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HOMOCLINIC SNAKING NEAR A CODIMENSION TWO TURING-HOPF
BIFURCATION POINT IN THE BRUSSELATOR MODEL

J. C. TZOW-*, Y. —=P. MAL:2:* | A, BAYLISS?!, B. J. MATKOWSKY?!:*, AND V. A. VOLPERT!

ABSTRACT. Spatiotemporal Turing-Hopf pinning solutions near thdiowension two Turing-Hopf point of the
one-dimensional Brusselator model are studied. Both thhgwand Hopf bifurcations are supercritical and
stable. The pinning solutions exhibit coexistence of stetry stripes of near critical wavelength and time periodic
oscillations near the characteristic Hopf frequency. Ssalhtions of this nonvariational problem are in contrast
to the stationary pinning solutions found in the subcriti€aring regime for the variational Swift-Hohenberg
equations, characterized by a spatially periodic patterhezlded in a spatially homogeneous background state.
Numerical continuation was used to solve periodic bounglahye problems in time for the Fourier amplitudes of
the spatiotemporal Turing-Hopf pinning solutions. Theutioh branches are organized in a series of saddle-node
bifurcations similar to the known snaking structures ofigteary pinning solutions. We find two intertwined pairs
of such branches, one with a defect in the middle of the siripgion, and one without. Solutions on one branch
of one pair differ from those on the other branch by jphase shift in the spatially periodic region, i.e., locati®f

local minima of solutions on one branch correspond to looatof maxima of solutions on the other branch. These
branches are connected to branches exhibiting collapsddngnbehavior, where the snaking region collapses to
almost a single value in the bifurcation parameter. Sahstialong various parts of the branches are described
in detail. Time dependent depinning dynamics outside thelsanodes are illustrated, and a time scale for the
depinning transitions is numerically established. Wawglk variation within the snaking region is discussed, and
reasons for the variation are given in the context of amgditaquations. Finally, we compare the pinning region

to the Maxwell line found numerically by time evolving the plitude equations.

Key words: homaoclinic snaking, weakly nonlinear regime, codimenswn Turing-Hopf bifurcation point,
localized patterns.

1 Introduction

Localized stationary solutions of reaction-diffusiontgyss characterized by the coexistence of a flat, i.e.,
stationary (time independent), spatially homogeneous stidh a spatially periodic state have recently been
the subject of much analysis. In the context of variatiogatems, a stationary front between two stationary
states is expected when both states possess equal freg.efgypoint (or curve) in parameter space at
which the free energies are equal is referred to as a Maxwit fcurve). When the coexistence is between
two flat states, a perturbation from the Maxwell point resirita time dependent invasion of the energetically
favored state into the other. In [1], Pomeau explains thamthe coexistence is between a flat and spatially
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periodic state, there is a broadening of the Maxwell poirttug; within a finite-width region in parameter
space around the Maxwell point, a continuum of such solstexist. The broadening of the Maxwell point
may be explained by the fact that the energy difference masufficiently large in order to displace the
front connecting the coexisting states by one wavelengtheperiodic pattern. Equivalently, displacement
of the front only occurs sufficiently far from the Maxwell poi This effect has been referred to (e.g., [2] and
references therein) as the pinning of the spatially pecirdnt. By assembling two such fronts back-to-back,
one can construct stationary solutions in which a finiteaegif spatially periodic states is embedded in a
background of flat state. Such solutions are known as slydtiablized states in a broader context (cf. [3]).
These include for example the experimental observatiossationary two-dimensional radially symmetric
‘solitons’ in a ferrofluid with an external magnetic field dipo vertically (cf. [4]), and one-dimensional
localized patterns in a nematic liquid crystal layer withpatgally modulated optical feedback (cf. [5]). The
properties of the latter were shown to be consistent witlvipus theoretical work on stationary pinning
solutions in pattern forming PDEs, which we shall reviewtnekhe pinning phenomenon is explained in
detail in [1].

The (variational) 2—-3 and 3-5 Swift-Hohenberg equatiomsafoeal scalar field:(z, t), which exhibit
guadratic—cubic, and cubic—quintic nonlinearities, ezspely, have been studied extensively to illustrate the
phenomenon of pinning. Most of these studies have focusdti@subcritical Turing regime where there
is bistability between the flat and spatially periodic statl [6] for the 2—3 Swift-Hohenberg equation on
an unbounded domain, a continuum of pinning solutions was/sho exist on branches that “snake” back
and forth in the bifurcation diagram forming a series of dadwde bifurcations. As predicted in [1], the
snaking region was found to straddle the Maxwell point. 8ohs on these branches are even in space and
thus preserve the spatial reversibility symmdiry— —z,u — u) of the 2—-3 Swift-Hohenberg equation.
The snaking region consists of two intertwined branchet) solutions on one branch having a local max-
imum in the central part of the spatially periodic regionda@wolutions on the other branch having a local
minimum. Solutions at different points along one brancffediin the width of the spatially periodic region.
In particular, traversal through two saddle-nodes or eajaily one back and forth cycle on the snaking
branch corresponds to two wavelengths of the spatiallyopéristate being added or subtracted at the edges
of the spatially periodic region. In [2] it was found that iddition to the two snaking branches of symmetric
solutions, a series of pitchfork bifurcations near the taaddes on these branches are connected through
a series of rungs (or ladders) of asymmetric solutions. Tieeebifurcation diagram of stationary pinning
solutions was therefore dubbed snakes-and-ladders. d@utsé snaking region, a depinning transition was
shown to occur in which wavelengths were either nucleatelksiroyed at the edges of the spatially periodic
region. The speed of depinning was calculated analytieadty confirmed numerically. The conservation of
a spatial Hamiltonian was shown to select the wavelengthe&patially periodic state within the snaking
region, and the wavelength variation across the snakingmegas qualitatively explained based on the
free energy variation of the flat and spatially periodicestatStudies of stationary pinning solutions whose
analogs are not addressed in these papers include thesaffdatite domain lengths on snaking. In [7], it
was shown that snaking branches in a spatially periodic doteaninate on branches of spatially periodic
states whose wavenumber depends on the domain length. #iseedetermined that these termination points
corresponded to the Eckhaus instability boundary. In [8jds found that non-periodic and non-Neumann
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boundary conditions eliminated entirely spatially pertostates of the Swift-Hohenberg equation, replac-
ing them with states with defects at or near the boundaryhiBidase, instead of terminating on spatially
periodic branches, the snaking branches either exit thkiremaegion and develop into branches of large
amplitude patterns, or they may turn back toward small aongidi and terminate at other primary bifurcation
points on the flat state. In [9], a multiple scale analysis used to derive an envelope equation for pinning
solutions of the non-symmetric generalized Swift-Hohegleguation. More recently, the entire snakes-and-
ladders bifurcation diagram, including in particular thiglthl of the pinning region, was constructed through
a multiple scale analysis beyond all algebraic orders fer2h3 Swift Hohenberg equation near the onset
of subcriticality (cf. [10]). Subsequently, a considesabimpler construction using a variational approxi-
mation was proposed (cf. [11]). For the 3-5 Swift-Hohenhksgation, the additional up-down symmetry
(r — x,u — —u) admits two additional snaking branches of odd solutions[{&, 13]). In contrast to the
2-3 case, traversal through four saddle-nodes on one gnkkamch is required to add two wavelengths at
the edges of the spatially periodic region in the 3-5 Swiftaeinberg equation (cf. [14]).

Another explanation for the existence of stationary pigrénlutions has been given in terms of reversible
spatial dynamics (see e.g., [12,15-17], or [18-21] forespiktterns in singularly perturbed reaction-diffusion
systems). In this framework, the locations in the complexplof the spatial eigenvalues (in the case of flat
states) or spatial Floquet multipliers (in the case of gffigtperiodic states), along with spatial reversibility
are the key components responsible for the existence oingjrsmlutions. The most complete account to date
of the snakes-and-ladders bifurcation diagram from thisgetive can be found in [22], which formulated
a set of hypotheses about the connecting orbit between thaentespatially periodic states that guarantees
snaking. Whereas the free-energy description is limitdgl tmpinning solutions of variational systems, the
spatial dynamics framework extends the theory of pinning ouch broader class of systems. In particular,
a cubic-quintic Ginzburg-Landau equation can be derivealtasncated normal form near weakly subcritical
Turing bifurcations, and its solutions yield insights i@ location of the pinning region in both variational
and nonvariational systems. While no true snaking is p&ssitihis equation due to phase rotation symmetry
of the spatial dynamical system, branches emanating frakhdtcs bifurcation points exhibiting snake-like
behavior (termed “protosnaking”) were found near the ndati@nal analog of the Maxwell point (cf. [23]).
Stationary pinning solutions organized along snaking tinas have indeed been observed in many nonvari-
ational systems. In [24], two snaking branches were contffotethe Lugiato-Lefever equation; in addition,
it was shown that there are other pinning solutions foundibgctly computing the invariant manifolds to
the flat and spatially periodic states. A study of a nonvianie extension of the 3-5 Swift-Hohenberg equa-
tion in [25] stressed that asymmetric pinning solutionstenladders are expected to travel in nonvariational
systems. In [17], the forced complex Ginzburg-Landau déqoatwere shown to exhibit a different growth
mechanism by which periodic structures were nucleated stralgeed in the middle of the spatially periodic
region as opposed to the edges. In this case the codimetvgiopeint marking the onset of snaking corre-
sponds to the simultaneous occurrence of a (codimensiehf@teroclinic orbit between two inequivalent
flat states and a (codimension-one) supercritical Turifigreéation on one of them. Hence the nature of the
bistability between flat and spatially periodic states is #tudy differs from the aforementioned studies that
mainly focused on subcritical Turing bifurcations.

Nonvariational systems allow for temporal oscillation$jieth have not been considered in the context of
shaking structures of pinning solutions. In particulanning solutions characterized by a coexistence of
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Turing and Hopf states have been observed in [26] in the Wycof a codimension two Turing-Hopf point
(C2THP) of the (nonvariational) Brusselator model (see §£F—29] and the references therein), where both
the Turing and Hopf bifurcations were supercritical andbkgta Turing-Hopf coexistence has also been ob-
served experimentally, as in [30] for the voltages and aqusref resistively coupled nonlinear LC oscillators
arranged in a one-dimensional chain and driven by a conatétage at one end. Depending on experimental
parameter values, it was found that a front connecting anfiulomain to a Hopf domain could propagate
in either direction or remain stationary. The same behawis also observed numerically in the continu-
ous reaction-diffusion approximation of the oscillatoashfor parameter values near the C2THP. In another
experiment involving convection of a binary fluid in an ararutontainer (cf. [31]), stationary convective
rolls were found to coexist with traveling wave bursts, wighative widths of each region depending on the
Rayleigh number.

The activator-inhibitor Brusselator model, describingragified autocatalytic reaction, has long been a
paradigm of nonlinear analysis and is given by

Uy = Dug, + F — (B—|—1)u+vu2, z €R, t>0; (1.1a8)

Uy = Upg + Bu —vu?, r € R, t >0, (1.1b)
subject to appropriate initial and boundary conditionsteNbat, unlike the Swift-Hohenberg equations, the
spatial dynamics of (1.1) are not Hamiltonian. Spatioterapgatterns near the Brusselator C2THP have also
been computed for the superdiffusive variant of (1.1) in][&oth of these studies were restricted to using
only time evolution techniques to compute the pinning sohg, which only yielded a very narrow view of
all possible Turing-Hopf pinning solutions, since onlytd&asolutions can be computed with a standard initial
boundary value problem (IBVP) code. Furthermore, the mamehich these solutions are organized on
solution branches is difficult to ascertain. In this paperuse AUTO [33] to solve boundary value problems
in time for theO, ..., N spatial Fourier amplitudes of the solutionsndv to (1.1) for appropriately large
N, under the assumption of spatial periodicity (théV,...,—1 modes are also accounted for since we
only consider real solutions). In this way, we obtain botib& and unstable solution branches, and the
structure of these branches is readily obtained. Solutionghese branches resemble stationary pinning
solutions, only with the flat state replaced by Hopf-like peral oscillations. The respective growth rates
of the Turing and Hopf modes near the C2THP assume the rolbe dfee energies of the coexisting states
in variational systems, with larger growth rates implyingater dominance. While the equality of growth
rates is not the analogous Maxwell condition, the “phySicales of the growth rates and the free energies
in the respective systems are analogous. We remark thag-$ipae solutions presented in this paper involve
interfaces between regions in space that oscillate in time regions that are spatially periodic and stationary
in time. Such interfaces cannot be assigned to any of thectasses of defects solutions proposed in [34] for
time-periodic solutions of reaction-diffusion systemstlae defects discussed generically serve as interfaces
between only traveling waves of nonzero speed.

This paper is organized as follows. $2, we briefly review the derivation of the amplitude equadion
near the C2THP of (1.1) and give conditions for Turing-Hojstdbility. These results are used to facilitate
a search in parameter space for Turing-Hopf pinning satstidn §3.1, we describe the equations used to
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compute the pinning solutions using the method of contionah AUTO. We then present i§8.2 the snaking
branches on which the pinning solutions exist and discieistdlationship to the pure Turing and pure Hopf
branches. We describe the solutions found on these braactieBow they vary as the solution branch is
traversed. I(3.3, we illustrate the process by which solutions depin whamameters are set a distarice
outside of the snaking region, and give a numerical estiofdtee scaling of the depinning speed with respect
to 6. We give a qualitative explanation for the direction of deping based on the relative dominance of the
Turing and Hopf modes. 1§3.4, we illustrate the dependence of the wavelength of thgaly periodic state

on the parameters of the Brusselator modek3rb, we offer an explanation for the observed dependence in
the framework of properties of the amplitude equationsvéerin §2. We then conclude and discuss open
problems ins4.

2 Turing-Hopf Bistability

In this section, we briefly outline the derivation of the exadn equations for the amplitudes of the Turing
and Hopf modes near the C2THP. For a detailed analysis, $e0i3[32] for the superdiffusive variant of
Brusselator model. See [36] for a review of normal form tlyemear the codimension two point, and [29]
and [37] for a weakly nonlinear analysis of Turing patterfigh@ regular and superdiffusive Brusselator
models in two dimensions. Stability results from analydithe amplitude equations will yield the regime
of Turing-Hopf bistability in which pinning behavior is psible, as it is in this regime of bistability that the
pure Turing and pure Hopf modes may coexist in physical space

The system (1.1) has one spatially homogeneous steady(state’ = (E, B/FE)". Here, T denotes
the transpose. A® is increased pasBy; = 1 + E?, the basic state loses stability through a Hopf bifur-
cation yielding spatially homogeneous temporal oscdlagi of frequencw, = E. As B is increased past
Br = (14 Ev/D)?, a steady state Turing bifurcation occurs, yielding a stetiy spatially periodic pattern
with critical wavenumbetk. = [E/(v/1 + E2 —1)]'/2. When the Hopf and Turing bifurcations occur simul-
taneously, i.e., wheBy = By, the pointin parameter space is referred to as a codimetwmnuring-Hopf
point. This condition is satisfied whed = D, = [(v/1 + E2 — 1)/E]?. To analyze the slow-time evolution
of the two modes near the C2THP, we Bt= By + ¢2p andD = D, + €2p, where0 < ¢ < 1 andy and
p are bothO(1). Whenp > 0 (p < 0), the Hopf (Turing) bifurcation is the first to occur &sis increased.
Introducing the slow time scalf = €2t and the long spatial scal€ = ex and perturbing the steady state
by (u,v)" = (E,B/E)T + eaA(X,T)e** + ecC(X,T)e* + c.c., wherea = ((E? + k2)/Bg,1)7,
c=(—E(E+1i)/Bg,1)", andA(X,T) andC (X, T) are the complex amplitudes of the Turing and Hopf
modes, respectively, the amplitude equations are readitylated as

Ap = (Axx +7A - g|APA - XCPPA, (2.1a)

Cr = (ky +ik))Cx x +vC — (B, +1i6;)|C|C — (6, +i6;)|A]*C. (2.1b)
The constants in (2.1) are given in the appendix. All cortstan(2.1) are real and, with the exception.of
and-~, only functions of the parametéf. The coefficient is given byr = 1 /2, while v is a function of

u, p, andE. The conditions for supercriticality of the Turing and Hdgfurcations arey > 0 andg3, > 0,
where the latter condition is always satisfied for the Brlzgdee model. A value of2 for which the former
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is satisfied isE = 1.4, which is the value used in all computations presented heFar this value off and

p > 0, the bifurcation scenario is given in Figure 9(g) of [35].€Tjure Turing mode stabilizes wharn(and
thus the amplitude of the pure Turing mode) is sufficientigéato suppress growth of the Hopf mode. This
value of ;. can be readily computed from a linear stability analysis2ot). These weakly nonlinear results
were used in the initial search for a pinning region in par@mspace. We remark that four constants in (2.1)
can be normalized by rescaliridl, C, X, T'). Though necessary for a complete analysis of (2.1), we &oos
not to carry out this normalization procedure in this papemnbtational convenience.

3 Snaking Structure and Pinning Solutions

In this section, we first introduce the numerical procedorbe used to compute the pinning solutions.
Both time evolution of the PDE system (1.1) and continuat@ra system of ODEs (given i§3.1), gotten
by representing the solutions by a finite number of Fouriedesp are employed. We then present the main
results regarding the existence of a robust region in paemseace in which stationary striped structures
and time periodic oscillations coexist in the same spatahdin. Such solutions vary continuously with the
parameters of (1.1) and lie on snaking branches, each ofwitiicharacterized by a series of saddle-node
bifurcations similar in appearance to the well known snglsmuctures found in studies of stationary pinning
solutions. Two intertwined pairs of such solution branciiesshown to exist. The main difference between
solutions on these two pairs of branches is that on one pdiefect is present at the center of the striped
region, and on the other pair, no defect exists. Solutionsran branch of one pair differ from those on
the other branch by a phase shift in the spatially periodic region, i.e., locati®f local minima (maxima)
of solutions on one branch correspond to locations of maximaima) of solutions on the other branch.
We discuss where these branches bifurcate, and describdéftrences between solutions on different parts
of each branch. For the non-defect pair of solutions, weudis¢he depinning transition and wavelength
selection. Lastly, we relate the results back to propedii¢se amplitude equations.

3.1 Numerical Methods

We employ two approaches to numerically determine the téfiilon branches and the structure and sta-
bility of the solutions on those branches. In the first apphoae solve the IBVP for the PDE system (1.1)
and evolve the initial conditions to their eventual steatiyes. To determine the structure and stability of
the solution branches, we employ AUTO, a continuation pgekahich follows solutions along the vari-
ous branches and determines their stability. The IBVP sokas used to 1) perform parameter searches
to determine the parameters for pinning, and 2) provide@pyate initial guesses to be used in the AUTO
computations. AUTO was then used to compute all the soldtianches that we found and determine their
stability.

We now describe the process by which we employed time ewslut compute pinning solutions. To
locate the region in parameter space where pinning is pgessie first solved the IBVP system (1.1) with
E = 1.4 using a Fourier spectral method in space and a semi-imgkgond order two step predictor-
corrector method in time. The diffusion terms of (1.1) wesated implicitly while the reaction terms were
treated explicitly. The latter were first computed in phgsispace before being transformed into Fourier
space, where all time stepping was performed. The initiatl@®mns foru andv were set as
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(u,v)" = (E,B/E)" + eRe[ae™**f(z) + c(1 — 0(x))] ,

O(x) = H(z +0/2) — H(x —£/2); (<L, e
on a domain of lengtti. subject to periodic boundary conditions, whéfér) is the Heaviside step function.
Thus, the initial condition (3.1) contains a pure Turing raaxh the interva[—¢/2,¢/2] and a pure Hopf
mode on—L/2,—¢/2)U(¢/2, L/2]. Theu component of (3.1) is depicted in Figure 1(a). Note that tsd
state ofuisu = F = 1.4.

Fixing £ = 1.4 and settingu (equivalently,B) sufficiently large as determined {2 so that the pure
Turing mode is stable, we varigdequivalently,D) until (1.1) yielded a time periodic solution marked by the
coexistence of Turing and Hopf modes on the same spatial idoifiae large time behavior of such a solution
is depicted in the space-time plot in Figure 1(b), which shawnearly stationary striped region embedded
in a background of low wavenumber Hopf-like oscillation@télthat the locations of the interfaces between
the Turing and Hopf regions remain constant in time. In adicgptime plots, the spatial variabtds plotted
on the horizontal axis, the temporal variablie plotted on the vertical axis, and dark (light) regionsdade
larger (smaller) values af(x, t). Space-time plots af(z, t) simply appear as black-and-white inverted plots
of u, and are thus not included.
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Figure 1. (a) Line plot of a typical initial condition ofi for L ~ 137.37, E = 1.4, e = 0.1, p = 25,
andp = 0.178 (equivalently,B = 3.21, D = 0.2666). (b) Space-time plot oi for large time
starting from the initial condition in (a). Turing and Hopfoales coexist on the same spatial domain

in a time periodic solution.

Most of the solutions shown in this section resemble anwaten time of Figure 1(b) consisting of one
complete cycle of the oscillatory region. Analogous to thedl\studied problems in homoclinic snaking of
stationary solutions, (1.1) admits an infinite multip§cdf solutions similar to Figure 1(b) that differ in the
width of the striped region. While Figure 1(b) appears tatmeperiodic, all solutions that we have computed
by means of time evolution have exhibited a slight aperitgipossibly due to the difference between the
oscillation frequencies of the pure Hopf mode and the mixederbetween Hopf and Turing. However, time
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periodic solutions do exist and can be found using AUTO, Whi@as the main tool in obtaining the results
reported in this paper.

One of the main capabilities of AUTO is the computation andtitwation of limit cycles of systems of
ordinary differential equations. To exploit this capalijlive used AUTO to solve the time periodic BVP

1 di ork\? . . X X

T% = — T U +F(U,'U)k, 'U,k(o) = Uk;(l), k = 0,. ..,]V7 (323)
1 diy, 2k \ 2 R

T%:_<%> i+ Gu,v)e, 06(0) =ox(1), k=0,...,N, (3.2b)

wherefk denotes the amplitude of theth mode of the(N + 1)-mode Fourier transform of. In (3.2),
F(u,v) andG(u, v) are the reaction terms on the right-hand sides of (1.1a) aid), respectively, and

is the period of the solution as determined by AUTO. As in theetstepping code, the reaction terms were
computed first in physical space before being transformedrourier space. This formulation allowed use
of the basic elements of the time evolution code describedealexploiting the fact that the IBVP solver
directly computes the right-hand side of (3.2). The iniakss used to initialize the AUTO computations
was the Fourier modes af(x,t) andv(z, t) taken between the timeg < ¢ < t;, whereu(—L/2,t) and
u(—L/2,t,) are both local maxima; in Figure 1(b), this condition cop@sds to all slices in time between
two consecutive horizontal black stripes, or between ongptete oscillation of the Hopf mode. Hergx, t)
andu(z, t) are solutions computed by time evolution. While, as notedipusly,u(z, ty) is not identical to
u(zx, t1), the aperiodicity is not so severe that AUTO is unable to eoge onto a time periodic solution from
the initial guess. Indeed, the solutions that AUTO compatesexactly periodic in time. We suspect that
such time periodic solutions to (1.1) exist, though with atremely small domain of attraction.

We make the following observations. First, in the exampl€igure 1 withl, ~ 137.37, results of the
bifurcation diagram and solutions farandv hardly changed as the number of Fourier modes was increased
from N = 128 to N = 256. Comparing two corresponding saddle-nodes in the snakigipm, the value
of D at the saddle-nodes differed in the two resolutions by leasd.004%. Thus,N = 128 was used in
the computations. The lengih was chosen so that exactly 36 wavelengths of a pure Turingisolwith
wavenumber = k. would fit in the domain. However, as we will show below, only 8&velengths are
present when the solution is continued to a near-pure Twtag. Second, a pinning region in parameter
space further into the nonlinear regime was documentedé@h [Zhis regime was found to exhibit highly
relaxational temporal oscillations that required a higieenporal resolution in AUTO to resolve. This was
not conducive to this study, as the number of modes requaeddolve the spatial variation already led
to time-intensive computations. Further, results from AUihdicate that solutions of the more nonlinear
parameter regime may not be connected through the familelisg structure that will be presented in the
next section for the weakly nonlinear regime. Lastly, thenmaised as the measure of the solutions and
plotted on they-axis of the bifurcation diagrams below is given by

1
Lop = /
0 &

N
[a3(t) + 03(t)] dt. (3.3
0
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The norm (3.3) is close to but not exactly equivalent tofhaespace-time norm, differing by a factor of two
under the square root fér = 0. Also, since only even solutions are considerigdy) anddy(t) are real for
all £ andt.

3.2 Main Results

The complete bifurcation diagram of all solutions foundhswn in Figure 2, where the diffusivitp is
treated as the bifurcation parameter and plotted on thetmial axis, and the norm (3.3) as the measure of
the solutions plotted on the vertical axis. Heavy (lighgreents indicate stable (unstable) solution branches.
Representative solutions from each branch are shown ingheef below. We begin with a broad overview
of each branch and discuss how they are located with respeetch other. We then describe each branch,
and the corresponding solutions, in detail. We note thdiralhches and their solutions, stationary and time
periodic, were computed by AUTO; different options wereduge direct AUTO to compute each type of
solution.

2.9
)
B
2.85 H
HBC2 2.78
2.8
& BCl 2.76
~ > 75 0.266 267
| 5@ g©)
PO’ —Pm (D) (D)
o7 | BTO’ BTT[
. MB B
Bpo’ Bpn | | TO’ TT[J
0.26 0.27 0.28 0.29 0.3

D

Figure 2. Complete bifurcation diagram faB = 3.21, £ = 1.4, L =~ 137.37. The bottom two
branchesBr and B(TD ) are the stationary pure Turing and defect branches, regglgct The top
branch By is the pure Hopf branch. The main snaking region on the lefisists of two pairs
of intertwined branche#3po and Bp., andB}DO) and Bftfr). Connected to these branches in the
manner describe in Figure 5 are two distinct brancBes and Bc2 exhibiting collapsed snhaking

behavior. The inset is a magnification of the main snakingpremside the rectangle.

Figure 2 includes two pure Turing branchBg, (local maximum at: = 0) and By, (local minimum at
x = 0), indistinguishable by the measufgr. These two branches arise from the rotational invariance of

the solutions of (2.1a). In particulad = /(7 — Ck2)/ge’**+9) (|k| < /7/¢) is a solution to (2.1a) for
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any ¢ whenC = 0. However, within (1.1), the phasgs= 0, 7 are the only ones that preserve the spatial
reversibility symmetry. The stability transition on therpd’uring branches occurs at a Hopf bifurcation point
atD ~ 0.28471. An analysis of (2.1) (not presented here as it is straightiod) predicts that, wite? = 0.01
andp = 25, the transition occurs @b ~ 0.28531, a difference of approximately x 10~4. The point of
stability transition also corresponds to the bifurcatioimnp of the mixed mode. For clarity, we have plotted
only a portion of the two pure Turing branches, and chosertaptot the (unstable) mixed-mode branch.
The pure Hopf branch, denoted By, corresponds to the time periodic solution to (2.1b) with= 0. The
period of oscillations on the pure Hopf branclisz 4.6623.

The two Turing-Hopf pinning branchespy and Bp, are connected through a saddle-node bifurcation
near but not coinciding with the stability transition of {xere Turing branches. At this saddle-node point, the
solution resembles solutions along the pure Turing brasBhg andBr ., with a small amplitude oscillation
in time of periodl” ~ 4.4179. As is the case with all solutions described below, the moicoscillations is
close to but not equal to the period of the pure Hopf osailtegi The space-time plot of the solution foat
the saddle-node, along with two line plots of two particigizes in time, are shown in Figure 3. While the
length of the domain is able to accommodate exailfuring wavelengths of critical wavenumber= k.,
only 35 are present in Figure 3. Hence among the discrete band offpuirgy solutions, each with a slightly
different wavenumber allowed by the length of the domain,haee shown in Figure 2 only the two pure
Turing branches for which there a386 wavelengths corresponding to the same number as seen ireRgu
This pattern can be shown to be Eckhaus stable by analyzihg)®ithC' = 0.

The branche®py andBp, continue towards decreasing valuedbbefore beginning a snaking process
in which the two branches intertwine. In the snaking regtbe, solutions on these branches resemble that
of one temporal period of Figure 1(b). Because ihe norm of the pure Hopf branch is larger than that
of the pure Turing branch, solutions higher up on the Tutitapf pinning branche®pr, and Bp,, have a
narrower striped region (i.e., fewer stripes) than thos¢herlower branches. Analogous to the distinction
between theBro and B, branches, the two pinning branches are distinguished lbyisnk onBp( having
a local maximum at the center of the striped (Turing) regénd solutions o3 p, having a local minimum.
The upward sloping segments in the snaking region are stbt#her solutions along the two branches are
unstable.

Another pair of intertwined pinning brancheBﬁDDo) and B}ﬁ), is also characterized by striped regions
embedded in a background of Hopf-like oscillations. Howgsgelutions on these two branches exhibit a
defect in the central part of the striped region. All solagcalong these two branches are unstable. In
the same way that the branchBg, and Bp, begin near a Hopf bifurcation point on the stationary pure
Turing branch, theB}DO) andBEffT) branches begin near a Hopf bifurcation point on a pair oimstaty defect
branchesB(T[O)) and B(T[;) (indistinguishable byl.,). The space-time solution far at the bottom of the
B;,DO) branch is shown in Figure 4(a), while Figures 4(b) and 4(e)liae plots ofu at two instants of time,
indicating a slight temporal oscillation in the form of thgasial envelope. Figures 4(d) and 4(e) show time
slices of the solution at the bottom of tmﬁ’r) branch, characterized by a local minimum, instead of a local
maximum, at the center of the defect, centered at 0. Within the spatial envelop&5 wavelengths are
present. The stationary defect solutions onﬂi@ andB(T?T) branches were described analytically in [17]
in the framework of (2.1a) near a supercritical Turing bifation. As in the case of two branches of pure
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Figure 3. Shown in (a) is a space-time plot af at the saddle-node bifurcation point of the two
Turing-Hopf pinning brancheBpro and Bp,. The solution resembles a pure Turing solution with a
small amplitude temporal oscillation of peri@d~ 4.4179 in the shape of the spatial envelope. The
oscillations of the envelope can be inferred from (b) (tineesof (a) att = 0) and (c) (time slice of
(a) att ~ 2.1586). The parameters ail® = 3.21, £ = 1.4, L = 137.37, andD =~ 0.2843. There

are a total o85 Turing wavelengths present.

Turing solutions, the stationary defect solutions haveegia local minimum or maximum at the center of the
defect.

Finally, to the right of the four snaking branches of pinngajutions are two separate brancligs, and
Beo that exhibit properties similar to collapsed snaking (&f7][for stationary collapsed snhaking), where
the snaking region collapses to almost a single value in ifuedation parameter. Solutions on these two
branches consist of two regions in space of approximatelplase pure Hopf-like oscillations separated by
striped Turing-like structures. Solutions at differertdtions on each branch differ in the relative width of
the two regions. A schematic of the connections betweerratidhes discussed is shown in Figure 5.

All solutions on the branches described are even abeut). We have not been able to find any solutions
that are odd. By time evolving (1.1) initialized with partlar initial conditions on a periodic domain, we
attempted to compute odd solutions in which two Hopf regisesarated by two striped regions oscillate
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Figure 4. Solutions at the bottom of thB},DO) and B}(,’?r) branches. The oscillations of the spatial
envelope T ~ 4.4167) can be inferred from (b) (time slice of (a) at= 0) and (c) (time slice of
(a) att ~ 2.1991) for the B},DO) branch. Time-slices for thB}(,’?r) branch are shown in (d) and (e)
(T =~ 4.4166). The parameters a® = 3.21, E = 1.4, L = 137.37, andD ~ 0.28544. Within the

spatial envelope35 wavelengths are present.
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antiphase. However, due to the apparent presence of wegkirgpof the Hopf regions through the striped
regions, the initially antiphase oscillations synchreniwer time. We were also unable to compute asym-
metric solutions that, in the stationary pinning soluti@fighe Swift-Hohenberg equations (see e.g., [12]
and [10]), make up the “rungs” that connect two intertwinadksng branches. Such solutions can be con-
structed by “gluing” together parts of solutions on one lsfanHowever, when considering time periodic
solutions, as we do here, each component must have the sampertd period, which is generally not the
case. As a result, AUTO will not be able to converge to a timeogiéc solution. This is a fundamental
difficulty with the present model, not encountered in pregistudies of stationary pinning regimes.

i
B
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Figure 5. Schematic bifurcation diagram of Figure 2 illustrating ceations between branches. The
dashed boxes represent snaking regions. Dark segmentatiadiie existence of branches of stable

solutions.

We now discuss each pair of branches in detail starting Waightwo pure Turing branches. In Figure 6,
we show the solutions at the point of the stability transitiwhere a Hopf bifurcation occurs, marked by
a solid circle in Figure 6(a), on the branchBs, and Br,. The four pinning branches are also visible in
Figure 6(a); in particular, the saddle-node point from watttee Bpg and Bp,. branches bifurcate can be seen
to be located near the aforementioned Hopf bifurcation tpaminthe pure Turing branches. Multiple Hopf
bifurcation points occur on th&r, and By, branches; the one marked by the solid circle located at the
stability transition point is the one that occurs at the $esalvalue ofD. The corresponding (stationary)
solutions foru are plotted in Figure 6(b), which has a local maximum at 0 (Br() and Figure 6(c), which
has a local minimum at = 0 (Br,). For clarity, only the interval: € [—20, 20] is shown. The entire domain
contains35 wavelengths.
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Figure 6. Closeup of stability transition point (indicated by solidote) on the pure Turing branches
(a) and the corresponding solutions foon Bro (b) and Br- (c). The pure Turing branches are

indistinguishable by the measufer. The parameters alB = 3.21, £ = 1.4, L =~ 137.37, and
D =~ 0.2847.

As stated above, the two Turing-Hopf pinning brancBeg and Bp,. bifurcate from the saddle-node point
located near the stability transition point of the two puteiig branche®3y andBr,.. In Figures 7(b) and
7(c), we show one space-time solution fofrom the lower part of each branch to illustrate how the sohg
on the branches differ from that of the saddle-node showngarE 3(a). Similarities between Figures 7(b)
and 7(c) are immediate when spatial and temporal perigdidithe space-time plots are considered. This
similarity is apparent when comparing Figure 7(c) to Figufe), the latter of which has been periodically
shifted in both space and time from Figure 7(b). The centehefstriped region occurs at= 0 (or, by
periodicity, the leftmost point in space of Figure 7(b)).Higure 7(d), the center of the striped region is a
local maximum (dark stripe) while in Figure 7(c), it is a lbaanimum (white stripe). These two solutions
differ slightly both in the temporal period and the waveléngf the striped region. The mechanism(s) that
affect these two quantities is an open problem. Experimemtdving the time evolution of (1.1) suggest that
the selection of the wavelength of the striped region is jreaelent of initial conditions.
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Figure 7. Solutions on the lower part of the Turing-Hopf pinning braesBp with D ~ 0.26702

(b) and Bp» with D = 0.26673 (c). The temporal periods are, respectivély,~ 4.6450 and
T =~ 4.6452. In (d), we show a periodically (temporally and spatiallgjfeed plot of (b), illustrating
the similarity between (b) and (c). The parametersire 3.21, E = 1.4, L ~ 137.37.

Snaking higher up th&p, and Bp,. branches, the spatial extent of the striped region is retittteugh
a series of saddle-node bifurcations. In Figure 8, we shewsdiutions at two saddle-nodes in the snaking
region of theBp, indicated in Figure 8(a) (thBl(JDO) andBl(f:r) branches have been removed for clarity). We
note in Figure 8(a) that, while the saddle-nodes exhibitgar@imate “lining-up property” (cf. [38]) where
saddle-nodes occur at approximately the same value offilveation parameter, we observe a nonmonotonic
convergence of saddle-nodes in the param&tea departure from previous results on stationary snaking
branches. The solution at the lower saddle-node, showngar&ig8(b), is Turing-dominated while the one
at the higher saddle-node, Figure 8(c), is Hopf dominatedsistent with the fact that in Figure 2, the
stationary Turing branches have the smallest valuds pfand the pure Hopf branch the largest. The periods
of the solutions also differ slightly, with that of the satut higher on the branch closer to the period of
the pure Hopf solution. While the number of stripes is diffi¢ca quantify due to temporal oscillations and
the interaction between Turing and Hopf regions, the pmbgswhich solutions gain or lose stripes can be
clearly seen by comparing solutions at particular pointinire.
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Figure 8. Progression of solutions along the snaking region (a) ofzhe branch. For a solution on
a low saddle-node (b), the striped region occupies the rihafithe spatial domain, while for one on
a high saddle-node (c), the time oscillatory region is d@ntnThe temporal periods of the solutions
areT ~ 4.6573 (b) andT ~ 4.6597 (c). The parameters ale¢ = 3.21, £ = 1.4, L ~ 137.37,

D =~ 0.26685 (b) andD ~ 0.26682 (C).

In Figure 9 we show the process of the nucleation of a Turitigarestripe, as theé3p,. branch is traversed
downwards. In particular, for a typical segment of the sngiiranch, we illustrate the difference between
solutions at three consecutive saddle-nodes by plottingt, ), wheret, € [0, T] is the instant in time when
the center of the oscillatory region inattains a local minimum in time. In Figure 9(a), we indicdte three
saddle-node points of interest as well as two intermediatet. In Figure 9(b), the solution at saddle-node
point (b) has a main Turing region containing 10 local maxahahichu has a value betweehand2.5.
The main Turing region is bounded between two pairs of locakima of lesser value. As the branch is
traversed downwards, the two pairs of local maxima grow iplgade, as seen in Figure 9(c), 9(d), 9(e),
while very little is changed in the main Turing region. Onlae saddle-node point (f) is reached (Figure 9(f)),
the larger of the pair of maxima has grown to approximatelya¢teight as the outer pair of maxima of the
main Turing region. Thus, as the branch was traversed fraldisanode point (b) through saddle-node point
(d) to saddle-node point (f), the main Turing region gained pair of maxima, or two Turing wavelengths.
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We make some remarks regarding the process illustratedjuré-B. First, the mechanism of nucleation at
the edge of the Turing region, including in particular theleation of two Turing wavelengths for every two
saddle-nodes, is the same as that reported for the 2—3 Bufifenberg equation in [14]. Second, comparing
Figures 9(b) and 9(f) reveals that the larger the extent efTaring region, the more the central stripes
resemble that of the pure Turing stripes at the same valuR.ofThis trend suggests that there is weak
coupling between the two Turing-Hopf interfaces through Tuiring region, and that the coupling strength
weakens the greater the distance between the two Turing-hi@pfaces. Third, all corresponding space-
time solutions of Figures 9(b)-9(f) have slightly diffetéemporal periods, given in the caption of Figure 9.
Lastly, we observe the same nucleation characteristidhéodefect pinning branches.

Solutions on theB(T[O)) and B(T?T) branches are characterized by a spatially periodic pattentained
within a spatially varying envelope. Solutions B@’é) (B(T?r)) have a local maximum (minimum) at= 0.

As indicated in Figure 10(a), both stationary defect brasdire unstable. Multiple Hopf bifurcation points
occur on the two branches; the one marked by the solid cisdlee one that occurs nearest the bifurcation
point of the defect Turing-Hopf pinning branchB: DO) andBEffr). The two solutions at the Hopf bifurcation
points are shown in Figures 10(b) and 10(c). Like the spawe-solution at the bifurcation points of the
B}DO) andBﬁfr) branches in Figure 45 wavelengths are present inside the spatial envelope.

As seen in Figure 10(a), the defect Turing-Hopf pinning brwsBEDDO) and ngf) begin near a Hopf
bifurcation on the stationary defect branch@%) and B(T[:r). The space-time solution at the bifurcation
point is shown in Figure 4(a). The similarity between thikifon and the stationary defect solution at the
Hopf bifurcation point is immediate upon comparing Figutb)4o Figure 10(b) and Figure 4(d) to Figure
10(c). In Figure 11, we show two typical defect Turing-Hopfing solutions at low and high saddle-node
points on therD? branch (Figure 11(a)). Other solution branches have beeawed for clarity. The defect
can be seen to be centered around 0 in Figures 11(b) and 11(c). As with the non-defect pinningnmhes
Bpy andBp,, solutions lower on the branch have a larger striped redfian those higher on the branch. The
manner in which Turing wavelengths are nucleated on thedhesBp, and Bp,; also applies to solutions
on the defect pinning branches, and thus is not shown. Werkethat although stationary defect pinning
solutions have not been observed in the Swift-Hohenbergteams, they have been found in a periodically
forced Ginzburg-Landau equation originally proposed i8] [@nd subsequently studied in detail in [40]. In
this example the two “hybrid” snakes formed by defect pigrsnlutions coexist in the same snaking region
as the two “primary” snakes formed by non-defect pinningisohs, precisely as in Figure 2. Besides, it
was theoretically predicted in [40] that as the spatiallsigic region of the pinning solution becomes wider
along the snaking branches, the locations of the saddlesmthe two hybrid snakes approach their limiting
values from the other direction and more slowly comparethi¢se on the two primary snakes, which again
agrees with the upper portion of Figure 2.

The collapsed snaking branchBg, and B¢ lie to the right of the four main snaking branches described
above. All solutions on the two branches are unstable. Bhegbranch connects tBp,., and Bos connects
to B,(fr), both through a complex array of saddle-nodes that will eatdscribed here. A simplified schematic
of these connections is shown in Figure 5. In Figure 12(a)sk@v a closeup of the two collapsed snaking
branches. As the branch is traversed beginning from thettepsnaking region appears to collapse to a
single value inD in a back-and-forth manner before broadening out at theobottTwo typical solutions
on the lower (Figure 12(b)) and upper (Figure 12(c)) partef8-; branch are shown. As either collapsed
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Figure 9. lllustration of the nucleation process that occurs at thgeeanf the Turing region. In (a),

the locations on thé3p, branch of the subsequent figures are indicated. In the msigie (b)—(f),

the Turing region grows by a width of two wavelengths throtigh increase in amplitude of a pair

of local maxima at its edges. The corresponding valueB aind temporal periods of the solutions

areD ~ 0.26682, T ~ 4.6597 (b), D ~ 0.26665, T ~ 4.6597 (), D ~ 0.26648, T' ~ 4.6596

(d), D =~ 0.26664, T ~ 4.6595 (e), D ~ 0.26683, T ~ 4.6594 (f). The parameters arB = 3.21,
E =1.4,andL ~ 137.37.
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Figure 10. Closeup of the Hopf bifurcation point (indicated by solidote) nearest the saddle-node

bifurcation point of B’ and B!’ on the stationary defect branches (a) and the corresponding

solutions foru on B(T’g) (b) andB(T?r) (c). The stationary defect branches are indistinguishbjple

the measurd.qr. The parameters a8 = 3.21, E = 1.4, L ~ 137.37, andD = 0.28544.

shaking branch is followed downward, the ratio between thths of the Hopf region centered around the
boundary and the one centered around= 0 decreases. This ratio becomes equal tat the rightmost
point of Bo; and the leftmost point aB¢2, which we will refer to as the symmetric point. After this poi

the branch turns back onto itself on the bifurcation diagesmt the width ratio continues to decrease. The
solution at the symmetric point is invariant under a spatigtoral flip, defined as a translationarby half

the domain size followed by a translationtitoy half the Hopf period. In general the two solutions before
and after the symmetric point at the same location on thedation diagram are related to each other by the
spatiotemporal flip. This solution behavior is in direct trast to regular snaking discussed above in which
solutions on lower and upper parts of the branch differedhéwidths of the spatially periodic region, i.e.,
the number of Turing stripes. The fact that in the latter casges are nucleated or destroyed as the branch
is traversed, while in the former case, only the widths ofiprainantly spatially homogeneous structures are
altered, offers a simple explanation for the fact that soh# such as those in Figures 12(b) and 12(c) lie on
a collapsed snaking branch, while those in, e.g., Figur® 8&on a snaking branch with finite width. The
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Figure 11. Progression of solutions along the snaking region (a) oﬁﬁé) branch. For a solution
on a low saddle-node (b), the striped region occupies thenapf the spatial domain, while for
one on a high saddle-node (c), the time oscillatory regiaioiminant. The temporal periods of the
solutions arel’ ~ 4.6533 (b) andT =~ 4.6592 (c). The parameters atB = 3.21, £ = 14,

L ~ 137.37, D =~ 0.26690 (b) andD = 0.26683 (C).

difference between the solutions in Figure 12 and those ewmtiher collapsed snaking branth-, will be
illustrated below.

We make two remarks regarding Figure 12. First, the timellagmiy regions of space in Figures 12(b)
and 12(c) are flatter than those of solutions described afmye Figure 11(c)). Further, the frequency of
these oscillations is closer to that of the pure Hopf freqyemhese characteristics suggest that there is very
little coupling between the time oscillatory regions and thterfaces in between them. Second, the nearly
antiphase temporal oscillations in Figures 12(b) and 1&(e)separated by spatially oscillatory structures,
while the corresponding branches in Figure 12(a) snake &dadKorth in their approach to a single value in
the bifurcation parameter. A direct analog of this scenfaniatationary solutions, where two spatially homo-
geneous states are connected by spatially oscillatorydr@ngiven in [17]. There, the spatially oscillatory
fronts were explained by the spatial eigenvalues of the patially homogeneous states. In this case, they
form a quartet in the complex plane with nonzero real and ingy parts, with the nonzero imaginary parts
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Figure 12. Progression of solutions along the collapsed snaking ne@ipof the B¢ branch. The
solutions in (b) and (c) (locations on the branch indicate@)) differ in the ratio between the widths
of the time oscillatory regions. The temporal periods of sleéutions arel’ ~ 4.66234 (b) and
T =~ 4.66231 (c). The parameters a8 = 3.21, F = 1.4, L ~ 137.37, D ~ 0.27083 (b) and
D ~ 0.27077 (c).

responsible for the spatially oscillatory front. For statry solutions, the difference between regular snaking
and collapsed snaking behavior has been understood awdoll@ollapsed shaking solutions are explained
in [41] as the intersection of the two-dimensional stablé amstable manifolds of two “stationary” (in space)
states in a four-dimensional spatial dynamical systems €hdimension one intersection is the reason be-
hind the collapsed snaking structure of the solution braagh slight perturbation in the value of the control
parameter would lead to the breaking of the non-robustsetdion of the manifolds. In contrast, the robust
snaking region of regular snaking solutions can be exptaimea codimension zero intersection between
a two-dimensional unstable manifold of a stationary (incgf)atate with a three-dimensional center-stable
manifold of a periodic orbit in space, with spatial reveilfijpguaranteeing the return orbit to the stationary
state. Extension of this description to the present casmefdependent snaking behavior involves dimension
counting in the style of [34] in the infinite-dimensional plesspace of (1.1), and is left as future work.
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In Figure 13(b), we illustrate the difference between twonparable solutions on thB8s; and Beo
branches, respectively. The solid curve shows the solutian of Figure 12(b) at the time wherg(0, ¢)
is a local maximum. The dashed curve shows the same slice iafilarssolution on the other collapsed
snaking branchBs,. The respective locations of the two solutions are shownigure 13(a). As has
been the distinction between theandn regular snaking branches, points in space where solutiori$q
attain a local maximum (minimum) are approximately pointseeve those oB¢» attain a local minimum
(maximum). This antiphase relationship between the twkapekd snaking branches is not as exact as in the
regular snaking branches, perhaps due to the separatiba obtlapsed branches in parameter space.

2.81
Ber> <Be,
2.81
S
g 281
2.81
2.81
‘ ‘ ‘ ‘ 0.5 ]
027  0.2708 0.2717  0.2725 60 -50 -40 -30 -20 -10 0O
D x

(@) (b)

Figure 13. In (a), the bottom of theB-1 and B2 branches are shown. In (b), two slices of
space-time solutions oB¢1 (solid) and B¢2 (dashed) are shown. Their locations on the respec-
tive branches are indicated in (a) by solid circles. Theiafaperiodic regions of the two solutions
oscillate approximately antiphase with peridds: 4.66234 (solid) andT” =~ 4.66229 (dashed). The
parameters ar®& = 3.21, E = 1.4, L = 137.37 and D ~ 0.27083 (solid) andD = 0.27185
(dashed).

3.3 Depinning Transition

Within the regular snaking region described above, thetismis are time periodic and the relative widths
of the striped and time oscillatory regions remain consitatime. That is, the Turing-Hopf front is pinned
while the solution is inside the snaking region. Outsidedhaking region, the fronts are expected to depin,
as was the case for the 2—3 Swift-Hohenberg equation in [BE direction of depinning may be inferred
from the weakly nonlinear analysis. §2, we found that whep > 0, or equivalentlyD > D., the Hopf
bifurcation occurs first a® is increased. This suggests that whers increased, the Hopf mode becomes
more dominant relative to the Turing mode. Thus, whigis set to the right of the pinning region, the Hopf
region is expected to invade the striped region. Figureladtiates the depinning dynamics that occur in this
scenario. Figure 14(b) shows a space-time plat @fhere the temporal oscillations have been removed for
clarity by only recording times at which the center of thediwscillatory region attained a local minimum
in time. As expected, the Hopf region (white) invades thgst region. The time evolution of (1.1) was
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initialized with one slice in time of the space-time solutiaf « andv at a particular saddle-node as computed
by AUTO. The parameted was setalD = D,+§ with § > 0, whereD; is the value at the particular saddle-
node marked by a solid circle in Figure 14(a). Invasion ofdtigped region was observed when the process
was repeated witl set to the left of the snaking region (Figure 15).
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Figure 14. Shown in (a) is a closeup of thBp, branch with the location of the initial condition
indicated by the solid circle. At the saddle-node—= D, ~ 0.26683. The evolution up the branch
at ¢ distance outside the snaking region is depicted by thecadrirrow. The space-time depiction
of the solution starting from this initial condition is shovin (b) for§ = 1 x 1075, Only the time
slices at which the center of the time oscillatory regiontia bpcal minimum are included. The slow-
fast-slow evolution ofL25(t) of the time slices of (b) is shown in (c) with tinteon the horizontal

axis. The corresponding slow and fast regions are indicat¢d). Thes /2

scaling of the time
of traversal between two saddle-nodes is shown in the Igglot in (d). The solid line is a least

squares fit through the data points (empty circles). Theathbhe has a slope 6f1/2.

The progression of the solution mirrors the depinning ofiatary pinning solutions in [2]. Initialized
in the neighborhood of a saddle-node, the solution evolwes imanner so as to approach the solution at
the saddle-node either below it, if the striped state ingade above it, when the Hopf state invades. This
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progression can be inferred from Figure 8, as stripe-dotathsolutions populate the lower portions of the
branch. As in [2], we observe that the rate of evolution isvsiio the vicinity of a saddle-node, increases
away from the saddle-node, and decreases again near thsadehte-node. This slow-fast-slow progression
past saddle-nodes has also been observed in nonlineargplitteg regimes (see e.g., [38,42,43]). Figure
14(c) illustrates the slow-fast dynamics by tracking thatisp normZL.s(¢) of each slice in time of Figure
14(b). TheLys norm is defined as

1 (L2
Log(t) = Z/L/2u2(9c,t) dx .

Note that, unlike thé.or normin (3.3),L2s(t) decreases as the width of the striped region decreaseseAs se

in Figure 14(c), the norm decreases in a step-like progressitime, suggesting a sequence of destruction
events separated by long intervals of relatively littlerudpa Because the saddle-nodes do not line up exactly,
times spent near each saddle-node are not uniformly dis#db We finally remark that the destruction events
do not continue until the system reaches a pure Hopf states i ldue to the presence of stable branches
that extend beyond the snaking region to the right, whichtmaseen in Figure 14(a) as well as in Figure 2.
However, the progression of a Turing-Hopf pinning solutdown the left side of the snaking region does
evolve to a pure Turing state, seen in Figure 15(b). Thisggested by the snaking diagram shown in Figure
15(a). A wavelength adjustment occurstat 2 x 10* in Figure 15(b) so that the final state, like the pure
Turing solutions described §8.2, has35 wavelengths.

Repeating the above procedure for variéuae observe that the time of traversal from one saddle-rmde t
the next scales approximately&s'/?, the same scaling found in [2] for the 2—3 Swift-Hohenbengagipn.
This scaling was determined only by the time to traverse ftloenstarting saddle-node, indicated in Figure
14(a) to the one immediately above it. We numerically deteeah the time by calculating the difference
between the appropriate time sligéz, () of the solution computed by AUTO at the second saddle-node to
every time slice of Figure 14(b). The time at which thg; norm of the difference was minimized was taken
to be the time at which the solution was considered to haveheshthe second saddle-node. The log-log
relation of the traversal time to the distant&om the saddle-node is shown in Figure 14(d); the solid line
is a least squares fit through numerical data (empty circées) the dashed line has slopé /2. We finally
remark that the aforementioned slight aperiodicity of #gmmporal oscillations in time evolved solutions of
(1.1) makes it difficult to determine whether an integer nendd temporal oscillations occur between saddle-
node transitions. This difficulty is exacerbated by the @& rence in the time scales between one temporal
period and the transition time.

3.4 Wavelength Selection

In studies of pinning solutions in the stationary Swift-téolberg equations, the wavelength of the periodic
state was shown to vary within the snaking region. This tiamecan be understood by the conservation of
a spatial Hamiltonian (cf. [44]), a property not availaltetihe Brusselator model. However, in the latter
case, the wavelength of the Turing state also varies wittérshaking region and is distributed evenly among
all stripes. We illustrate this phenomenon for solutionsteaBp, branch. Figure 16(a) shows a scatter
plot of the wavelength of the striped region for solutionshia snaking region. It shows that, generally, the
wavelength) increases as the paramefeiincreases. Deviation from the trend near the top of Figu(@)16
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Figure 15. Shown in (@) is a closeup of thBp,. branch with the location of the initial condition
indicated by the solid circle. At the saddle-node,= D, =~ 0.26649. The evolution down the
branch aty distance outside the snaking region is depicted by the haegécal arrow. The space-
time depiction of the solution starting from this initialraition is shown in (b) fos = —1 x 1075,
Only the time slices at which the center of the time oscitiatieegion is at a local minimum are
included. A wavelength adjustment occurg at 2 x 10*. The final pure Turing state contaif§

wavelengths. The parameters &e= 3.21, £ = 1.4, andL = 137.37.

occurs for solutions near the top of the snaking branch. lk@se solutions, the Hopf region has significant
influence on the entire striped region as a result of the guHopf coupling. For a typical solution, Figure
16(b) shows the: locations of each individual local maximum. The linear tielaship implies a spatially
uniform wavelength throughout the striped region. We nbg the critical wavelength, is \. ~ 3.8158
and the value oD at the C2THP isD. ~ 0.26483. Thus, Figure 16(a) shows that whénis closer toD.,

the wavelength\ is closer to\.. We also observe this trend with the paraméethe closerB is to By, the
closer\isto ..

There is an important difference, however, between the lgageh selection in Figure 16(a) and that
found for the (variational) 3-5 Swift-Hohenberg equatinfd4]. In the case of the latter, the snaking region
straddles a Maxwell point, a point of energy balance betvieetmomogeneous and spatially periodic states.
Deviation from the Maxwell point in the direction that fagdhe periodic state causes it to expand, resulting
in a uniform increase in wavelength of the entire spatiallyigdic region. Further deviation beyond the
snaking region triggers a depinning transition where thaially periodic state invades the homogeneous
state leading to a picture similar to Figure 15(b). The regds true when deviation from the Maxwell point
energetically favors the homogeneous state. In this chsepitture would resemble Figure 14(b). Thus,
the variation of the wavelength within the snaking regioodssistent with the depinning process: when the
bifurcation parameter is varied so as to increase the wagtiefurther variation of the parameter in the same
direction to outside the snaking region would lead to ansiaaof the periodic state. Conversely, when the
parameter is varied so as to decrease the wavelength, fughation to outside the snaking region would
result in an invasion of the homogeneous state. This reldd&ween wavelength selection and depinning
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Figure 16. Shown in (a) is a scatter plot of the wavelengithsf the striped region of solutions on the
shaking segments of thep. branch. Most of the data points are concentrated in the losggon of
the plot and suggest a positive correlatiomafith D. The approximately linear behavior shown in
(b) of the locations of local maxima of a typical solutioniicates equally spaced peaks and spatially

uniform wavelengths. The parameters &e-= 3.21, E = 1.4, andL = 137.37.

direction does not apply in the case of the Turing-Hopf pignsolutions, however. Given the depinning
results 0f§3.3, the reasoning above would suggest that the wavelemgjtle striped region should decrease
(increase) wherb increases (decreases). Figure 16(a) suggests that theitpigdrue for the Turing-Hopf
pinning solutions. Thus, the wavelength selection withia $naking region is unrelated to the direction of
depinning. The latter is determined by the relative domaeametween the Turing and Hopf modes and was
explained ing3.3. An explanation for the former is given in the next sutisec

3.5 Comparison of Pinning Region to Results Based on Amplitle Equations

Like the Turing-Hopf pinning solutions described§8.2 for the full Brusselator model (1.1), there also
exist Turing-Hopf solutions of the amplitude equation4dj2In such solutions as that in Figure 17(a), regions
in space wheré|A|, |C|) = (0,C,) are connected by approximately exponential monotonictsréciose
up in Figure 17(b)) to regions whei¢A|, |C|) = (Ap,0). We note that whilgC| is stationary,C(z, )
is complex and oscillates periodically in time. The widtHsttee Turing and Hopf regions are arbitrary
and thus a continuum of solutions exists for an appropriatampeter set. Such solutions of the amplitude
equations translate to solutions similar to that shown guFe 8 for the full Brusselator model. However,
these solutions of the amplitude equations exist only ondineension one subset in parameter space, while
the snaking region of the Brusselator model is codimenséva.ZThis point is developed further below. We
remark that while Figure 17(a) resembles the mesa pattemmstreicted in [45] for a particular scaling of
(1.1), that analysis does not appear to be applicable t§. (2.1

Above, Ay = \/’y—/g is the spatially homogeneous pure Turing amplitude, whike amplitude of the
Hopf modeCy ~ \/m is slightly affected by interaction with the Turing modes @xact determination
is beyond the scope of this paper. The reason that only the&bp&omogeneous Turing amplitude needs
to be considered is the property that the spatial dynami¢2.df) conserves a quantity & (see e.g., [46])
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that uniquely selects the wavelength. In particular, at&mud = R(X)e(X) must conserve the “angular
momentum’h(X) = R%(X)df/dX. If R(X) = 0 for any X, thenh(X) = 0 for all X. Thus, at any point

at whichR(X) is nonzerodf/dX = 0 must hold, leading to a spatially homogeneous Turing redyrthis
conservation law, for any solution to (2.1) such that (2rea@ches a steady state, if there exists a region in
space such thdtA|, |C|) = (0, Cy), regions for whichC| = 0 may only admit the spatially homogeneous
A = Ag state. Indeed, when time evolving (2.1) initialized withspatially periodic in the”’ = 0 region,

a coarsening of the Turing state occurs until the regiondgially homogeneous. This wavelength selection
within the amplitude equations may explain the observati@i.4 that the wavelengthof the striped region

is closer to the critical valug, the closer( B, D) are to(By, D.), their values at the C2THP.

5 5
at : : af T \
1 ! \
' ' \
S 5 : SE \
_- 1 : _- “
= ol ! = ol '
\
1l 1
B —T [ 200 400 04 102 -100 -98 -96 -o4

(@) (b)

Figure 17. Shown in (a) is a plot of the stationary amplitudes of a Twiifapf solution of the
amplitude equations. The Turing (Hopf) amplitude is théds@lashed) line. The widths of the
Turing and Hopf regions are arbitrary. The parametergare 25, p = 0.1682, andE = 1.4. A
close-up of the left front is shown in (b).

The front solution to (2.1) shown in Figure 17(a) only existsa positively sloped line iy, p)—space
through the origin (dashed line in Figure 18(a)), a codinmmene subset in parameter space. The
relationship was obtained numerically by time evolvind.jZor variousu andp and observing pairg:, p) for
which the Turing-Hopf front remained stationary. The lil@wn in Figure 18(a) is a least squares fit through
the computed data points (empty circles). We refer to this éis the Maxwell line, even though the problem
is not variational. The significance of the Maxwell line isthhhe snaking region is expected to straddle the
Maxwell line, regardless of whether the system is variaioAnother nonvariational example can be found
in [47], where a higher order analytical approximation te Maxwell curve for stationary solutions of the
(nonvariational) Lugiato-Lefever model was calculatemhira seventh order Ginzburg-Landau equation near
the codimension two point corresponding to weakly sulmaitiuring bifurcation. This curve was shown to
be straddled by a numerically determined snaking regio@4f [

Below the Maxwell line in Figure 18(a), the Turing mode beesntess dominant in relation to the Hopf
mode, and the Hopf mode invades the Turing mode. Above tigs the opposite is true. By comparing the
Turing and Hopf growth rateg andv given in the appendix, it is easily shown that the ratio decreases as
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D (or p) increases. Unlike the full Brusselator model that has antedsion zero snaking region within the
parameter space in which a continuum of solutions existTthieng-Hopf solutions of the amplitude equa-
tions only exist on a codimension one subset. The reasomighh amplitude equations do not capture the
nonadiabatic effects of (1.1) responsible for the pinnihgesiodic fronts (see e.qg., [1,26,47] and references
therein), or equivalently, the broadening of the Maxwelveu The black dots in Figure 18(a) are computed
limits of the snaking region for various values Bffor a domain length of. = 250. We observed that the
limits of the snaking region shift more to the left, i.e., s#o to straddling the Maxwell line, the larger the
value of L. Comprehensive results for lengths significantly larganth = 250 were difficult to obtain due

to computational constraints. Besides the length of theadopanother reason for the slight discrepancy may
be the lowest order approximation of (1.1). In [47], it waswh that the weakly nonlinear analysis must be
carried out to higher orders for the Maxwell curve to be dtad by the limits of the snaking region near a
codimension two point. In Figure 18(b), we show a semi-lag pf the width of the snaking region i for
various values of- (B — By ). The dashed line is a least squares fit through the data feingsty circles).
The linear relation indicates that, near the C2THP, thelwidithe pinning region irD is exponentially nar-
row in —(B — By )~ !, consistent with the dominant part of the scaling analjficéetermined in [10]. The
predicted scaling in [10] also contains an algebraic ptefaaf the form(B — By )~2 in our notation, but we
were unable to verify its presence based on the availabéepmtants.
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Figure 18. Figure (a) depicts the relationship between the numeyiadtermined Maxwell line
(dashed) and the limits of the pinning region (solid cirtleShe dashed line is a least squares fit
through data points indicated by empty circles. The retetigp between the Turing and Hopf growth
ratesy andv on the Maxwell line is approximately linear, as can be seemfa) along with the
expressions fory andv in the appendix. Figure (b) is a semi-log plot of the width loé tsnaking
region inD as a function of-(B — By )~ *. For B nearBx, the width is approximately exponential
in—(B— Bx)™ .
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4 Discussion

In this paper, we have extended the study of homoclinic sigadd stationary pinning solutions to solutions
exhibiting time periodicity. Whereas most studies in thstave focused on the subcritical Turing regime of
variational models, we have demonstrated snaking behagsra C2THP of a nonvariational system where
both the Turing and Hopf bifurcations are supercriticaltia region of Turing-Hopf bistability, we found
multiple branches of solutions characterized by a coaxégt®f temporal oscillations and stationary stripes.
By using AUTO to solve boundary value problems in time for faurier amplitudes of the space-time
solutions, we were able to compute both stable and unstahleéa branches. Two pairs of branches were
found. Each solution on one pair contained a defect at theecehthe striped region, while solutions on the
other pair did not. The solutions on either pair of branchiercby a = phase shift in the spatially periodic
pattern. We found that these branches displayed a simiactate to those found for stationary pinning
solutions. Further similarities discovered include thenmex in which striped structures of the space-time
solutions were destroyed or nucleated when traversing dppwn the branches. The scaling of the speed of
the depinning transition with respect to distance from tharast saddle-node was also found to be the same
as that observed in studies of stationary pinning solutidrestly, within the framework of the amplitude
equations valid near the C2THP, we numerically determin&thawell line, and showed that the pinning
region was located nearby, with the separation decreasitigedength of the domain increased. There are,
however, also important differences. The saddle-noddseo$naking branches found did not monotonically
converge to a single value in the bifurcation parameter Atsstead of terminating on the pure Hopf branch
the way that stationary pinning branches terminate on thedg@neous branches, the snaking branches found
here connect to a pair of collapsed snaking branches thrasghies of complex saddle-nodes. Wavelength
selection of the striped region along the snaking branchalso different. In particular, wavelength variation
appears unrelated to the direction of depinning as was the icathe Hamiltonian spatial dynamics of the
Swift-Hohenberg equations.

There are many open problems regarding Turing-Hopf pinaaigtions near the supercritical C2THP of
the Brusselator model. A qualitative interpretation, agalis to the spatial dynamics framework applied
to the stationary pinning solutions, would provide val@almisights into the nature of the solutions found
in this study. A quantitative determination of the!/2 scaling of the depinning time-scale has also not
been attempted in this paper, due to the technical diffesitissociated with asymptotic expansions around
time-periodic pinning solutions. Other paths of analys@ude calculating the Maxwell point of the system
of amplitude equations, or extending the method of [10] talgically determine the pinning region. A
higher order system of amplitude equations may be derivedmdirm that the corresponding higher order
Maxwell line compares more favorably to the snaking regibine possibility of Turing-Hopf pinning solu-
tions in higher spatial dimensions remains open for the &xagor model, though Turing-Hopf coexistence
in two dimensions near a supercritical C2THP has been ngaibrbbserved in [48] for a reaction-diffusion
system describing semiconductor heterostructures o8ty periodic Turing patterns in the two- and three-
dimensional Brusselator model with regular diffusion waremerically computed in [49]. In [37], self-
replicating localized spots and spots resulting from rimgfabilities were observed numerically for the two-
dimensional Brusselator model with superdiffusion. 8tary pinning solutions in higher spatial dimensions
whose analogs could exist near a supercritical C2THP irchadially symmetric (quasi-one-dimensional)
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pinning solutions in the multi-dimensional Swift-Hohenppequation [50], and fully two-dimensional pin-
ning solutions in two-dimensional Swift-Hohenberg eqomasi[51, 52].

Finally we mention several possible extensions of the mtesteidy. First, the numerical continuation
method based on spatial Fourier transform can be readilgtadao compute the bifurcation diagrams of
Turing-Hopf pinning solutions found by time evolution fdret superdiffusive Brusselator model in [32].
However, the interpretation of pinning in terms of spatiahdmics might not be possible in this case. Second,
the bifurcation structures of Turing-Hopf pinning solutsocan become drastically different sufficiently far
from the supercritical C2THP, when the snaking region extes with bifurcations on either Turing or Hopf.
In [40] it was shown that interaction of the snaking regiomhva saddle-center bifurcation on the spatially
periodic state results in the primary and hybrid snakesmeecting into a stack of figure-8 isolas. For the
Turing-Hopf pinning branches, this type of reconnectioaxpected when the snaking region interacts with
an Eckhaus bifurcation on the pure Turing branch. On therdihad, it is also possible for the Turing-
Hopf snaking region to interact with many other types of tftions, including for example mixed-mode
bifurcations and bifurcations of the Hopf periodic orbitthee temporal ODE. Third, the effect of noise on
Turing-Hopf pinning solutions should be taken into accotnfacilitate comparison between the results
presented in this paper and laboratory experiments. IntfEHynamics of stationary pinning solutions in
the 3-5 Swift-Hohenberg equation with an additive spatiqgteral Gaussian white noise were studied. It was
shown that in the pinning region, the front velocity is thensof a deterministic part which is the gradient of
a sawtooth potential, and a stochastic part which is a teah@aussian white noise. In the absence of noise
the front is trapped (or pinned) in the local minima of the &ath potential, but in the presence of noise
the front moves (or depins) towards the global minimum ofgaetooth potential asymptotically in time.
Hence the additive noise causes the front to propagate ieetidin determined by the relative position to the
Maxwell point. We expect similar dynamics for Turing-Hopfping solutions in view of the pinning region
in the original PDE straddling the Maxwell point in the antptle equation much like stationary pinning
solutions, though in the Turing-Hopf case such dynamiceictibe readily interpreted in terms of stochastic
gradient flows because both PDEs are generically nonvamgiti
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A Coefficients of Amplitude Equations

The coefficients of the amplitude equations in (2.1) are Hevis:
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