′T ′), which is the main focus here. However,
the derivation is maintained for an arbitrary scalar for
completeness. The budget equation for the co-spectrum
Fwc(z,K), derived elsewhere [30, 31] but expanded here
to include the thermal stratification term (i.e. the contri-
butions arising from (g/Ta)c′T ′ in the scalar flux budget),
is given by

∂Fwc(z,K)

∂t
+ (ν +Dm)K2Fwc(z,K) = G(z,K), (16)

where G(z,K) = P (z,K) + Twc(z,K) + π(z,K) +
βFTc(z,K), P (z,K) = 2

3Γ(z)E(z,K) is the pro-

duction term (analogous to w′w′Γ), E(z,K) is the
vertical velocity energy spectrum at z, Twc(z,K) is
a non-linear turbulent flux transport term arising
from Fourier-transforming the triple correlation func-
tion (ui(x)u3(x+ r)c(x) − ui(x+ r)u3(x+ r)c(x)) with
r being the separation distance between two points,
and π(z,K) is the pressure-scalar interaction term,
FTc(z,K) is the scalar-temperature co-spectrum. The
term βFTc(z,K) arises from the presence of (g/Ta)c′T ′

noted earlier in the Reynolds-averaged scalar flux bud-
get. As discussed elsewhere [30], direct numerical sim-
ulations at moderate Reynolds number suggest that the
sum of the two molecular terms |(ν +Dm)K2Fwc(K)| is
less than 10% of |π(K)|, and their contribution further
diminishes with increasing Reynolds number. Hence, for
the high Reynolds number flow characterizing the ideal-
ized atmopsheric surface layer, these two molecular terms
are ignored relative to π(K) throughout. If a Rotta-like
model modified to include buoyancy effects is invoked for
the pressure-scalar interaction term [32–34], then

π(z,K) = −Aπ
Fwc(z,K)

τ(z,K)
+

1

3
βFTc(z,K), (17)

where τ(z,K) = ε(z)
−1/3

K−2/3 is a wavenumber depen-
dent timescale at height z. The Rotta model has been
the subject of numerous studies [35], and despite its lim-
itations, remains widely employed in modeling pressure-
scalar interactions in high Reynolds number turbulent
flows. The co-spectral nonlinear turbulent flux transport
term was shown elsewhere to act mainly to transport co-
variance away from the peak in the co-spectra [30] (i.e.
transports covariance from scales with higher to scales
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with lower covariance). As such, it may be modeled as

T (z,K) = −AT
∂

∂K

(

ε(z)
1/3

K5/3Fwc(z,K)
)

. (18)

Even with all these simplifications, solving for Fwc(z,K)
requires the energy spectrum E(z,K), the temperature-
scalar co-spectrum FTc(z,K), Γ(z), ε(z), as well as the
two closure constants Aπ and AT , discussed next.

C. The Neutral Equilibrium State

In the absence of buoyancy effects (β ≈ 0) and tur-
bulent flux co-spectral transport contributions, the co-
spectral budget reduces to a balance between produc-
tion and pressure-scalar induced de-correlation between
w′ and c′ (equivalent to a dissipation of w′c′) given as

0 =
2

3
Γ(z)E(z,K)−Aπε(z)

1/3
K2/3Fwc(z,K), (19)

and results in

Fwc(z,K) =
2

3

1

Aπ
Γ(z)ε(z)−1/3 K−2/3E(z,K). (20)

Upon assuming the classical Kolmogorov (hereafter re-
ferred to as K41) scaling within the inertial subrange for
E(z,K), given as [17, 36]

E(z,K) = Coε(z)
2/3

K−5/3, (21)

one obtains Fwc(z,K) = CwcΓ(z)ε(z)
1/3

K−7/3, where
Cwc = Co(2/3/Aπ), and Co = 0.55 is the Kolmogorov
constant [36, 37]. Hereafter, this Fwc(z,K) is referred to
as Fneq(z,K). Upon further assuming the inertial sub-
range scaling extends all the way up to large scales com-
parable to Λc(ζ) without any modification, the conven-
tional scalar-velocity co-spectrum in equation 5 is recov-
ered. Inserting this modeled co-spectrum in equation 9
with 1/(scfwcz) replacing 1/z in the lower integral limit
results in

φcneq(ζ) =
1

(scfwc(ζ))
4/3 (φm(ζ)− ζ)1/3

. (22)

Note that the condition φc(0) = 1 eliminates the depen-
dence of φc(ζ) on constants such as Aπ. Hereafter, φcneq

is referred to as the scalar stability correction function for
the equilibrium state in the absence of buoyancy forces.

D. The Equilibrium State Modified by Thermal

Stratification

If buoyancy effects are allowed to modify the velocity
field (i.e., β 6= 0), the co-spectral budget reduces to

0 =
2

3
Γ(z)E(z,K)−Aπ

Fwc(z,K)

τ(z,K)
+

4

3
βFTc(z,K). (23)

When the scalar of interest is air temperature, the
preceding equation with the definition of τ(z,K) =

ε(z)
−1/3

K−2/3 yields

FwT (z,K) =

[

2Γ(z)E(z,K)

3Aπ
+

4

3

βFTT (z,K)

Aπ

]

K−2/3

ε(z)1/3
,

(24)
where Γ(z) is now the mean air temperature gradient.
An inertial subrange approximation for FTT (z,K) is em-
ployed [38],

FTT (z,K) = CT ε(z)
−1/3

NT (z)K
−5/3, (25)

where CT = 0.8 is the Kolmogorov-Corrsin constant [38],
NT (z) is the thermal variance dissipation rate and is esti-
mated as NT (z) = −w′T ′Γ(z) from an equilibrium tem-
perature variance budget equation [18, 39]. Upon em-
ploying the equilibrium estimate of ε(z) in equation 7,
equation 24 reduces to

FwT (z,K) =

[

1−
3

2

(4/3)CT

Co

ζ

(φm(ζ)− ζ)

]

Fneq(z,K).

(26)
Here also, only the relatively well-known constants CT

and Co appear, the other constants cancel after impos-
ing φc(0) = 1. The factor in squared brackets varies
between 0.8 (most stable) and 2.3 (most unstable) and
is always positive. It acts to reduce the magnitude of
the co-spectrum under stable conditions and to increase
it under unstable conditions (as expected). The sign of
the co-spectrum is therefore set by the sign of the mean
temperature gradient Γ(z). Combining this estimate of
FwT (z,K) with equation 9, which uses 1/(scfwcz) to re-
place 1/z as the lower integration limit, we obtain

φT eq(ζ) =
φcneq(ζ)

(

1− 3
2
(4/3)CT

Co

ζ
(φm(ζ)−ζ)

) . (27)

The inclusion of a finite βFTT (z,K) can thus signifi-
cantly modify the temperature stability correction func-
tion from its no-buoyancy equilibrium state. Moreover,
the outcome is dependent on CT /Co not the absolute val-
ues of the constants. That is, the outcome here is robust
to the precise interpretation of K as being 1-dimensional
or 3-dimensional wavenumber. As can be seen from Fig-
ure 2, φT eq follows the measurements closely, at least
when compared to φT neq.

E. The Non-Equilibrium State

Upon retaining a finite flux-transport contribution for
K > 1/Λc and invoking inertial subrange approximations
for FTT (z,K) as before, the co-spectral budget reduces
to

A4

K2/3

∂

∂K

(

K5/3FwT (z,K)
)

+ FwT (z,K) = A3K
−7/3,

(28)
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where A3 =
[

1− 3
2
(4/3)CT

Co

ζ
(φm(ζ)−ζ)

]

CwTΓ(z)ε(z)
1/3

and A4 = AT /Aπ; the general solution of this equation
is given by

FwT (z,K) =
3A3

3− 2A4
K−7/3 +B1K

−5/3−1/A4 , (29)

where A4 ≥ 3/2 [30] and B1 is an integration constant.
When A4 = 3/2, the equation 29 recovers the classical
‘-7/3’ inertial subrange scaling law for FwT (K). When
A4 = 3, the leading power-law is an approximate K−2

as discussed elsewhere [30, 40]. To evaluate B1, it is
assumed that ∂FwT/∂K = 0 at K = 1/Λc to ensure a
maximum at that peak wavenumber, which results in

B1 =
−(21A3A4Λ

2/3−1/A4

c )

(9(1 +A4)− 10A2
4)

. (30)

Combining this estimate of B1 with equations 29 and 9
leads to

φT (ζ) = φT (ζ)eq Yc(A4). (31)

Hence, contributions originating from the co-spectral flux
transport term to eddies whose wavenumber K > 1/Λc

manifest themselves as a multiplier Yc to φT (ζ), where
Yc(A4) = 4(3 + 2A4)(3 + 5A4)/(27 + 81A4) is a constant
that varies with A4. The final equation 31 depends on
the value of A4, again due to its modification of the in-
ertial subrange scaling law of FwT (K). When A4 = 3/2
(corresponding to the ‘-7/3’ power law), Yc(A4) = 1.8;
when A4 = 3 (corresponding to the ‘-2’ power law),
Yc(A4) = 2.5. Nonetheless, these variations in Yc are
not produced by atmospheric stability variations. That
is, the addition of a flux transport term affects φT (ζ)
by a multiplier (= Yc) uniformly applied across all atmo-
spheric stability values and as such does not contribute to
the variation of φT (ζ) and Pr with stability, which as dis-
cussed in the previous section are rather well-explained
by the contribution of the buoyancy term.

III. DISCUSSION

Based on the proposed derivation, the various tur-
bulent processes responsible for the shape of φT (ζ) in
the Kansas experiment can now be unfolded. A log-
ical starting point is the most idealized state – a co-
spectral budget reduced to the interplay between me-
chanical production and dissipation via scalar-pressure
interaction known to be far more significant than the
molecular terms. The mechanical production requires
knowledge of the energy spectrum, which is assumed here
to follow inertial subrange scaling, and the dissipation
term is modeled via a Rotta type pressure-scalar inter-
action modified to include buoyancy effects. In this bud-
get, all low-wavenumber contributions to Fwc(z,K) (i.e.
K < 1/z) are either suppressed or assumed to cancel out
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FIG. 2. (Color on-line): The universal shape of φT (ζ) as de-
termined from the Kansas experiment for heat along with the
resulting φT (ζ) from various approximation to the co-spectral
budget FwT , including φT neq(ζ) and φT eq(ζ). The φT neq(ζ)
is calculated from equation 22 with fwc(ζ) = 1 so it collapses
with φT neq(ζ) when ζ < 0. In the model derivation, inertial
subrange scaling is assumed for E(z,K) and FTT (z,K) with
no modifications in the low-wavenumber range.

so that

∣

∣

∣
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∣

1/z
∫
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Fwc(z,K)dK

∣

∣

∣

∣

∣

≪

∣

∣

∣

∣

∣

∞
∫

1/z

Fwc(z,K)dK

∣

∣

∣

∣

∣

. These

approximations to the co-spectral budget result in an
Fwc(z,K) that follows its conventional inertial subrange
shape [22]. Integrating this Fwc(z,K) from K = 1/z
to ∞ leads to φcneq(ζ) = φT neq(ζ) for any scalar. The
resulting behavior from this neutral equilibrium approx-
imation is shown in Figure 2. Comparing this modeled
φT neq(ζ) with fwc(ζ) = 1 to the Kansas measured φT (ζ),
it is clear that this model cannot reproduce many fea-
tures of the Kansas (and many other) experiments such
as the increases in measured φT (ζ) for ζ > 0. For ζ < 0,
the modeled φT neq(ζ) decays with increasing −ζ but its
value remains much larger than the measured φT (ζ), or
for that matter, φm(ζ). Revising the lower integration
limit of the modeled co-spectrum to K = 1/Λc instead of
1/z to obtain φT neq(ζ) leads to an increase with increas-
ing ζ for stable conditions, though not at the same rate
as those reported for the Kansas experiment. Hence, the
dependence of Λc on ζ has some effect on φT (ζ) for stable
conditions, but this effect is not sufficient to reproduce
the rapid increase in φT (ζ) when ζ > 0. In short, a bal-
ance between production and dissipation with E(z,K)
following its inertial subrange laws alone and without
any buoyancy contribution (i.e. without a finite β) can-
not reproduce the Kansas reported φT (ζ).

Adding the buoyancy term and assuming that the tem-
perature spectrum also follows its inertial subrange shape
from K = 1/Λc to ∞, the agreement between measured
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FIG. 3. (Color on-line): Comparison between measured φT (ζ)
for the data sources in Figure 1 and modeled φT eq(ζ) from
the full co-spectral budget. Note the large scatter in the data
for −ζ → 0.

FIG. 4. (Color on-line): The canonical shape of normalized
FwT (z,K) as reported in the Kansas experiment against the
normalized wavenumber (n) showing a peak at K = 1/Λc,
and a −7/3 scaling for K ≫ 1/Λc in the inertial subrange.
The cumulative contribution of eddies whose K < 1/Λc is
some 50% of the total heat flux (i.e. A2 is some 50% of the
total area under the co-spectrum; note that the areas under
the curves are not visually equal due to the double-logarithmic
representation). In the derivation leading to φT eq(ζ), neglect-
ing their integrated contribution was partially compensated
for by inertial subrange extrapolations of modeled FwT (K)
up to K = 1/Λc, indicated by A1.

and modeled φT eq(ζ) is now significantly improved for
unstable conditions. Likewise, for stable conditions, the
agreement is greatly improved when the constant α is set
to 1.7 in the fwc(ζ) formulation. It should be emphasized
here that the linear dependence of fwc(ζ) on ζ for stable
conditions was reported in the Kansas experiment and
was derived independently from the stability correction
functions. Thus, it is justifiable to include fwc(ζ) depen-
dence on ζ for stable conditions independent from the
inclusion of the buoyancy term in the conservation equa-
tion. However, this value of α is lower than the reported
value from the Kansas experiment by a factor commensu-
rate with the ‘excess’ flux attributed to the difference be-

tween modeled and measured

∣

∣

∣

∣

∣

∞
∫

1/Λc

Fwc(K)dK

∣

∣

∣

∣

∣

. Specifi-

cally, the excess flux in the model primarily originates
from a flattening in the Kansas measured Fwc(K) as
K = 1/Λc is approached while modeled Fwc(K) main-
tains its inertial subrange scaling up to K = 1/Λc as
illustrated in Figure 4. Not withstanding this modifica-
tion to α, the temperature spectrum remains necessary
for recovering φT (ζ) from the Kansas experiment and
for explaining why Pr < 1 for unstable conditions as evi-
denced by Figure 1. This confirms the hypothesized links
in previous studies between the active role of temperature
and the decrease in Pr under unstable conditions [41, 42].
Li et al. [42] related the dissimilarity between momen-
tum and heat transfer under unstable conditions to a
decrease in the ratio of the integral length scale of tem-
perature fluctuations and vertical velocity from roughly
10 to unity with increasing −ζ. At that point, it was
argued that the ’resonance’ between these two scales be-
comes important. Upon replacing the temperature with
the longitudinal velocity time series, the integral length
scale ratio did not approach unity with increasing −ζ.
Their conclusion is in broad agreement with the role of
buoyancy uncovered here.

When the co-spectral flux transport term is also in-
troduced via a first-order closure model in the spectral
domain, the agreement is not dramatically altered ex-
cept via a constant multiplier that also leads to φT (0)
no longer unity. To what degree the experiments can
discern a φT (0) 6= 1 can be debated. For near-neutral
conditions (i.e. ζ → 0), the scatter in the φT (ζ) mea-
surements is not small as shown in Figure 3 presumably
due to the small sensible heat flux (= w′T ′) and a small
mean air temperature gradient (i.e. Γ). A small heat
flux accompanied by a small mean air temperature gra-
dient produces large uncertainties in measured φT (0) as
evidenced by the definition in equation 4.

Departures in φT (ζ) from the Kansas experiment have
been reported and reviewed elsewhere [11]. A common
explanation in all these experiments is the role of large
eddies. In fact, using the Kansas reported FwT (K)

for unstable conditions leads to

∣

∣

∣

∣

∣

1/Λc
∫

0

FwT (K)dK

∣

∣

∣
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∣

≈
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∞
∫

1/Λc

FwT (K)dK

∣
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∣

∣

∣

. That is, eddies larger than Λc con-

tribute some 50% of the total scalar flux (for unstable
conditions) based on Kansas measured Fwc(K) and can
thus have significant impact on φT (ζ). Neglecting their
contribution in the derivation leading to φT eq(ζ) here
was partially compensated for by the inertial subrange
extrapolation of modeled FwT (K) up to K = 1/Λc as
shown in Figure 4. To what degree this compensation
is complete and to what degree the dynamics of the
fluxes contributed by these larger scale eddies are uni-
versal remains debatable and explain why several exper-
iments report large fluctuations, or even anomalous scal-
ing, in φT (ζ). The generation and the impinging mecha-
nisms of large eddies onto the atmopsheric surface layer
are diverse and vary with atmospheric stability. For ex-
periments in which the terrain was flat and the surface
cover was uniform, these mechanisms may include de-
tached eddies generated by shearing motions in the neu-
tral boundary layer, convective motion in the outer layer
of the convective boundary layer, and attached eddies
initiated by instabilities within the atmopsheric surface
layer [8, 43–45]. Even for neutral conditions, laboratory
studies have also documented the impingement of large
(and very large) structures onto the ‘logarithmic’ region
at high Reynolds number [46–48]. Clearly, these large-
scale processes cause non-universal departure from iner-
tial subrange scaling in both E(K) and FTT (K), and in-
troduce low-frequency modulations in FwT (K) that must
be included. If known, these inertial subrange departures
and low frequency modulations can be accommodated in
this co-spectral framework on a case-by-case basis.

On the topic of large scales modulations, it would be a
remiss if we did not recall a statement made by Lumley
and Yaglom [49] who noted that Julian Hunt now claims
(private communication) that these (i.e. the Kansas) data
are seriously filtered at low wavenumbers. There are evi-
dently data of Högström at Uppsala that were suppressed
for decades because they did not agree with the Kansas
data at low wavenumber, which suggest the presence of
elongated coherent structures. The Högström data were
collected under conditions of much worse terrain inho-
mogeneity than in Kansas, and it is conceivable that
the idealized atmospheric surface layer assumptions (e.g.
stationary, planar-homogeneous assumption lacking sub-
sidence or mean longitudinal pressure gradients) neces-
sary for the application of MOST were not fully satisfied.
Hence, the final clarification of how low-wavenumber con-
tributions modify φT (ζ) in the Kansas (and Uppsala) ex-

periments must be left to the future, where further sen-
sitivity to different non-stationary trend removal tech-
niques can be fully explored. Nonetheless, when all these
results are taken together, it appears that the ‘universal’
features in φT (ζ) can be attributed to processes tightly
linked to those leading to the derivation of φT eq(ζ), which
inherit their ‘universal’ character from well-established
inertial subrange scaling laws. This is also in agreement
with Gioia et al. [50], who concluded that the log-layer in
their neutral cases results from inertial subrange eddies
and scaling.

IV. CONCLUSION

The extensive measurements made in Kansas by
Kaimal and Wyngaard has served as benchmarks in at-
mospheric surface layer flows for decades. It was shown
here that the universal shape of φT (ζ) reported from
these experiments is remarkably consistent with inertial
subrange theories describing the velocity and tempera-
ture spectra using a simplified co-spectral budget across
a wide range of ζ. Moreover, it was shown that the con-
tributing role to φT (ζ) by buoyancy (via the temperature
spectrum) is the leading order explanation for the anoma-
lous departure from Reynolds analogy. Hence, the long-
surmised link between the energetics of the micro-state
of turbulence (encoded in the temperature and energy
spectra) and the macro-state property of the bulk flow
(encoded here in φT (ζ)) was explicitly revealed. As was
recently accomplished in linking the mean velocity profile
and the spectrum of turbulence by Gioia et al. [50], the
co-spectral link derived here establishes a blue-print for a
framework to assess how large-scale structures impinging
on the atmospheric surface layer may modify φT (ζ), and
can perhaps lead to improved representation of the mass
exchange rates in future large-scale models.
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