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HOMOCLINIC SNAKING NEAR A CODIMENSION TWO TURING-HOPF
BIFURCATION POINT IN THE BRUSSELATOR MODEL

J. C. TZOU1,∗, Y. –P. MA1,2,∗, A. BAYLISS1, B. J. MATKOWSKY1,∗, AND V. A. VOLPERT1

ABSTRACT. Spatiotemporal Turing-Hopf pinning solutions near the codimension two Turing-Hopf point of the

one-dimensional Brusselator model are studied. Both the Turing and Hopf bifurcations are supercritical and

stable. The pinning solutions exhibit coexistence of stationary stripes of near critical wavelength and time periodic

oscillations near the characteristic Hopf frequency. Suchsolutions of this nonvariational problem are in contrast

to the stationary pinning solutions found in the subcritical Turing regime for the variational Swift-Hohenberg

equations, characterized by a spatially periodic pattern embedded in a spatially homogeneous background state.

Numerical continuation was used to solve periodic boundaryvalue problems in time for the Fourier amplitudes of

the spatiotemporal Turing-Hopf pinning solutions. The solution branches are organized in a series of saddle-node

bifurcations similar to the known snaking structures of stationary pinning solutions. We find two intertwined pairs

of such branches, one with a defect in the middle of the striped region, and one without. Solutions on one branch

of one pair differ from those on the other branch by aπ phase shift in the spatially periodic region, i.e., locations of

local minima of solutions on one branch correspond to locations of maxima of solutions on the other branch. These

branches are connected to branches exhibiting collapsed snaking behavior, where the snaking region collapses to

almost a single value in the bifurcation parameter. Solutions along various parts of the branches are described

in detail. Time dependent depinning dynamics outside the saddle-nodes are illustrated, and a time scale for the

depinning transitions is numerically established. Wavelength variation within the snaking region is discussed, and

reasons for the variation are given in the context of amplitude equations. Finally, we compare the pinning region

to the Maxwell line found numerically by time evolving the amplitude equations.

Key words: homoclinic snaking, weakly nonlinear regime, codimensiontwo Turing-Hopf bifurcation point,
localized patterns.

1 Introduction

Localized stationary solutions of reaction-diffusion systems characterized by the coexistence of a flat, i.e.,

stationary (time independent), spatially homogeneous state with a spatially periodic state have recently been

the subject of much analysis. In the context of variational systems, a stationary front between two stationary

states is expected when both states possess equal free energy. The point (or curve) in parameter space at

which the free energies are equal is referred to as a Maxwell point (curve). When the coexistence is between

two flat states, a perturbation from the Maxwell point results in a time dependent invasion of the energetically

favored state into the other. In [1], Pomeau explains that when the coexistence is between a flat and spatially
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periodic state, there is a broadening of the Maxwell point. Thus, within a finite-width region in parameter

space around the Maxwell point, a continuum of such solutions exist. The broadening of the Maxwell point

may be explained by the fact that the energy difference must be sufficiently large in order to displace the

front connecting the coexisting states by one wavelength ofthe periodic pattern. Equivalently, displacement

of the front only occurs sufficiently far from the Maxwell point. This effect has been referred to (e.g., [2] and

references therein) as the pinning of the spatially periodic front. By assembling two such fronts back-to-back,

one can construct stationary solutions in which a finite region of spatially periodic states is embedded in a

background of flat state. Such solutions are known as spatially localized states in a broader context (cf. [3]).

These include for example the experimental observations ofstationary two-dimensional radially symmetric

‘solitons’ in a ferrofluid with an external magnetic field applied vertically (cf. [4]), and one-dimensional

localized patterns in a nematic liquid crystal layer with a spatially modulated optical feedback (cf. [5]). The

properties of the latter were shown to be consistent with previous theoretical work on stationary pinning

solutions in pattern forming PDEs, which we shall review next. The pinning phenomenon is explained in

detail in [1].

The (variational) 2–3 and 3–5 Swift-Hohenberg equations for a real scalar fieldu(x, t), which exhibit

quadratic–cubic, and cubic–quintic nonlinearities, respectively, have been studied extensively to illustrate the

phenomenon of pinning. Most of these studies have focused onthe subcritical Turing regime where there

is bistability between the flat and spatially periodic states. In [6] for the 2–3 Swift-Hohenberg equation on

an unbounded domain, a continuum of pinning solutions was shown to exist on branches that “snake” back

and forth in the bifurcation diagram forming a series of saddle-node bifurcations. As predicted in [1], the

snaking region was found to straddle the Maxwell point. Solutions on these branches are even in space and

thus preserve the spatial reversibility symmetry(x → −x, u → u) of the 2–3 Swift-Hohenberg equation.

The snaking region consists of two intertwined branches, with solutions on one branch having a local max-

imum in the central part of the spatially periodic region, and solutions on the other branch having a local

minimum. Solutions at different points along one branch differ in the width of the spatially periodic region.

In particular, traversal through two saddle-nodes or equivalently one back and forth cycle on the snaking

branch corresponds to two wavelengths of the spatially periodic state being added or subtracted at the edges

of the spatially periodic region. In [2] it was found that in addition to the two snaking branches of symmetric

solutions, a series of pitchfork bifurcations near the saddle-nodes on these branches are connected through

a series of rungs (or ladders) of asymmetric solutions. The entire bifurcation diagram of stationary pinning

solutions was therefore dubbed snakes-and-ladders. Outside the snaking region, a depinning transition was

shown to occur in which wavelengths were either nucleated ordestroyed at the edges of the spatially periodic

region. The speed of depinning was calculated analyticallyand confirmed numerically. The conservation of

a spatial Hamiltonian was shown to select the wavelength of the spatially periodic state within the snaking

region, and the wavelength variation across the snaking region was qualitatively explained based on the

free energy variation of the flat and spatially periodic states. Studies of stationary pinning solutions whose

analogs are not addressed in these papers include the effects of finite domain lengths on snaking. In [7], it

was shown that snaking branches in a spatially periodic domain terminate on branches of spatially periodic

states whose wavenumber depends on the domain length. It wasalso determined that these termination points

corresponded to the Eckhaus instability boundary. In [8], it was found that non-periodic and non-Neumann



HOMOCLINIC SNAKING NEAR A C2THP 3

boundary conditions eliminated entirely spatially periodic states of the Swift-Hohenberg equation, replac-

ing them with states with defects at or near the boundary. In this case, instead of terminating on spatially

periodic branches, the snaking branches either exit the snaking region and develop into branches of large

amplitude patterns, or they may turn back toward small amplitude and terminate at other primary bifurcation

points on the flat state. In [9], a multiple scale analysis wasused to derive an envelope equation for pinning

solutions of the non-symmetric generalized Swift-Hohenberg equation. More recently, the entire snakes-and-

ladders bifurcation diagram, including in particular the width of the pinning region, was constructed through

a multiple scale analysis beyond all algebraic orders for the 2–3 Swift Hohenberg equation near the onset

of subcriticality (cf. [10]). Subsequently, a considerably simpler construction using a variational approxi-

mation was proposed (cf. [11]). For the 3–5 Swift-Hohenbergequation, the additional up-down symmetry

(x → x, u → −u) admits two additional snaking branches of odd solutions (cf. [12, 13]). In contrast to the

2–3 case, traversal through four saddle-nodes on one snaking branch is required to add two wavelengths at

the edges of the spatially periodic region in the 3–5 Swift-Hohenberg equation (cf. [14]).

Another explanation for the existence of stationary pinning solutions has been given in terms of reversible

spatial dynamics (see e.g., [12,15–17], or [18–21] for spike patterns in singularly perturbed reaction-diffusion

systems). In this framework, the locations in the complex plane of the spatial eigenvalues (in the case of flat

states) or spatial Floquet multipliers (in the case of spatially periodic states), along with spatial reversibility

are the key components responsible for the existence of pinning solutions. The most complete account to date

of the snakes-and-ladders bifurcation diagram from this perspective can be found in [22], which formulated

a set of hypotheses about the connecting orbit between the flat and spatially periodic states that guarantees

snaking. Whereas the free-energy description is limited only to pinning solutions of variational systems, the

spatial dynamics framework extends the theory of pinning toa much broader class of systems. In particular,

a cubic-quintic Ginzburg-Landau equation can be derived asa truncated normal form near weakly subcritical

Turing bifurcations, and its solutions yield insights intothe location of the pinning region in both variational

and nonvariational systems. While no true snaking is possible in this equation due to phase rotation symmetry

of the spatial dynamical system, branches emanating from Eckhaus bifurcation points exhibiting snake-like

behavior (termed “protosnaking”) were found near the nonvariational analog of the Maxwell point (cf. [23]).

Stationary pinning solutions organized along snaking branches have indeed been observed in many nonvari-

ational systems. In [24], two snaking branches were computed for the Lugiato-Lefever equation; in addition,

it was shown that there are other pinning solutions found by directly computing the invariant manifolds to

the flat and spatially periodic states. A study of a nonvariational extension of the 3–5 Swift-Hohenberg equa-

tion in [25] stressed that asymmetric pinning solutions on the ladders are expected to travel in nonvariational

systems. In [17], the forced complex Ginzburg-Landau equations were shown to exhibit a different growth

mechanism by which periodic structures were nucleated or destroyed in the middle of the spatially periodic

region as opposed to the edges. In this case the codimension-two point marking the onset of snaking corre-

sponds to the simultaneous occurrence of a (codimension-one) heteroclinic orbit between two inequivalent

flat states and a (codimension-one) supercritical Turing bifurcation on one of them. Hence the nature of the

bistability between flat and spatially periodic states in this study differs from the aforementioned studies that

mainly focused on subcritical Turing bifurcations.

Nonvariational systems allow for temporal oscillations, which have not been considered in the context of

snaking structures of pinning solutions. In particular, pinning solutions characterized by a coexistence of
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Turing and Hopf states have been observed in [26] in the vicinity of a codimension two Turing-Hopf point

(C2THP) of the (nonvariational) Brusselator model (see e.g., [27–29] and the references therein), where both

the Turing and Hopf bifurcations were supercritical and stable. Turing-Hopf coexistence has also been ob-

served experimentally, as in [30] for the voltages and currents of resistively coupled nonlinear LC oscillators

arranged in a one-dimensional chain and driven by a constantvoltage at one end. Depending on experimental

parameter values, it was found that a front connecting a Turing domain to a Hopf domain could propagate

in either direction or remain stationary. The same behaviorwas also observed numerically in the continu-

ous reaction-diffusion approximation of the oscillator chain for parameter values near the C2THP. In another

experiment involving convection of a binary fluid in an annular container (cf. [31]), stationary convective

rolls were found to coexist with traveling wave bursts, withrelative widths of each region depending on the

Rayleigh number.

The activator-inhibitor Brusselator model, describing a simplified autocatalytic reaction, has long been a

paradigm of nonlinear analysis and is given by

ut = Duxx + E − (B + 1)u + vu2 , x ∈ R, t > 0; (1.1a)

vt = vxx + Bu − vu2 , x ∈ R, t > 0, (1.1b)

subject to appropriate initial and boundary conditions. Note that, unlike the Swift-Hohenberg equations, the

spatial dynamics of (1.1) are not Hamiltonian. Spatiotemporal patterns near the Brusselator C2THP have also

been computed for the superdiffusive variant of (1.1) in [32]. Both of these studies were restricted to using

only time evolution techniques to compute the pinning solutions, which only yielded a very narrow view of

all possible Turing-Hopf pinning solutions, since only stable solutions can be computed with a standard initial

boundary value problem (IBVP) code. Furthermore, the manner in which these solutions are organized on

solution branches is difficult to ascertain. In this paper, we use AUTO [33] to solve boundary value problems

in time for the0, . . . , N spatial Fourier amplitudes of the solutionsu andv to (1.1) for appropriately large

N , under the assumption of spatial periodicity (the−N, . . . ,−1 modes are also accounted for since we

only consider real solutions). In this way, we obtain both stable and unstable solution branches, and the

structure of these branches is readily obtained. Solutionson these branches resemble stationary pinning

solutions, only with the flat state replaced by Hopf-like temporal oscillations. The respective growth rates

of the Turing and Hopf modes near the C2THP assume the roles ofthe free energies of the coexisting states

in variational systems, with larger growth rates implying greater dominance. While the equality of growth

rates is not the analogous Maxwell condition, the “physical” roles of the growth rates and the free energies

in the respective systems are analogous. We remark that space-time solutions presented in this paper involve

interfaces between regions in space that oscillate in time,and regions that are spatially periodic and stationary

in time. Such interfaces cannot be assigned to any of the fourclasses of defects solutions proposed in [34] for

time-periodic solutions of reaction-diffusion systems, as the defects discussed generically serve as interfaces

between only traveling waves of nonzero speed.

This paper is organized as follows. In§2, we briefly review the derivation of the amplitude equations

near the C2THP of (1.1) and give conditions for Turing-Hopf bistability. These results are used to facilitate

a search in parameter space for Turing-Hopf pinning solutions. In§3.1, we describe the equations used to
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compute the pinning solutions using the method of continuation in AUTO. We then present in§3.2 the snaking

branches on which the pinning solutions exist and discuss their relationship to the pure Turing and pure Hopf

branches. We describe the solutions found on these branchesand how they vary as the solution branch is

traversed. In§3.3, we illustrate the process by which solutions depin whenparameters are set a distanceδ

outside of the snaking region, and give a numerical estimateof the scaling of the depinning speed with respect

to δ. We give a qualitative explanation for the direction of depinning based on the relative dominance of the

Turing and Hopf modes. In§3.4, we illustrate the dependence of the wavelength of the spatially periodic state

on the parameters of the Brusselator model. In§3.5, we offer an explanation for the observed dependence in

the framework of properties of the amplitude equations derived in §2. We then conclude and discuss open

problems in§4.

2 Turing-Hopf Bistability

In this section, we briefly outline the derivation of the evolution equations for the amplitudes of the Turing

and Hopf modes near the C2THP. For a detailed analysis, see [35], or [32] for the superdiffusive variant of

Brusselator model. See [36] for a review of normal form theory near the codimension two point, and [29]

and [37] for a weakly nonlinear analysis of Turing patterns of the regular and superdiffusive Brusselator

models in two dimensions. Stability results from analysis of the amplitude equations will yield the regime

of Turing-Hopf bistability in which pinning behavior is possible, as it is in this regime of bistability that the

pure Turing and pure Hopf modes may coexist in physical space.

The system (1.1) has one spatially homogeneous steady state(u, v)⊤ = (E, B/E)⊤. Here,⊤ denotes

the transpose. AsB is increased pastBH = 1 + E2, the basic state loses stability through a Hopf bifur-

cation yielding spatially homogeneous temporal oscillations of frequencyωc = E. As B is increased past

BT = (1 + E
√

D)2, a steady state Turing bifurcation occurs, yielding a stationary spatially periodic pattern

with critical wavenumberkc = [E/(
√

1 + E2−1)]1/2. When the Hopf and Turing bifurcations occur simul-

taneously, i.e., whenBH = BT , the point in parameter space is referred to as a codimensiontwo Turing-Hopf

point. This condition is satisfied whenD = Dc = [(
√

1 + E2 − 1)/E]2. To analyze the slow-time evolution

of the two modes near the C2THP, we letB = BH + ǫ2µ andD = Dc + ǫ2ρ, where0 < ǫ ≪ 1 andµ and

ρ are bothO(1). Whenρ > 0 (ρ < 0), the Hopf (Turing) bifurcation is the first to occur asB is increased.

Introducing the slow time scaleT = ǫ2t and the long spatial scaleX = ǫx and perturbing the steady state

by (u, v)⊤ = (E, B/E)⊤ + ǫaA(X, T )eikcx + ǫcC(X, T )eiωct + c.c., wherea = ((E2 + k2
c )/BH , 1)⊤,

c = (−E(E + i)/BH , 1)⊤, andA(X, T ) andC(X, T ) are the complex amplitudes of the Turing and Hopf

modes, respectively, the amplitude equations are readily calculated as

AT = ζAXX + γA − g|A|2A − λ|C|2A , (2.1a)

CT = (κr + iκi)CXX + νC − (βr + iβi)|C|2C − (δr + iδi)|A|2C . (2.1b)

The constants in (2.1) are given in the appendix. All constants in (2.1) are real and, with the exception ofν

andγ, only functions of the parameterE. The coefficientν is given byν = µ/2, while γ is a function of

µ, ρ, andE. The conditions for supercriticality of the Turing and Hopfbifurcations areg > 0 andβr > 0,

where the latter condition is always satisfied for the Brusselator model. A value ofE for which the former
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is satisfied isE = 1.4, which is the value used in all computations presented herein. For this value ofE and

ρ > 0, the bifurcation scenario is given in Figure 9(g) of [35]. The pure Turing mode stabilizes whenµ (and

thus the amplitude of the pure Turing mode) is sufficiently large to suppress growth of the Hopf mode. This

value ofµ can be readily computed from a linear stability analysis of (2.1). These weakly nonlinear results

were used in the initial search for a pinning region in parameter space. We remark that four constants in (2.1)

can be normalized by rescaling(A, C, X, T ). Though necessary for a complete analysis of (2.1), we choose

not to carry out this normalization procedure in this paper for notational convenience.

3 Snaking Structure and Pinning Solutions

In this section, we first introduce the numerical procedure to be used to compute the pinning solutions.

Both time evolution of the PDE system (1.1) and continuationfor a system of ODEs (given in§3.1), gotten

by representing the solutions by a finite number of Fourier modes, are employed. We then present the main

results regarding the existence of a robust region in parameter space in which stationary striped structures

and time periodic oscillations coexist in the same spatial domain. Such solutions vary continuously with the

parameters of (1.1) and lie on snaking branches, each of which is characterized by a series of saddle-node

bifurcations similar in appearance to the well known snaking structures found in studies of stationary pinning

solutions. Two intertwined pairs of such solution branchesare shown to exist. The main difference between

solutions on these two pairs of branches is that on one pair, adefect is present at the center of the striped

region, and on the other pair, no defect exists. Solutions onone branch of one pair differ from those on

the other branch by aπ phase shift in the spatially periodic region, i.e., locations of local minima (maxima)

of solutions on one branch correspond to locations of maxima(minima) of solutions on the other branch.

We discuss where these branches bifurcate, and describe thedifferences between solutions on different parts

of each branch. For the non-defect pair of solutions, we discuss the depinning transition and wavelength

selection. Lastly, we relate the results back to propertiesof the amplitude equations.

3.1 Numerical Methods

We employ two approaches to numerically determine the bifurcation branches and the structure and sta-

bility of the solutions on those branches. In the first approach we solve the IBVP for the PDE system (1.1)

and evolve the initial conditions to their eventual steady states. To determine the structure and stability of

the solution branches, we employ AUTO, a continuation package which follows solutions along the vari-

ous branches and determines their stability. The IBVP solver was used to 1) perform parameter searches

to determine the parameters for pinning, and 2) provide appropriate initial guesses to be used in the AUTO

computations. AUTO was then used to compute all the solutionbranches that we found and determine their

stability.

We now describe the process by which we employed time evolution to compute pinning solutions. To

locate the region in parameter space where pinning is possible, we first solved the IBVP system (1.1) with

E = 1.4 using a Fourier spectral method in space and a semi-implicitsecond order two step predictor-

corrector method in time. The diffusion terms of (1.1) were treated implicitly while the reaction terms were

treated explicitly. The latter were first computed in physical space before being transformed into Fourier

space, where all time stepping was performed. The initial conditions foru andv were set as
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(u, v)⊤ = (E, B/E)⊤ + ǫRe
[

aeikcxθ(x) + c(1 − θ(x))
]

,

θ(x) ≡ H(x + ℓ/2)− H(x − ℓ/2) ; ℓ < L ,
(3.1)

on a domain of lengthL subject to periodic boundary conditions, whereH(x) is the Heaviside step function.

Thus, the initial condition (3.1) contains a pure Turing mode on the interval[−ℓ/2, ℓ/2] and a pure Hopf

mode on[−L/2,−ℓ/2)∪(ℓ/2, L/2]. Theu component of (3.1) is depicted in Figure 1(a). Note that the basic

state ofu is u = E = 1.4.

Fixing E = 1.4 and settingµ (equivalently,B) sufficiently large as determined in§2 so that the pure

Turing mode is stable, we variedρ (equivalently,D) until (1.1) yielded a time periodic solution marked by the

coexistence of Turing and Hopf modes on the same spatial domain. The large time behavior of such a solution

is depicted in the space-time plot in Figure 1(b), which shows a nearly stationary striped region embedded

in a background of low wavenumber Hopf-like oscillations. Note that the locations of the interfaces between

the Turing and Hopf regions remain constant in time. In all space-time plots, the spatial variablex is plotted

on the horizontal axis, the temporal variablet is plotted on the vertical axis, and dark (light) regions indicate

larger (smaller) values ofu(x, t). Space-time plots ofv(x, t) simply appear as black-and-white inverted plots

of u, and are thus not included.

−60 −40 −20 0 20 40 60
1.2

1.3

1.4

1.5

1.6

x

u

(a) (b)

Figure 1. (a) Line plot of a typical initial condition ofu for L ≈ 137.37, E = 1.4, ǫ = 0.1, µ = 25,

andρ = 0.178 (equivalently,B = 3.21, D ≈ 0.2666). (b) Space-time plot ofu for large time

starting from the initial condition in (a). Turing and Hopf modes coexist on the same spatial domain

in a time periodic solution.

Most of the solutions shown in this section resemble an interval in time of Figure 1(b) consisting of one

complete cycle of the oscillatory region. Analogous to the well studied problems in homoclinic snaking of

stationary solutions, (1.1) admits an infinite multiplicity of solutions similar to Figure 1(b) that differ in the

width of the striped region. While Figure 1(b) appears to be time periodic, all solutions that we have computed

by means of time evolution have exhibited a slight aperiodicity, possibly due to the difference between the

oscillation frequencies of the pure Hopf mode and the mixed mode between Hopf and Turing. However, time
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periodic solutions do exist and can be found using AUTO, which was the main tool in obtaining the results

reported in this paper.

One of the main capabilities of AUTO is the computation and continuation of limit cycles of systems of

ordinary differential equations. To exploit this capability, we used AUTO to solve the time periodic BVP

1

T

dûk

dt
= −D

(

2πk

L

)2

ûk + F̂ (u, v)k , ûk(0) = ûk(1) , k = 0, . . . , N , (3.2a)

1

T

dv̂k

dt
= −

(

2πk

L

)2

v̂k + Ĝ(u, v)k , v̂k(0) = v̂k(1) , k = 0, . . . , N , (3.2b)

wheref̂k denotes the amplitude of thek-th mode of the(N +1)-mode Fourier transform off . In (3.2),

F (u, v) andG(u, v) are the reaction terms on the right-hand sides of (1.1a) and (1.1b), respectively, andT

is the period of the solution as determined by AUTO. As in the time stepping code, the reaction terms were

computed first in physical space before being transformed into Fourier space. This formulation allowed use

of the basic elements of the time evolution code described above, exploiting the fact that the IBVP solver

directly computes the right-hand side of (3.2). The initialguess used to initialize the AUTO computations

was the Fourier modes ofu(x, t) andv(x, t) taken between the timest0 ≤ t ≤ t1, whereu(−L/2, t0) and

u(−L/2, t1) are both local maxima; in Figure 1(b), this condition corresponds to all slices in time between

two consecutive horizontal black stripes, or between one complete oscillation of the Hopf mode. Here,u(x, t)

andv(x, t) are solutions computed by time evolution. While, as noted previously,u(x, t0) is not identical to

u(x, t1), the aperiodicity is not so severe that AUTO is unable to converge onto a time periodic solution from

the initial guess. Indeed, the solutions that AUTO computesare exactly periodic in time. We suspect that

such time periodic solutions to (1.1) exist, though with an extremely small domain of attraction.

We make the following observations. First, in the example inFigure 1 withL ≈ 137.37, results of the

bifurcation diagram and solutions foru andv hardly changed as the number of Fourier modes was increased

from N = 128 to N = 256. Comparing two corresponding saddle-nodes in the snaking region, the value

of D at the saddle-nodes differed in the two resolutions by less than0.004%. Thus,N = 128 was used in

the computations. The lengthL was chosen so that exactly 36 wavelengths of a pure Turing solution with

wavenumberk = kc would fit in the domain. However, as we will show below, only 35wavelengths are

present when the solution is continued to a near-pure Turingstate. Second, a pinning region in parameter

space further into the nonlinear regime was documented in [26]. This regime was found to exhibit highly

relaxational temporal oscillations that required a highertemporal resolution in AUTO to resolve. This was

not conducive to this study, as the number of modes required to resolve the spatial variation already led

to time-intensive computations. Further, results from AUTO indicate that solutions of the more nonlinear

parameter regime may not be connected through the familiar snaking structure that will be presented in the

next section for the weakly nonlinear regime. Lastly, the norm used as the measure of the solutions and

plotted on they-axis of the bifurcation diagrams below is given by

L2F =

√

√

√

√

∫ 1

0

N
∑

k=0

[û2
k(t) + v̂2

k(t)] dt . (3.3)
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The norm (3.3) is close to but not exactly equivalent to theL2 space-time norm, differing by a factor of two

under the square root fork 6= 0. Also, since only even solutions are considered,ûk(t) andv̂k(t) are real for

all k andt.

3.2 Main Results

The complete bifurcation diagram of all solutions found is shown in Figure 2, where the diffusivityD is

treated as the bifurcation parameter and plotted on the horizontal axis, and the norm (3.3) as the measure of

the solutions plotted on the vertical axis. Heavy (light) segments indicate stable (unstable) solution branches.

Representative solutions from each branch are shown in the figures below. We begin with a broad overview

of each branch and discuss how they are located with respect to each other. We then describe each branch,

and the corresponding solutions, in detail. We note that allbranches and their solutions, stationary and time

periodic, were computed by AUTO; different options were used to direct AUTO to compute each type of

solution.
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B
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B
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, B
Pπ

B
T0

, B
Tπ

B
H

B
P0
(D), B

Pπ
(D)

Figure 2. Complete bifurcation diagram forB = 3.21, E = 1.4, L ≈ 137.37. The bottom two

branchesBT andB
(D)
T are the stationary pure Turing and defect branches, respectively. The top

branchBH is the pure Hopf branch. The main snaking region on the left consists of two pairs

of intertwined branchesBP0 andBPπ, andB
(D)
P0 andB

(D)
Pπ . Connected to these branches in the

manner describe in Figure 5 are two distinct branchesBC1 andBC2 exhibiting collapsed snaking

behavior. The inset is a magnification of the main snaking region inside the rectangle.

Figure 2 includes two pure Turing branchesBT0 (local maximum atx = 0) andBTπ (local minimum at

x = 0), indistinguishable by the measureL2F . These two branches arise from the rotational invariance of

the solutions of (2.1a). In particular,A =
√

(γ − ζk2)/gei(kx+φ) (|k| ≤
√

γ/ζ) is a solution to (2.1a) for
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anyφ whenC = 0. However, within (1.1), the phasesφ = 0, π are the only ones that preserve the spatial

reversibility symmetry. The stability transition on the pure Turing branches occurs at a Hopf bifurcation point

atD ≈ 0.28471. An analysis of (2.1) (not presented here as it is straightforward) predicts that, withǫ2 = 0.01

andµ = 25, the transition occurs atD ≈ 0.28531, a difference of approximately6 × 10−4. The point of

stability transition also corresponds to the bifurcation point of the mixed mode. For clarity, we have plotted

only a portion of the two pure Turing branches, and chosen notto plot the (unstable) mixed-mode branch.

The pure Hopf branch, denoted byBH , corresponds to the time periodic solution to (2.1b) withA = 0. The

period of oscillations on the pure Hopf branch isT ≈ 4.6623.

The two Turing-Hopf pinning branchesBP0 andBPπ are connected through a saddle-node bifurcation

near but not coinciding with the stability transition of thepure Turing branches. At this saddle-node point, the

solution resembles solutions along the pure Turing branchesBT0 andBTπ, with a small amplitude oscillation

in time of periodT ≈ 4.4179. As is the case with all solutions described below, the period of oscillations is

close to but not equal to the period of the pure Hopf oscillations. The space-time plot of the solution foru at

the saddle-node, along with two line plots of two particularslices in time, are shown in Figure 3. While the

length of the domain is able to accommodate exactly36 Turing wavelengths of critical wavenumberk = kc,

only 35 are present in Figure 3. Hence among the discrete band of pureTuring solutions, each with a slightly

different wavenumber allowed by the length of the domain, wehave shown in Figure 2 only the two pure

Turing branches for which there are35 wavelengths corresponding to the same number as seen in Figure 3.

This pattern can be shown to be Eckhaus stable by analyzing (2.1a) withC = 0.

The branchesBP0 andBPπ continue towards decreasing values ofD before beginning a snaking process

in which the two branches intertwine. In the snaking region,the solutions on these branches resemble that

of one temporal period of Figure 1(b). Because theL2F norm of the pure Hopf branch is larger than that

of the pure Turing branch, solutions higher up on the Turing-Hopf pinning branchesBP0 andBPπ have a

narrower striped region (i.e., fewer stripes) than those onthe lower branches. Analogous to the distinction

between theBT0 andBTπ branches, the two pinning branches are distinguished by solutions onBP0 having

a local maximum at the center of the striped (Turing) region,and solutions onBPπ having a local minimum.

The upward sloping segments in the snaking region are stable; all other solutions along the two branches are

unstable.

Another pair of intertwined pinning branches,B
(D)
P0 andB

(D)
Pπ , is also characterized by striped regions

embedded in a background of Hopf-like oscillations. However, solutions on these two branches exhibit a

defect in the central part of the striped region. All solutions along these two branches are unstable. In

the same way that the branchesBP0 andBPπ begin near a Hopf bifurcation point on the stationary pure

Turing branch, theB(D)
P0 andB

(D)
Pπ branches begin near a Hopf bifurcation point on a pair of stationary defect

branchesB(D)
T0 andB

(D)
Tπ (indistinguishable byL2F ). The space-time solution foru at the bottom of the

B
(D)
P0 branch is shown in Figure 4(a), while Figures 4(b) and 4(c) are line plots ofu at two instants of time,

indicating a slight temporal oscillation in the form of the spatial envelope. Figures 4(d) and 4(e) show time

slices of the solution at the bottom of theB
(D)
Pπ branch, characterized by a local minimum, instead of a local

maximum, at the center of the defect, centered atx = 0. Within the spatial envelope,35 wavelengths are

present. The stationary defect solutions on theB
(D)
T0 andB

(D)
Tπ branches were described analytically in [17]

in the framework of (2.1a) near a supercritical Turing bifurcation. As in the case of two branches of pure
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Figure 3. Shown in (a) is a space-time plot ofu at the saddle-node bifurcation point of the two

Turing-Hopf pinning branchesBP0 andBPπ. The solution resembles a pure Turing solution with a

small amplitude temporal oscillation of periodT ≈ 4.4179 in the shape of the spatial envelope. The

oscillations of the envelope can be inferred from (b) (time slice of (a) att = 0) and (c) (time slice of

(a) att ≈ 2.1586). The parameters areB = 3.21, E = 1.4, L = 137.37, andD ≈ 0.2843. There

are a total of35 Turing wavelengths present.

Turing solutions, the stationary defect solutions have either a local minimum or maximum at the center of the

defect.

Finally, to the right of the four snaking branches of pinningsolutions are two separate branchesBC1 and

BC2 that exhibit properties similar to collapsed snaking (cf. [17] for stationary collapsed snaking), where

the snaking region collapses to almost a single value in the bifurcation parameter. Solutions on these two

branches consist of two regions in space of approximately antiphase pure Hopf-like oscillations separated by

striped Turing-like structures. Solutions at different locations on each branch differ in the relative width of

the two regions. A schematic of the connections between all branches discussed is shown in Figure 5.

All solutions on the branches described are even aboutx = 0. We have not been able to find any solutions

that are odd. By time evolving (1.1) initialized with particular initial conditions on a periodic domain, we

attempted to compute odd solutions in which two Hopf regionsseparated by two striped regions oscillate
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Figure 4. Solutions at the bottom of theB(D)
P0 andB

(D)
Pπ branches. The oscillations of the spatial

envelope (T ≈ 4.4167) can be inferred from (b) (time slice of (a) att = 0) and (c) (time slice of

(a) att ≈ 2.1991) for theB
(D)
P0 branch. Time-slices for theB(D)

Pπ branch are shown in (d) and (e)

(T ≈ 4.4166). The parameters areB = 3.21, E = 1.4, L = 137.37, andD ≈ 0.28544. Within the

spatial envelope,35 wavelengths are present.
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antiphase. However, due to the apparent presence of weak coupling of the Hopf regions through the striped

regions, the initially antiphase oscillations synchronize over time. We were also unable to compute asym-

metric solutions that, in the stationary pinning solutionsof the Swift-Hohenberg equations (see e.g., [12]

and [10]), make up the “rungs” that connect two intertwined snaking branches. Such solutions can be con-

structed by “gluing” together parts of solutions on one branch. However, when considering time periodic

solutions, as we do here, each component must have the same temporal period, which is generally not the

case. As a result, AUTO will not be able to converge to a time periodic solution. This is a fundamental

difficulty with the present model, not encountered in previous studies of stationary pinning regimes.

D

L
2
F

B
HB

P0 B
C2

B
C1

B
P0
(D) B

Pπ
(D)

B
T0
(D), B

Tπ
(D)

B
T0

, B
Tπ

B
Pπ

Figure 5. Schematic bifurcation diagram of Figure 2 illustrating connections between branches. The

dashed boxes represent snaking regions. Dark segments indicate the existence of branches of stable

solutions.

We now discuss each pair of branches in detail starting with the two pure Turing branches. In Figure 6,

we show the solutions at the point of the stability transition where a Hopf bifurcation occurs, marked by

a solid circle in Figure 6(a), on the branchesBT0 andBTπ. The four pinning branches are also visible in

Figure 6(a); in particular, the saddle-node point from which theBP0 andBPπ branches bifurcate can be seen

to be located near the aforementioned Hopf bifurcation point on the pure Turing branches. Multiple Hopf

bifurcation points occur on theBT0 andBTπ branches; the one marked by the solid circle located at the

stability transition point is the one that occurs at the smallest value ofD. The corresponding (stationary)

solutions foru are plotted in Figure 6(b), which has a local maximum atx = 0 (BT0) and Figure 6(c), which

has a local minimum atx = 0 (BTπ). For clarity, only the intervalx ∈ [−20, 20] is shown. The entire domain

contains35 wavelengths.
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Figure 6. Closeup of stability transition point (indicated by solid circle) on the pure Turing branches

(a) and the corresponding solutions foru on BT0 (b) andBTπ (c). The pure Turing branches are

indistinguishable by the measureL2F . The parameters areB = 3.21, E = 1.4, L ≈ 137.37, and

D ≈ 0.2847.

As stated above, the two Turing-Hopf pinning branchesBP0 andBPπ bifurcate from the saddle-node point

located near the stability transition point of the two pure Turing branchesBT0 andBTπ. In Figures 7(b) and

7(c), we show one space-time solution foru from the lower part of each branch to illustrate how the solutions

on the branches differ from that of the saddle-node shown in Figure 3(a). Similarities between Figures 7(b)

and 7(c) are immediate when spatial and temporal periodicity of the space-time plots are considered. This

similarity is apparent when comparing Figure 7(c) to Figure7(d), the latter of which has been periodically

shifted in both space and time from Figure 7(b). The center ofthe striped region occurs atx = 0 (or, by

periodicity, the leftmost point in space of Figure 7(b)). InFigure 7(d), the center of the striped region is a

local maximum (dark stripe) while in Figure 7(c), it is a local minimum (white stripe). These two solutions

differ slightly both in the temporal period and the wavelength of the striped region. The mechanism(s) that

affect these two quantities is an open problem. Experimentsinvolving the time evolution of (1.1) suggest that

the selection of the wavelength of the striped region is independent of initial conditions.
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Figure 7. Solutions on the lower part of the Turing-Hopf pinning branchesBP0 with D ≈ 0.26702

(b) andBPπ with D ≈ 0.26673 (c). The temporal periods are, respectively,T ≈ 4.6450 and

T ≈ 4.6452. In (d), we show a periodically (temporally and spatially) shifted plot of (b), illustrating

the similarity between (b) and (c). The parameters areB = 3.21, E = 1.4, L ≈ 137.37.

Snaking higher up theBP0 andBPπ branches, the spatial extent of the striped region is reduced through

a series of saddle-node bifurcations. In Figure 8, we show the solutions at two saddle-nodes in the snaking

region of theBPπ indicated in Figure 8(a) (theB(D)
P0 andB

(D)
Pπ branches have been removed for clarity). We

note in Figure 8(a) that, while the saddle-nodes exhibit an approximate “lining-up property” (cf. [38]) where

saddle-nodes occur at approximately the same value of the bifurcation parameter, we observe a nonmonotonic

convergence of saddle-nodes in the parameterD, a departure from previous results on stationary snaking

branches. The solution at the lower saddle-node, shown in Figure 8(b), is Turing-dominated while the one

at the higher saddle-node, Figure 8(c), is Hopf dominated, consistent with the fact that in Figure 2, the

stationary Turing branches have the smallest values ofL2F and the pure Hopf branch the largest. The periods

of the solutions also differ slightly, with that of the solution higher on the branch closer to the period of

the pure Hopf solution. While the number of stripes is difficult to quantify due to temporal oscillations and

the interaction between Turing and Hopf regions, the process by which solutions gain or lose stripes can be

clearly seen by comparing solutions at particular points intime.
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Figure 8. Progression of solutions along the snaking region (a) of theBPπ branch. For a solution on

a low saddle-node (b), the striped region occupies the majority of the spatial domain, while for one on

a high saddle-node (c), the time oscillatory region is dominant. The temporal periods of the solutions

areT ≈ 4.6573 (b) andT ≈ 4.6597 (c). The parameters areB = 3.21, E = 1.4, L ≈ 137.37,

D ≈ 0.26685 (b) andD ≈ 0.26682 (c).

In Figure 9 we show the process of the nucleation of a Turing cell, or stripe, as theBPπ branch is traversed

downwards. In particular, for a typical segment of the snaking branch, we illustrate the difference between

solutions at three consecutive saddle-nodes by plottingu(x, t0), wheret0 ∈ [0, T ] is the instant in time when

the center of the oscillatory region inu attains a local minimum in time. In Figure 9(a), we indicate the three

saddle-node points of interest as well as two intermediate points. In Figure 9(b), the solution at saddle-node

point (b) has a main Turing region containing 10 local maximaat whichu has a value between2 and2.5.

The main Turing region is bounded between two pairs of local maxima of lesser value. As the branch is

traversed downwards, the two pairs of local maxima grow in amplitude, as seen in Figure 9(c), 9(d), 9(e),

while very little is changed in the main Turing region. Once the saddle-node point (f) is reached (Figure 9(f)),

the larger of the pair of maxima has grown to approximately equal height as the outer pair of maxima of the

main Turing region. Thus, as the branch was traversed from saddle-node point (b) through saddle-node point

(d) to saddle-node point (f), the main Turing region gained one pair of maxima, or two Turing wavelengths.
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We make some remarks regarding the process illustrated in Figure 9. First, the mechanism of nucleation at

the edge of the Turing region, including in particular the nucleation of two Turing wavelengths for every two

saddle-nodes, is the same as that reported for the 2–3 Swift-Hohenberg equation in [14]. Second, comparing

Figures 9(b) and 9(f) reveals that the larger the extent of the Turing region, the more the central stripes

resemble that of the pure Turing stripes at the same value ofD. This trend suggests that there is weak

coupling between the two Turing-Hopf interfaces through the Turing region, and that the coupling strength

weakens the greater the distance between the two Turing-Hopf interfaces. Third, all corresponding space-

time solutions of Figures 9(b)–9(f) have slightly different temporal periods, given in the caption of Figure 9.

Lastly, we observe the same nucleation characteristics forthe defect pinning branches.

Solutions on theB(D)
T0 and B

(D)
Tπ branches are characterized by a spatially periodic patterncontained

within a spatially varying envelope. Solutions onB
(D)
T0 (B(D)

Tπ ) have a local maximum (minimum) atx = 0.

As indicated in Figure 10(a), both stationary defect branches are unstable. Multiple Hopf bifurcation points

occur on the two branches; the one marked by the solid circle is the one that occurs nearest the bifurcation

point of the defect Turing-Hopf pinning branchesB
(D)
P0 andB

(D)
Pπ . The two solutions at the Hopf bifurcation

points are shown in Figures 10(b) and 10(c). Like the space-time solution at the bifurcation points of the

B
(D)
P0 andB

(D)
Pπ branches in Figure 4,35 wavelengths are present inside the spatial envelope.

As seen in Figure 10(a), the defect Turing-Hopf pinning branchesB
(D)
P0 andB

(D)
Pπ begin near a Hopf

bifurcation on the stationary defect branchesB
(D)
T0 andB

(D)
Tπ . The space-time solution at the bifurcation

point is shown in Figure 4(a). The similarity between this solution and the stationary defect solution at the

Hopf bifurcation point is immediate upon comparing Figure 4(b) to Figure 10(b) and Figure 4(d) to Figure

10(c). In Figure 11, we show two typical defect Turing-Hopf pinning solutions at low and high saddle-node

points on theB(D)
Pπ branch (Figure 11(a)). Other solution branches have been removed for clarity. The defect

can be seen to be centered aroundx = 0 in Figures 11(b) and 11(c). As with the non-defect pinning branches

BP0 andBPπ , solutions lower on the branch have a larger striped region than those higher on the branch. The

manner in which Turing wavelengths are nucleated on the branchesBP0 andBPπ also applies to solutions

on the defect pinning branches, and thus is not shown. We remark that although stationary defect pinning

solutions have not been observed in the Swift-Hohenberg equations, they have been found in a periodically

forced Ginzburg-Landau equation originally proposed in [39] and subsequently studied in detail in [40]. In

this example the two “hybrid” snakes formed by defect pinning solutions coexist in the same snaking region

as the two “primary” snakes formed by non-defect pinning solutions, precisely as in Figure 2. Besides, it

was theoretically predicted in [40] that as the spatially periodic region of the pinning solution becomes wider

along the snaking branches, the locations of the saddle-nodes on the two hybrid snakes approach their limiting

values from the other direction and more slowly compared to those on the two primary snakes, which again

agrees with the upper portion of Figure 2.

The collapsed snaking branchesBC1 andBC2 lie to the right of the four main snaking branches described

above. All solutions on the two branches are unstable. TheBC1 branch connects toBPπ, andBC2 connects

toB
(D)
Pπ , both through a complex array of saddle-nodes that will not be described here. A simplified schematic

of these connections is shown in Figure 5. In Figure 12(a), weshow a closeup of the two collapsed snaking

branches. As the branch is traversed beginning from the top,the snaking region appears to collapse to a

single value inD in a back-and-forth manner before broadening out at the bottom. Two typical solutions

on the lower (Figure 12(b)) and upper (Figure 12(c)) part of theBC1 branch are shown. As either collapsed
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Figure 9. Illustration of the nucleation process that occurs at the edge of the Turing region. In (a),

the locations on theBPπ branch of the subsequent figures are indicated. In the progression (b)–(f),

the Turing region grows by a width of two wavelengths throughthe increase in amplitude of a pair

of local maxima at its edges. The corresponding values ofD and temporal periods of the solutions

areD ≈ 0.26682, T ≈ 4.6597 (b), D ≈ 0.26665, T ≈ 4.6597 (c), D ≈ 0.26648, T ≈ 4.6596

(d), D ≈ 0.26664, T ≈ 4.6595 (e),D ≈ 0.26683, T ≈ 4.6594 (f). The parameters areB = 3.21,

E = 1.4, andL ≈ 137.37.
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Figure 10. Closeup of the Hopf bifurcation point (indicated by solid circle) nearest the saddle-node

bifurcation point ofB(D)
P0 and B

(D)
Pπ on the stationary defect branches (a) and the corresponding

solutions foru on B
(D)
T0 (b) andB

(D)
Tπ (c). The stationary defect branches are indistinguishableby

the measureL2F . The parameters areB = 3.21, E = 1.4, L ≈ 137.37, andD ≈ 0.28544.

snaking branch is followed downward, the ratio between the widths of the Hopf region centered around the

boundary and the one centered aroundx = 0 decreases. This ratio becomes equal to1 at the rightmost

point ofBC1 and the leftmost point ofBC2, which we will refer to as the symmetric point. After this point,

the branch turns back onto itself on the bifurcation diagramand the width ratio continues to decrease. The

solution at the symmetric point is invariant under a spatiotemporal flip, defined as a translation inx by half

the domain size followed by a translation int by half the Hopf period. In general the two solutions before

and after the symmetric point at the same location on the bifurcation diagram are related to each other by the

spatiotemporal flip. This solution behavior is in direct contrast to regular snaking discussed above in which

solutions on lower and upper parts of the branch differed in the widths of the spatially periodic region, i.e.,

the number of Turing stripes. The fact that in the latter case, stripes are nucleated or destroyed as the branch

is traversed, while in the former case, only the widths of predominantly spatially homogeneous structures are

altered, offers a simple explanation for the fact that solutions such as those in Figures 12(b) and 12(c) lie on

a collapsed snaking branch, while those in, e.g., Figure 8(b), lie on a snaking branch with finite width. The
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Figure 11. Progression of solutions along the snaking region (a) of theB
(D)
Pπ branch. For a solution

on a low saddle-node (b), the striped region occupies the majority of the spatial domain, while for

one on a high saddle-node (c), the time oscillatory region isdominant. The temporal periods of the

solutions areT ≈ 4.6533 (b) andT ≈ 4.6592 (c). The parameters areB = 3.21, E = 1.4,

L ≈ 137.37, D ≈ 0.26690 (b) andD ≈ 0.26683 (c).

difference between the solutions in Figure 12 and those on the other collapsed snaking branchBC2 will be

illustrated below.

We make two remarks regarding Figure 12. First, the time oscillatory regions of space in Figures 12(b)

and 12(c) are flatter than those of solutions described above(e.g., Figure 11(c)). Further, the frequency of

these oscillations is closer to that of the pure Hopf frequency. These characteristics suggest that there is very

little coupling between the time oscillatory regions and the interfaces in between them. Second, the nearly

antiphase temporal oscillations in Figures 12(b) and 12(c)are separated by spatially oscillatory structures,

while the corresponding branches in Figure 12(a) snake backand forth in their approach to a single value in

the bifurcation parameter. A direct analog of this scenariofor stationary solutions, where two spatially homo-

geneous states are connected by spatially oscillatory fronts, is given in [17]. There, the spatially oscillatory

fronts were explained by the spatial eigenvalues of the two spatially homogeneous states. In this case, they

form a quartet in the complex plane with nonzero real and imaginary parts, with the nonzero imaginary parts
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Figure 12. Progression of solutions along the collapsed snaking region (a) of theBC1 branch. The

solutions in (b) and (c) (locations on the branch indicated in (a)) differ in the ratio between the widths

of the time oscillatory regions. The temporal periods of thesolutions areT ≈ 4.66234 (b) and

T ≈ 4.66231 (c). The parameters areB = 3.21, E = 1.4, L ≈ 137.37, D ≈ 0.27083 (b) and

D ≈ 0.27077 (c).

responsible for the spatially oscillatory front. For stationary solutions, the difference between regular snaking

and collapsed snaking behavior has been understood as follows. Collapsed snaking solutions are explained

in [41] as the intersection of the two-dimensional stable and unstable manifolds of two “stationary” (in space)

states in a four-dimensional spatial dynamical system. This codimension one intersection is the reason be-

hind the collapsed snaking structure of the solution branches; a slight perturbation in the value of the control

parameter would lead to the breaking of the non-robust intersection of the manifolds. In contrast, the robust

snaking region of regular snaking solutions can be explained by a codimension zero intersection between

a two-dimensional unstable manifold of a stationary (in space) state with a three-dimensional center-stable

manifold of a periodic orbit in space, with spatial reversibility guaranteeing the return orbit to the stationary

state. Extension of this description to the present case of time dependent snaking behavior involves dimension

counting in the style of [34] in the infinite-dimensional phase space of (1.1), and is left as future work.
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In Figure 13(b), we illustrate the difference between two comparable solutions on theBC1 and BC2

branches, respectively. The solid curve shows the solutionu(x) of Figure 12(b) at the time whereu(0, t)

is a local maximum. The dashed curve shows the same slice of a similar solution on the other collapsed

snaking branchBC2. The respective locations of the two solutions are shown in Figure 13(a). As has

been the distinction between the0 andπ regular snaking branches, points in space where solutions on BC1

attain a local maximum (minimum) are approximately points where those onBC2 attain a local minimum

(maximum). This antiphase relationship between the two collapsed snaking branches is not as exact as in the

regular snaking branches, perhaps due to the separation of the collapsed branches in parameter space.
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Figure 13. In (a), the bottom of theBC1 and BC2 branches are shown. In (b), two slices of

space-time solutions onBC1 (solid) andBC2 (dashed) are shown. Their locations on the respec-

tive branches are indicated in (a) by solid circles. The spatially periodic regions of the two solutions

oscillate approximately antiphase with periodsT ≈ 4.66234 (solid) andT ≈ 4.66229 (dashed). The

parameters areB = 3.21, E = 1.4, L = 137.37 andD ≈ 0.27083 (solid) andD ≈ 0.27185

(dashed).

3.3 Depinning Transition

Within the regular snaking region described above, the solutions are time periodic and the relative widths

of the striped and time oscillatory regions remain constantin time. That is, the Turing-Hopf front is pinned

while the solution is inside the snaking region. Outside thesnaking region, the fronts are expected to depin,

as was the case for the 2–3 Swift-Hohenberg equation in [2]. The direction of depinning may be inferred

from the weakly nonlinear analysis. In§2, we found that whenρ > 0, or equivalentlyD > Dc, the Hopf

bifurcation occurs first asB is increased. This suggests that whenD is increased, the Hopf mode becomes

more dominant relative to the Turing mode. Thus, whenD is set to the right of the pinning region, the Hopf

region is expected to invade the striped region. Figure 14 illustrates the depinning dynamics that occur in this

scenario. Figure 14(b) shows a space-time plot ofu where the temporal oscillations have been removed for

clarity by only recording times at which the center of the time oscillatory region attained a local minimum

in time. As expected, the Hopf region (white) invades the striped region. The time evolution of (1.1) was
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initialized with one slice in time of the space-time solution ofu andv at a particular saddle-node as computed

by AUTO. The parameterD was set atD = Ds+δ with δ > 0, whereDs is the value at the particular saddle-

node marked by a solid circle in Figure 14(a). Invasion of thestriped region was observed when the process

was repeated withD set to the left of the snaking region (Figure 15).
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Figure 14. Shown in (a) is a closeup of theBPπ branch with the location of the initial condition

indicated by the solid circle. At the saddle-node,D = Ds ≈ 0.26683. The evolution up the branch

at δ distance outside the snaking region is depicted by the vertical arrow. The space-time depiction

of the solution starting from this initial condition is shown in (b) for δ = 1 × 10−5. Only the time

slices at which the center of the time oscillatory region is at a local minimum are included. The slow-

fast-slow evolution ofL2S(t) of the time slices of (b) is shown in (c) with timet on the horizontal

axis. The corresponding slow and fast regions are indicatedin (a). Theδ−1/2 scaling of the time

of traversal between two saddle-nodes is shown in the log-log plot in (d). The solid line is a least

squares fit through the data points (empty circles). The dashed line has a slope of−1/2.

The progression of the solution mirrors the depinning of stationary pinning solutions in [2]. Initialized

in the neighborhood of a saddle-node, the solution evolves in a manner so as to approach the solution at

the saddle-node either below it, if the striped state invades, or above it, when the Hopf state invades. This
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progression can be inferred from Figure 8, as stripe-dominated solutions populate the lower portions of the

branch. As in [2], we observe that the rate of evolution is slow in the vicinity of a saddle-node, increases

away from the saddle-node, and decreases again near the nextsaddle-node. This slow-fast-slow progression

past saddle-nodes has also been observed in nonlinear pulsesplitting regimes (see e.g., [38, 42, 43]). Figure

14(c) illustrates the slow-fast dynamics by tracking the spatial normL2S(t) of each slice in time of Figure

14(b). TheL2S norm is defined as

L2S(t) =

√

1

L

∫ L/2

−L/2

u2(x, t) dx .

Note that, unlike theL2F norm in (3.3),L2S(t) decreases as the width of the striped region decreases. As seen

in Figure 14(c), the norm decreases in a step-like progression in time, suggesting a sequence of destruction

events separated by long intervals of relatively little change. Because the saddle-nodes do not line up exactly,

times spent near each saddle-node are not uniformly distributed. We finally remark that the destruction events

do not continue until the system reaches a pure Hopf state. This is due to the presence of stable branches

that extend beyond the snaking region to the right, which canbe seen in Figure 14(a) as well as in Figure 2.

However, the progression of a Turing-Hopf pinning solutiondown the left side of the snaking region does

evolve to a pure Turing state, seen in Figure 15(b). This is suggested by the snaking diagram shown in Figure

15(a). A wavelength adjustment occurs att ≈ 2 × 104 in Figure 15(b) so that the final state, like the pure

Turing solutions described in§3.2, has35 wavelengths.

Repeating the above procedure for variousδ, we observe that the time of traversal from one saddle-node to

the next scales approximately asδ−1/2, the same scaling found in [2] for the 2–3 Swift-Hohenberg equation.

This scaling was determined only by the time to traverse fromthe starting saddle-node, indicated in Figure

14(a) to the one immediately above it. We numerically determined the time by calculating the difference

between the appropriate time sliceu(x, t0) of the solution computed by AUTO at the second saddle-node to

every time slice of Figure 14(b). The time at which theL2S norm of the difference was minimized was taken

to be the time at which the solution was considered to have reached the second saddle-node. The log-log

relation of the traversal time to the distanceδ from the saddle-node is shown in Figure 14(d); the solid line

is a least squares fit through numerical data (empty circles), and the dashed line has slope−1/2. We finally

remark that the aforementioned slight aperiodicity of the temporal oscillations in time evolved solutions of

(1.1) makes it difficult to determine whether an integer number of temporal oscillations occur between saddle-

node transitions. This difficulty is exacerbated by the vastdifference in the time scales between one temporal

period and the transition time.

3.4 Wavelength Selection

In studies of pinning solutions in the stationary Swift-Hohenberg equations, the wavelength of the periodic

state was shown to vary within the snaking region. This variation can be understood by the conservation of

a spatial Hamiltonian (cf. [44]), a property not available in the Brusselator model. However, in the latter

case, the wavelength of the Turing state also varies within the snaking region and is distributed evenly among

all stripes. We illustrate this phenomenon for solutions onthe BPπ branch. Figure 16(a) shows a scatter

plot of the wavelength of the striped region for solutions inthe snaking region. It shows that, generally, the

wavelengthλ increases as the parameterD increases. Deviation from the trend near the top of Figure 16(a)
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Figure 15. Shown in (a) is a closeup of theBPπ branch with the location of the initial condition

indicated by the solid circle. At the saddle-node,D = Ds ≈ 0.26649. The evolution down the

branch atδ distance outside the snaking region is depicted by the largevertical arrow. The space-

time depiction of the solution starting from this initial condition is shown in (b) forδ = −1 × 10−5.

Only the time slices at which the center of the time oscillatory region is at a local minimum are

included. A wavelength adjustment occurs att ≈ 2 × 104. The final pure Turing state contains35

wavelengths. The parameters areB = 3.21, E = 1.4, andL = 137.37.

occurs for solutions near the top of the snaking branch. For those solutions, the Hopf region has significant

influence on the entire striped region as a result of the Turing-Hopf coupling. For a typical solution, Figure

16(b) shows thex locations of each individual local maximum. The linear relationship implies a spatially

uniform wavelength throughout the striped region. We note that the critical wavelengthλc is λc ≈ 3.8158

and the value ofD at the C2THP isDc ≈ 0.26483. Thus, Figure 16(a) shows that whenD is closer toDc,

the wavelengthλ is closer toλc. We also observe this trend with the parameterB; the closerB is toBH , the

closerλ is toλc.

There is an important difference, however, between the wavelength selection in Figure 16(a) and that

found for the (variational) 3–5 Swift-Hohenberg equation in [44]. In the case of the latter, the snaking region

straddles a Maxwell point, a point of energy balance betweenthe homogeneous and spatially periodic states.

Deviation from the Maxwell point in the direction that favors the periodic state causes it to expand, resulting

in a uniform increase in wavelength of the entire spatially periodic region. Further deviation beyond the

snaking region triggers a depinning transition where the spatially periodic state invades the homogeneous

state leading to a picture similar to Figure 15(b). The reverse is true when deviation from the Maxwell point

energetically favors the homogeneous state. In this case, the picture would resemble Figure 14(b). Thus,

the variation of the wavelength within the snaking region isconsistent with the depinning process: when the

bifurcation parameter is varied so as to increase the wavelength, further variation of the parameter in the same

direction to outside the snaking region would lead to an invasion of the periodic state. Conversely, when the

parameter is varied so as to decrease the wavelength, further variation to outside the snaking region would

result in an invasion of the homogeneous state. This relation between wavelength selection and depinning
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Figure 16. Shown in (a) is a scatter plot of the wavelengthsλ of the striped region of solutions on the

snaking segments of theBPπ branch. Most of the data points are concentrated in the lowerregion of

the plot and suggest a positive correlation ofλ with D. The approximately linear behavior shown in

(b) of the locations of local maxima of a typical solution indicates equally spaced peaks and spatially

uniform wavelengths. The parameters areB = 3.21, E = 1.4, andL = 137.37.

direction does not apply in the case of the Turing-Hopf pinning solutions, however. Given the depinning

results of§3.3, the reasoning above would suggest that the wavelength of the striped region should decrease

(increase) whenD increases (decreases). Figure 16(a) suggests that the opposite is true for the Turing-Hopf

pinning solutions. Thus, the wavelength selection within the snaking region is unrelated to the direction of

depinning. The latter is determined by the relative dominance between the Turing and Hopf modes and was

explained in§3.3. An explanation for the former is given in the next subsection.

3.5 Comparison of Pinning Region to Results Based on Amplitude Equations

Like the Turing-Hopf pinning solutions described in§3.2 for the full Brusselator model (1.1), there also

exist Turing-Hopf solutions of the amplitude equations (2.1). In such solutions as that in Figure 17(a), regions

in space where(|A|, |C|) = (0, C0) are connected by approximately exponential monotonic fronts (close

up in Figure 17(b)) to regions where(|A|, |C|) = (A0, 0). We note that while|C| is stationary,C(x, t)

is complex and oscillates periodically in time. The widths of the Turing and Hopf regions are arbitrary

and thus a continuum of solutions exists for an appropriate parameter set. Such solutions of the amplitude

equations translate to solutions similar to that shown in Figure 8 for the full Brusselator model. However,

these solutions of the amplitude equations exist only on a codimension one subset in parameter space, while

the snaking region of the Brusselator model is codimension zero. This point is developed further below. We

remark that while Figure 17(a) resembles the mesa patterns constructed in [45] for a particular scaling of

(1.1), that analysis does not appear to be applicable to (2.1).

Above, A0 =
√

γ/g is the spatially homogeneous pure Turing amplitude, while the amplitude of the

Hopf modeC0 ≈
√

ν/βr is slightly affected by interaction with the Turing mode; its exact determination

is beyond the scope of this paper. The reason that only the spatially homogeneous Turing amplitude needs

to be considered is the property that the spatial dynamics of(2.1a) conserves a quantity inX (see e.g., [46])
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that uniquely selects the wavelength. In particular, a solution A = R(X)eiθ(X) must conserve the “angular

momentum”h(X) = R2(X)dθ/dX . If R(X) = 0 for anyX , thenh(X) = 0 for all X . Thus, at any point

at whichR(X) is nonzero,dθ/dX = 0 must hold, leading to a spatially homogeneous Turing region. By this

conservation law, for any solution to (2.1) such that (2.1a)reaches a steady state, if there exists a region in

space such that(|A|, |C|) = (0, C0), regions for which|C| = 0 may only admit the spatially homogeneous

A = A0 state. Indeed, when time evolving (2.1) initialized withA spatially periodic in theC = 0 region,

a coarsening of the Turing state occurs until the region is spatially homogeneous. This wavelength selection

within the amplitude equations may explain the observationin §3.4 that the wavelengthλ of the striped region

is closer to the critical valueλc the closer(B, D) are to(BH , Dc), their values at the C2THP.
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Figure 17. Shown in (a) is a plot of the stationary amplitudes of a Turing-Hopf solution of the

amplitude equations. The Turing (Hopf) amplitude is the solid (dashed) line. The widths of the

Turing and Hopf regions are arbitrary. The parameters areµ = 25, ρ = 0.1682, andE = 1.4. A

close-up of the left front is shown in (b).

The front solution to (2.1) shown in Figure 17(a) only existson a positively sloped line in(µ, ρ)–space

through the origin (dashed line in Figure 18(a)), a codimension one subset in parameter space. Theµ–ρ

relationship was obtained numerically by time evolving (2.1) for variousµ andρ and observing pairs(µ, ρ) for

which the Turing-Hopf front remained stationary. The line shown in Figure 18(a) is a least squares fit through

the computed data points (empty circles). We refer to this line as the Maxwell line, even though the problem

is not variational. The significance of the Maxwell line is that the snaking region is expected to straddle the

Maxwell line, regardless of whether the system is variational. Another nonvariational example can be found

in [47], where a higher order analytical approximation to the Maxwell curve for stationary solutions of the

(nonvariational) Lugiato-Lefever model was calculated from a seventh order Ginzburg-Landau equation near

the codimension two point corresponding to weakly subcritical Turing bifurcation. This curve was shown to

be straddled by a numerically determined snaking region of [24].

Below the Maxwell line in Figure 18(a), the Turing mode becomes less dominant in relation to the Hopf

mode, and the Hopf mode invades the Turing mode. Above this line, the opposite is true. By comparing the

Turing and Hopf growth ratesγ andν given in the appendix, it is easily shown that the ratioγ/ν decreases as
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D (or ρ) increases. Unlike the full Brusselator model that has a codimension zero snaking region within the

parameter space in which a continuum of solutions exist, theTuring-Hopf solutions of the amplitude equa-

tions only exist on a codimension one subset. The reason is that the amplitude equations do not capture the

nonadiabatic effects of (1.1) responsible for the pinning of periodic fronts (see e.g., [1,26,47] and references

therein), or equivalently, the broadening of the Maxwell curve. The black dots in Figure 18(a) are computed

limits of the snaking region for various values ofB for a domain length ofL = 250. We observed that the

limits of the snaking region shift more to the left, i.e., closer to straddling the Maxwell line, the larger the

value ofL. Comprehensive results for lengths significantly larger thanL = 250 were difficult to obtain due

to computational constraints. Besides the length of the domain, another reason for the slight discrepancy may

be the lowest order approximation of (1.1). In [47], it was shown that the weakly nonlinear analysis must be

carried out to higher orders for the Maxwell curve to be straddled by the limits of the snaking region near a

codimension two point. In Figure 18(b), we show a semi-log plot of the width of the snaking region inD for

various values of−(B−BH)−1. The dashed line is a least squares fit through the data points(empty circles).

The linear relation indicates that, near the C2THP, the width of the pinning region inD is exponentially nar-

row in −(B − BH)−1, consistent with the dominant part of the scaling analytically determined in [10]. The

predicted scaling in [10] also contains an algebraic prefactor of the form(B−BH)−2 in our notation, but we

were unable to verify its presence based on the available data points.
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Figure 18. Figure (a) depicts the relationship between the numerically determined Maxwell line

(dashed) and the limits of the pinning region (solid circles). The dashed line is a least squares fit

through data points indicated by empty circles. The relationship between the Turing and Hopf growth

ratesγ andν on the Maxwell line is approximately linear, as can be seen from (a) along with the

expressions forγ andν in the appendix. Figure (b) is a semi-log plot of the width of the snaking

region inD as a function of−(B−BH)−1. ForB nearBH , the width is approximately exponential

in −(B − BH)−1.
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4 Discussion

In this paper, we have extended the study of homoclinic snaking of stationary pinning solutions to solutions

exhibiting time periodicity. Whereas most studies in the past have focused on the subcritical Turing regime of

variational models, we have demonstrated snaking behaviornear a C2THP of a nonvariational system where

both the Turing and Hopf bifurcations are supercritical. Inthe region of Turing-Hopf bistability, we found

multiple branches of solutions characterized by a coexistence of temporal oscillations and stationary stripes.

By using AUTO to solve boundary value problems in time for theFourier amplitudes of the space-time

solutions, we were able to compute both stable and unstable solution branches. Two pairs of branches were

found. Each solution on one pair contained a defect at the center of the striped region, while solutions on the

other pair did not. The solutions on either pair of branches differ by a π phase shift in the spatially periodic

pattern. We found that these branches displayed a similar structure to those found for stationary pinning

solutions. Further similarities discovered include the manner in which striped structures of the space-time

solutions were destroyed or nucleated when traversing up ordown the branches. The scaling of the speed of

the depinning transition with respect to distance from the nearest saddle-node was also found to be the same

as that observed in studies of stationary pinning solutions. Lastly, within the framework of the amplitude

equations valid near the C2THP, we numerically determined aMaxwell line, and showed that the pinning

region was located nearby, with the separation decreasing as the length of the domain increased. There are,

however, also important differences. The saddle-nodes of the snaking branches found did not monotonically

converge to a single value in the bifurcation parameter. Also, instead of terminating on the pure Hopf branch

the way that stationary pinning branches terminate on the homogeneous branches, the snaking branches found

here connect to a pair of collapsed snaking branches througha series of complex saddle-nodes. Wavelength

selection of the striped region along the snaking branches is also different. In particular, wavelength variation

appears unrelated to the direction of depinning as was the case in the Hamiltonian spatial dynamics of the

Swift-Hohenberg equations.

There are many open problems regarding Turing-Hopf pinningsolutions near the supercritical C2THP of

the Brusselator model. A qualitative interpretation, analogous to the spatial dynamics framework applied

to the stationary pinning solutions, would provide valuable insights into the nature of the solutions found

in this study. A quantitative determination of theδ−1/2 scaling of the depinning time-scale has also not

been attempted in this paper, due to the technical difficulties associated with asymptotic expansions around

time-periodic pinning solutions. Other paths of analysis include calculating the Maxwell point of the system

of amplitude equations, or extending the method of [10] to analytically determine the pinning region. A

higher order system of amplitude equations may be derived toconfirm that the corresponding higher order

Maxwell line compares more favorably to the snaking region.The possibility of Turing-Hopf pinning solu-

tions in higher spatial dimensions remains open for the Brusselator model, though Turing-Hopf coexistence

in two dimensions near a supercritical C2THP has been numerically observed in [48] for a reaction-diffusion

system describing semiconductor heterostructures. Stationary periodic Turing patterns in the two- and three-

dimensional Brusselator model with regular diffusion werenumerically computed in [49]. In [37], self-

replicating localized spots and spots resulting from ring instabilities were observed numerically for the two-

dimensional Brusselator model with superdiffusion. Stationary pinning solutions in higher spatial dimensions

whose analogs could exist near a supercritical C2THP include radially symmetric (quasi-one-dimensional)
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pinning solutions in the multi-dimensional Swift-Hohenberg equation [50], and fully two-dimensional pin-

ning solutions in two-dimensional Swift-Hohenberg equations [51,52].

Finally we mention several possible extensions of the present study. First, the numerical continuation

method based on spatial Fourier transform can be readily adapted to compute the bifurcation diagrams of

Turing-Hopf pinning solutions found by time evolution for the superdiffusive Brusselator model in [32].

However, the interpretation of pinning in terms of spatial dynamics might not be possible in this case. Second,

the bifurcation structures of Turing-Hopf pinning solutions can become drastically different sufficiently far

from the supercritical C2THP, when the snaking region interacts with bifurcations on either Turing or Hopf.

In [40] it was shown that interaction of the snaking region with a saddle-center bifurcation on the spatially

periodic state results in the primary and hybrid snakes reconnecting into a stack of figure-8 isolas. For the

Turing-Hopf pinning branches, this type of reconnection isexpected when the snaking region interacts with

an Eckhaus bifurcation on the pure Turing branch. On the other hand, it is also possible for the Turing-

Hopf snaking region to interact with many other types of bifurcations, including for example mixed-mode

bifurcations and bifurcations of the Hopf periodic orbit inthe temporal ODE. Third, the effect of noise on

Turing-Hopf pinning solutions should be taken into accountto facilitate comparison between the results

presented in this paper and laboratory experiments. In [53]the dynamics of stationary pinning solutions in

the 3–5 Swift-Hohenberg equation with an additive spatiotemporal Gaussian white noise were studied. It was

shown that in the pinning region, the front velocity is the sum of a deterministic part which is the gradient of

a sawtooth potential, and a stochastic part which is a temporal Gaussian white noise. In the absence of noise

the front is trapped (or pinned) in the local minima of the sawtooth potential, but in the presence of noise

the front moves (or depins) towards the global minimum of thesawtooth potential asymptotically in time.

Hence the additive noise causes the front to propagate in a direction determined by the relative position to the

Maxwell point. We expect similar dynamics for Turing-Hopf pinning solutions in view of the pinning region

in the original PDE straddling the Maxwell point in the amplitude equation much like stationary pinning

solutions, though in the Turing-Hopf case such dynamics cannot be readily interpreted in terms of stochastic

gradient flows because both PDEs are generically nonvariational.
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A Coefficients of Amplitude Equations

The coefficients of the amplitude equations in (2.1) are as follows:

γ = −1
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√
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√
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√
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√

1 + E2 − 16 + 16
√

1 + E2
)

E2

(

14 E2 + 5 E4 − 10 E2
√

1 + E2 + 8 − 8
√

1 + E2
)

(1 + E2)
3/2 (√

1 + E2 − 1
)

,
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ζ = 2

(√
1 + E2 − 1

)2

E2 + 1 −
√

1 + E2
,

ν =
1

2
µ ,

βr =
1

2

E2 + 2

1 + E2
,

βi =
1

6

4 E4 − 7 E2 + 4

(1 + E2)E
,

δr = −
(

4 E6 − 33 E4
√

1 + E2 + 72 E4 − 94 E2
√

1 + E2 + 124 E2 − 56
√

1 + E2 + 56
)

E4

(

14 E2 + 5 E4 − 10 E2
√

1 + E2 + 8 − 8
√

1 + E2
) (√

1 + E2 − 1
)2

(1 + E2)
3/2

,

δi =
E3

(

12 E6
√

1 + E2 − 44 E6 + 67 E4
√

1 + E2 − 94 E4 + 58 E2
√

1 + E2 − 58 E2 − 8 + 8
√

1 + E2
)

(

14 E2 + 5 E4 − 10 E2
√

1 + E2 + 8 − 8
√

1 + E2
) (√

1 + E2 − 1
)2

(1 + E2)
3/2

,

κr =
E2 + 1 −

√
1 + E2

E2
,

κi =

√
1 + E2 − 1

E
.
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