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Permutation entropy (PE) has been recently suggested as a novel measure to characterize the
complexity of nonlinear time series. In this paper, we propose a simple method to address some of
PE’s limitations, mainly its inability to differentiate between distinct patterns of a certain motif, and
the sensitivity of patterns close to the noise floor. The method relies on the fact that patterns may be
too disparate in amplitudes and variances and proceeds by assigning weights for each extracted vector
when computing the relative frequencies associated with every motif. Simulations were conducted
over synthetic and real data for a weighting scheme inspired by the variance of each pattern. Results
show better robustness and stability in the presence of higher levels of noise, in addition to a
distinctive ability to extract complexity information from data with spiky features or having abrupt
changes in magnitude.

I. INTRODUCTION

There is little consensus on the definition of a signal’s
complexity. Among the different approaches, entropy-
based ones are inspired by either nonlinear dynamics [1]
or symbolic dynamics [2, 3]. Permutation entropy (PE)
has been recently suggested as a complexity measure
based on comparing neighboring values of each point
and mapping them to ordinal patterns [2]. Using ordinal
descriptors is helpful in the sense that it adds immunity
to large artifacts occurring with low frequencies. PE is
applicable for regular, chaotic, noisy or real-world time
series and has been employed in the context of neural
[4], electroencephalographic (EEG) [5–8], electrocardio-
graphic (ECG) [9, 10] and stock market time series [11].
In this paper, we suggest a modification that alters the
way PE handles the patterns extracted from a given sig-
nal by incorporating amplitude information. For many
time series of interest, the new scheme better tracks
abrupt changes in the signal and assigns less complexity
to segments that exhibit regularity or are subject to
noise effects. Examples include any time series con-
taining amplitude coded information. For such signals,
the suggested method has the advantage of providing
immunity to degradation by noise and (linear) distortion.

The paper is organized as follows. In Sections II and
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III, we briefly introduce permutation entropy and formu-
late weighted-permutation entropy. Simulations details
are presented in Section IV respectively on synthetic,
single channel and dense-array EEG, and epileptic data.
Section V offers discussion and concluding remarks.

II. PERMUTATION ENTROPY

Consider the time series {xt}Tt=1 and its
time-delay embedding representation Xm,τ

j =

{xj , xj+τ , . . . , xj+(m−1)τ} for j = 1, 2, . . . , T − (m− 1)τ ,
where m and τ denote respectively the embedding
dimension and time delay. To compute PE, each of the
N = T − (m − 1)τ subvectors is assigned a single motif
out of m! possible ones (representing all unique orderings
of m different real numbers). PE is then defined as the
Shannon entropy of the m! distinct symbols {πm,τi }m!

i=1,
denoted as Π:

H(m, τ) = −
∑

i:πm,τi ∈Π

p(πm,τi ) ln p(πm,τi ) (1)

p(πm,τi ) is defined as:

p(πm,τi ) =
‖{j : j ≤ N, type (Xm,τ

j ) = πm,τi }‖
N

(2)

where type(.) denotes the map from pattern space to
symbol space and ‖.‖ denotes the cardinality of a set.
An alternative way of writing p(πm,τi ) is:

p(πm,τi ) =

∑
j≤N 1u:type(u)=πi(X

m,τ
j )∑

j≤N 1u:type(u)∈Π(Xm,τ
j )

(3)
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where 1A(u) denotes the indicator function of set A de-
fined as 1A(u) = 1 if u ∈ A and 1A(u) = 0 if u /∈ A.
PE assumes values between in the range [0, lnm!] and is
invariant under nonlinear monotonic transformations.

The main shortcoming in the above definition of PE
resides in the fact that no information besides the order
structure is retained when extracting the ordinal pat-
terns for each time series. This may be inconvenient for
the following reasons: (i) most time series have informa-
tion in the amplitude that might be lost when solely ex-
tracting the ordinal structure (ii) ordinal patterns where
the amplitude differences between the time series points
are greater than others should not contribute similarly
to the final PE value and (iii) ordinal patterns result-
ing from small fluctuations in the time series can be
due to the effect of noise and should not be weighted
uniformly towards the final value of PE. Fig. 1 shows
how the same ordinal pattern can originate from differ-
ent m−dimensional vectors.

FIG. 1. (Color online) Two examples of possible m-dimensional
vectors corresponding to the same motif. The value of m used is 3.

III. WEIGHTED-PERMUTATION ENTROPY

To counterweight these facts, we propose a modifica-
tion of the current PE procedure to incorporate signif-
icant information from the time series when retrieving
the ordinal patterns. The main motivation lies in saving
useful amplitude information carried by the signal.

We refer to this procedure as weighted-permutation
entropy (WPE) and summarize it in the following steps.
First, the weighted relative frequencies for each motif are
calculated as follows:

pw(πm,τi ) =

∑
j≤N 1u:type(u)=πi(X

m,τ
j ).wj∑

j≤N 1u:type(u)∈Π(Xm,τ
j ).wj

(4)

WPE is then computed as:

Hw(m, τ) = −
∑

i:πm,τi ∈Π

pw(πm,τi ) ln pw(πm,τi ) (5)

Note that when wj = β ∀ j ≤ N and β > 0, WPE re-
duces to PE. It is also interesting to highlight the differ-
ence between the definition of weighted entropy in this
context and previous ones suggested in the literature.
Weighted entropy, defined as Hwe = −

∑
k wkpk ln pk,

has been suggested as a variant to entropy that uses
a probabilistic experiment whose elementary events are
characterized by weights wk [12]. WPE on the other
hand, extends the concept of PE while keeping the same
Shannon’s entropy expression reflected by (5), hence
weights are added prior to computing the p(πm,τi ). The
choice of weight values wi is equivalent to selecting a
specific (or combination of) feature(s) from each vector
Xm,τ
j . Such features may differ according to the con-

text used. Note that the relation
∑
i pw(πm,τi ) = 1 still

holds. In this paper, we use the variance or energy of
each neighbors vector Xm,τ

j to compute the weights. Let

X̄m,τ
j denote the arithmetic mean of Xm,τ

j or:

X̄m,τ
j =

1

m

m∑
k=1

xj+(k+1)τ (6)

We can hence express each weight values as:

wj =
1

m

m∑
k=1

(
xj+(k−1)τ − X̄m,τ

j

)2
(7)

The motivation behind this setting is to specifically
counteract the limitations discussed in the previous sec-
tion, i.e. weight differently neighboring vectors having
the same ordinal patterns but different amplitude vari-
ations. In this way, WPE can be also used to detect
abrupt changes in noisy or multicomponent signals. The
modified p(πm,τi ) can be then thought of as the propor-
tion of variance accounted for by each motif. The above
definition of WPE retains most of PE’s properties and
is invariant under affine linear transformations. WPE
however presents a specificity, given it incorporates am-
plitude information and demonstrates more robustness
to noise.

IV. SIMULATIONS

An adequate testing scheme would include spiky data
because it poses a challenge to a simple motif count ap-
proach and exhibits sudden changes. Simulations were
performed on both synthetic data and EEG data.

A. Synthetic Data

As a first motivation, we suggest to analyze the be-
havior of PE and WPE in presence of an impulsive and
noisy signal. Fig. 2.a shows 1000 samples of a signal con-
sisting of an impulse and additive white Gaussian noise
(AWGN) with zero mean and unit variance. Windows
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of 80 samples slid by 10 samples were used and results
were averaged over 10 simulations. A remarkable drop in
the value of WPE is noticed in the impulse region. No
marked change can be observed in the case of PE for the
same region.
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FIG. 2. (Color online) PE versus WPE in the case of an impulse.
(a) Impulse with additive white Gaussian noise with zero mean and
unit variance. (b) Computed PE and WPE values with windows of
80 samples slid by 10 samples. A remarkable drop in the value of
WPE is noticed in the impulse region for which PE values do not
show any marked change.

As next step, we try a train of Gaussian-modulated
sinusoidal pulses with decaying amplitudes. The value of
τ was set to 1. Sliding windows of 50 samples with incre-
ments of 10 samples were used and m was set to 3. Again,
the signal was corrupted by AWGN and simulations were
run across different variance levels. Fig. 3 shows the vari-
ations of the signal’s entropy for four different methods.
The performance of PE and WPE is compared to two
other methods from the literature, namely approximate
entropy or ApEn [1, 13] and the composite PE index or
CPEI [14]. In the following, we give a brief description
of each.

Approximate Entropy (ApEn or AE): Approximate
entropy is a measure that quantifies the regularity or pre-
dictability of a time series. It is defined with respect to
a free parameter r as follows:

Ha = Φm(r)− Φm+1(r) (8)

where Φm(r) is defined as:

Φm(r) =
1

N − (m− 1)τ

N−(m−1)τ∑
i=1

lnCmi (r) (9)

and Cmi (r) is defined using the Heavyside function
Θ(u)(1 for u > 0, 0 otherwise) and a distance measure
dist:

Cmi (r) =

∑N−(m−1)τ
j=1 Θ

(
r − dist(Xm,τ

i , Xm,τ
j )

)
N − (m− 1)τ

(10)

Here the value of r is set to be 0.2 times the data standard
deviation as per the thorough discussion in [13]. The
distance measure we use is the same suggested in [1] and
can be formulated as:

dist(Xm,τ
i , Xm,τ

j ) = max
k=1,...,m

| xi+(k−1)τ − xj+(k−1)τ |

Composite PE index (CPEI): The composite PE in-
dex (CPEI) is an alteration of permutation entropy that
differentiates between the types of patterns. It is cal-
culated as the sum of two permutation entropies cor-
responding to motifs having different delays where the
latter (denoted as τ in this paper) is determined by
whether the motif is monotonically decreasing or increas-
ing. CPEI, which we denote byHi in this paper, responds
rapidly to changes in EEG patterns and can be defined
as follows [14]:

Hi =
1

ln(m! + 1)

H(m, 1) +H(m, 2)

2
(11)

The normalization denominator in Eq. 11 consists of the
original number of motifs in addition to a newly intro-
duced motif to account for ties (ties describe cases where
negligible differences in amplitude occur within a mo-
tif). As a side note, the averaging step performed in that
equation is highly approximative because of the lack of
independency between motifs at different delays.

It is noticeable that WPE consistently drops for por-
tions of the signal showing pulses. This is desired be-
cause of the lesser complexity of these regions and ex-
pected because of their immunity to noise. Here we as-
sume that the information contained in the examined
signals is amplitude-dependent. Such results meet our
expectations since WPE is clearly able to differentiate
between bursty and stagnant regions of the pulse train.
In other words, using the variance contributes to weak-
ening the noise effects and assigning more weight to the
regular spiky patterns corresponding to a higher amount
of information, which results in easier predictability and
less complexity. It is important to note two things: (1)
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FIG. 3. (Color online) Different entropy measures (PE, WPE,
CPEI and AE) applied on a Gaussian-modulated sinusoidal train
with a frequency of 10 kHz, a pulse repetition frequency of 1 kHz
and an amplitude attenuation rate of 0.9. Initial signal was cor-
rupted by additive white Gaussian noise (AWGN) having mean
µ = 0 and variance σ2 = 0.2. The sampling rate was 50 kHz and
computations used a 50-sample sliding window with increments of
10 samples. The recorded SNR was of 4.8 dB.

the contribution of patterns with higher variance towards
the value of WPE dominates those of patterns with lesser
variance which highlights the powerfulness of the method
in detecting abrupt changes in the input signal and (2)
the fact that WPE is computed within a specific time
window explains why WPE values corresponding to im-
pulsive segments of the signal do not decrease in spite
of the decreasing amplitudes of the spikes (the normal-
ization effect in (4) takes place within each window).
We also plot in Fig. 4 the values of PE and WPE for
different levels of signal-to-noise ratio (SNR). As antici-
pated, both entropy measures decrease with the increase

of the SNR since the effect of noise contributing to more
complexity becomes less significant. WPE decreases at a
higher pace than PE, which reflects a better robustness
to noise. As a final note on this section, we point out
that traditional methods like zero-crossing spike detec-
tion techniques might be useful for the purpose of this
simulation, however the sought goal was to demonstrate,
using synthetic data the ability of WPE to discriminate
between regimes of data.
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FIG. 4. (Color online) Normalized PE and WPE values for differ-
ent SNR levels. The signal used is the same as in Fig. 3.

B. Single-Channel EEG Data Analysis

In Fig. 5, the same comparisons are performed for a
sample EEG recording processed as in [15]. Highpass fil-
tering was further applied on the signal because we are
interested in removing very low frequency components. It
can be seen that WPE locates the regions where abrupt
changes occur in the initial signal more accurately than
the other methods, which is inline with our original ex-
pectations. The same is reflected in Fig. 6 that shows a
processed EEG portion corresponding to another chan-
nel. Our simulations show that increasing m beyond 4
affects the running time without significantly changing
the obtained entropies. This is inline with the findings
in [16] where the parameter selection problem has been
addressed and [14]. For situations where the effect of
m is more pronounced, the running time issue can be
addressed by speeding up the sliding of the window as
this entails a higher number of affected patterns at each
instance.

C. Multi-Channel EEG Data Analysis

Setting: We propose to tackle the problem suggested in
[15] from the perspective of the method presented above.
The experimental setting exploits the steady-state visual
evoked potential (ssVEP) paradigm by flashing a visual
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FIG. 5. (Color online) Simulations performed on filtered EEG
data sampled at 1000 Hz and processed as in [15]. WPE out-
performs other entropy measures in location regiments exhibiting
abrupt changes in the signal. The window length used for this plot
was 114 with an overlap of 2 samples.
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FIG. 6. (Color online) Same procedure applied on a processed
EEG portion corresponding to another channel. WPE mirrors best
the sharp change in the signal noticeable before t = 850 ms. The
window size used was 200 with an overlap of 2 samples at each
iteration.
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FIG. 7. Experimental setting using a HydroCell Geodesics Sensor
Networks system from Electrical Geodesics, Inc. (Riverfront Re-
search Park, 1600 Millrace Drive, Suite 307, Eugene, OR 97403,
USA).

stimulus at a rate of 17.5 Hz to a participant. Two types
of stimuli were presented to the subject, one representing
an image of a neutral human face and the second a Gabor
patch (Fig. 7). Each stimulus was presented for 4.2 sec
(plus 0.4 sec pre-stimulus baseline). A surface Laplacian
method was applied on the raw EEG data and the
experiment’s objective was to identify the active regions
involved in the cognitive processing of each stimulus and
study the corresponding connectivity patterns between
all channel locations. In [17], two traditional coupling
methods (Pearson’s correlation and mutual information)
and one novel approach termed “generalized measure of
association” (or GMA) were used to calculate bivariate
interactions with respect to a single parieto-occipital
channel chosen as reference (channel POz in a standard
10 − 20 referential configuration). Dependence values
were computed per time windows of 114 samples.

The rationale for choosing this specific time window
can be summarized as follows: the selected window size
should (1) allow tracking the signal behavior with high
time resolution, i.e. using a reduced number of samples,
(2) include enough samples that allow the estimation of
permutation entropy quantities and (3) relate to the ob-
served physiological properties of the cognitive system
being studied. Setting the window size to 114 verifies the
three conditions (since 114 samples correspond to two pe-
riods of the ssVEP signal and roughly matches the prop-
agation time between brain cortices). Using this setting,
higher coupling was observed for the face condition be-
tween occipital sites and the temporal-parietal-occipital
sites neighboring P4. The methodology suggested in this
paper will be applied on the same experimental data to
infer functional relationships across different electrode
sites.

Procedure: A precursor for a useful usage of PE (WPE)
within the above context is to assign a “complexity”
curve for each recorded signal, corresponding to an ar-
ray of PE (WPE) values computed over a given time
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(a) FL - WPE (b) FR - WPE

(c) FL - PE (d) FR - PE

FIG. 8. Using Spearman’s correlation to weight graph connections for
channel 72. First two subplots (a and b) show interpolated correlation
measures over right and left (R and L) head surface for the face con-
dition (F) when using WPE and subsequent subplots (c and d) exhibit
the same when using PE. A statistical assessment of the discrimina-
tory performance between the two conditions can be seen in Fig. 9 and
Table I (Results for Gabor condition were not reported due to lack of
space).

window (114 ms in this case). We can then compute
the dependence between the different channels by sim-
ply applying correlation on these curves. Intuitively, this
implies using a linear measure of dependence to measure
how close the complexity of two time series are. In our
simulations, we select Spearman’s rho as a measure of
statistical dependence between the different PE (WPE)
curves. In Fig. 8, the obtained correlation values are
mapped onto the corresponding locations on the human
scalp. In the case of WPE (Figs. 8.a and 8.b ), more
activity can be spotted in locations that seem to point
towards sources in the occipito-parieto-temporal area of
the right brain hemisphere. This outcome aligns with the
results obtained in [17], which, as previously mentioned,
indicate higher activity in that specific region. On the
other hand, PE tends to show activity localized in right
posterior areas.

Statistical Analysis: We use the two-sample
Kolmogorov-Smirnov (KS) test applied on the ob-
tained distributions with the null hypothesis being that
the two samples are drawn from the same distribution.
The KS test tries to estimate the distance between the
empirical distribution functions of the two samples.
Assuming γ1(x) and γ2(x) to be the sample vectors, it
can be calculated as Kγ1,γ2

= maxx |Fγ2
(x) − Fγ1

(x)|,
where Fγ1

(x) and Fγ2
(x) denote the empirical cumu-

lative distribution functions for the n iid observations,
alternatively F{X1,...,Xn}(x) = 1

n

∑n
i=1 IXi≤x, where Ik

denotes the indicator function. The null hypothesis is

rejected at the α-level if
√

(n1n2)/(n1 + n2)Sγ1,γ2
> Kα,

where n1 and n2 denote the number of samples from
each observation vector and K refers to the Kolmogorov
distribution [18]. In our case, n1 = n2 = 45 and α = 0.05.

Discussion: Fig. 9 and Table I show that, unlike PE,
WPE is able to discriminate the two conditions with a
statistically significant KS test. A possible explanation
is the inconsistency in PE’s tracking of steep changes in
the processed signals, which creates ad hoc dependencies
when computing the pairwise correlations and results in
the indiscernibility of the two conditions. This problem
is avoided when using WPE since the latter follows faith-
fully the change trends in the signal as illustrated in Fig.
3.
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FIG. 9. (Color online) Empirical cumulative distribution functions
(CDFs) per condition for PE and WPE.

TABLE I. Two-Sample Kolmogorov-Smirnov Test Results

KS Test PE WPE

Null hypothesis rejection False True

p−value 0.508 0.009
Test statistic 0.101 0.202

D. Epilepsy Detection

Setting: Next we propose to apply WPE for epilepsy
detection. We use the same data as Quiroga et al.
[19, 20], in which tonic-clonic seizures of a subject were
recorded with a scalp right central electrode (located
near C4 in a standard 10− 20 montage). The recording
consisted of 3 minutes, including around 1 minute of
pre-seizure time and 20 seconds of post-seizure activity.
A sampling rate of 102.4 Hz was used to collect the signal.

Discussion: We computed different measures of entropy
on windows of 50 samples of data slid by 5 samples (Fig.
10.b). The obtained curves are further smoothed in Fig.
10.c using a moving average filter of length 35 samples.
The commencement of epileptic activity in the recorded
signal induces noticeable changes for all entropy mea-
sures, in particular for WPE that exhibits a significant
jump in value. This is further quantified by computing
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the ratio of average measured entropies of epileptic and
non-epileptic segments (Table II), which shows a more
pronounced difference between both portions for WPE.
The latter achieves almost twice better discriminability
between the two portions of the signal, i.e. 42% better
than the next closest measure (CPEI).
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FIG. 10. (Color online) Different entropy-based measures applied
on epileptic EEG. (a) EEG recording of an epileptic subject. The
recording, sampled at 102.4 Hz contains approximately one minute
of pre-seizure activity and 20 seconds of post-seizure activity. (b)
Different measures of entropy computed using a sliding window of
50 samples with 5 samples overlap. (c) Smoothed entropy measures
curves obtained by applying a moving average filter of length 35
samples.

V. CONCLUSION

This paper proposes a different definition of permuta-
tion entropy that retains amplitude information of non-

linear time series. A method to weight the motif counts
by statistics derived from the signal patterns has been
proposed. The new method is different from PE how-
ever, in the sense that it suits better signals having con-
siderable amplitude information. For the range of sig-
nals that do not verify this property, PE might be a

TABLE II. Ratio of Average Measured Entropy between
Epileptic and Non-Epileptic Segments

Measure Ratioa

PE 1.27

WPE 1.85
CPEI 1.30
AE 0.57

a Entropy values corresponding to the epileptic EEG segment
were averaged and divided by the average corresponding to the
non-epileptic part.

better choice. Simulations were carried on spiky syn-
thetic data and human EEG recordings that underwent
narrow-band filtering, taking into account the variance
of the mentioned patterns. The measure showed con-
sistency when applied on various regions of both signals
by differentiating distinct regimes and assigning similar
complexities for analogous portions. Moreover, WPE de-
creases for higher SNRs, which corroborates the fact that
noise has higher complexity. The suggested method was
also applied on processed EEG data to differentiate two
cognitive states as suggested in [17], with the help of the
Kolmogorov-Smirnov statistical tool, and epileptic data
to detect seizure onset. The power of permutation en-
tropy as a simple and computationally fast measure for
time series complexity has been hence confirmed on both
synthetic and real data. Future work includes analyzing
more thoroughly the effect of the free parameters (m,
noise model,...), exploring other weighting schemes and
comparing to other nonlinear regularity estimators based
on equiquantal or equiprobable binning.
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