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Dispersive shock waves (DSWs) are physically important phenomena that occur in systems dominated by
weak dispersion and weak nonlinearity. The Korteweg–de Vries (KdV) equation is the universal model for
systems with weak dispersion and weak, quadratic nonlinearity. Here we show that the long-time-asymptotic
solution of the KdV equation for general, step-like data is a single-phase DSW; this DSW is the ‘largest’ possible
DSW based on the boundary data. We find this asymptotic solution using the inverse scattering transform and
matched-asymptotic expansions. So while multi-step data evolve to have multiphase dynamics at intermediate
times, these interacting DSWs eventually merge to form a single-phase DSW at large time.

I. INTRODUCTION

Dispersive shock waves (DSWs) have been seen in plas-
mas [1], fluids (e.g., undular bores) [2, 3], superfluids [4–
7], and optics [8–11]. DSWs occur when weak nonlinear-
ity and weak dispersion dominate the physics and there is
step-like data. For many weakly dispersive, weakly nonlin-
ear systems, the Korteweg–de Vries (KdV) equation is the
leading-order asymptotic equation [12]. Here we find the
long-time-asymptotic behavior of the KdV equation with gen-
eral, step-like data using the inverse scattering transform (IST)
and matched-asymptotic expansions. We show that general,
step-like data go to a single-phase DSW for the KdV equa-
tion in the long-time, fixed-dispersion limit. Our results show
that while multi-step data evolve to have multiphase dynam-
ics at intermediate times, these interacting DSWs eventually
merge to form a single-phase DSW: each sub-step in well-
separated, multi-step data forms its own DSW (Fig. 1a); these
DSWs then interact and develop multiphase dynamics at inter-
mediate times (Figs. 1b and 1c); and, in the long-time limit,
these DSWs merge to form a single-phase DSW (Fig. 1d).
The boundary data determine this single-phase DSW’s form;
the initial data determine its position. This is similar to in-
teracting viscous shock waves (VSW), where only the sin-
gle, largest possible VSW remains after a long time. Grava
and Tian [13] and Ablowitz et al. [14] suggested this merg-
ing of multiphase to single-phase by their two-phase to one-
phase results — they used Whitham theory, which applies to
slowly varying periodic wavetrains. We anticipate that the IST
and matched-asymptotic procedure presented here will be ap-
plied to other important, nonlinear integrable systems for gen-
eral, step-like data, such as the modified Korteweg–de Vries
(mKdV) and the nonlinear Schrödinger (NLS) equations.

A shock wave is an abrupt change in the medium that prop-
agates; it often moves faster than the local wave speed. If
dissipation and dispersion are ignored, then breaking occurs
in finite time; since this is not usually physical, most mod-
els include weak dissipation or weak dispersion. When dis-
sipation dominates dispersion, a VSW forms that is smooth
but changes rapidly from one value to another; VSWs form
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FIG. 1. Numerical simulations (using the scheme in [14]) of three
well-separated steps (at t = 0, with ε2 = 0.1 and c = 1). Here we see:
(a) three single-phase DSWs at t = 1; (b) and (c) strong interaction
and multiphase dynamics; and (d) eventual merging to form a single-
phase DSW.

in compressible gases and other classical fluids. When dis-
persion dominates dissipation, a DSW forms that is smooth
but has an additional modulated wavetrain that allows transi-
tions from one value to another; DSWs form in cold plasmas,
superfluids (like Bose–Einstein condensates), and nonlinear
electromagnetic waves in suitable optical materials.

The KdV and NLS equations are universal models: they
are the leading-order asymptotic equations for a wide class
of physical phenomena (see [12]). The KdV equation is the
leading-order asymptotic equation for systems with weak dis-
persion and weak, quadratic nonlinearity; it has important ap-
plications in shallow water waves, plasmas, lattice dynamics,
and elasticity among others. The NLS equation is the leading-
order asymptotic equation for quasi-monochromatic, weakly
nonlinear systems; it has important applications in nonlin-
ear optics, deep water waves, Bose–Einstein condensates, and
magnetic-spin waves among others.

Here we consider the DSWs that the KdV equation de-
scribe; the KdV equation, written in dimensionless form, is

ut + uux + ε2uxxx = 0, (1)

where subscripts denote partial derivatives. We will consider
the boundary conditions

lim
x→−∞

u = 0 and lim
x→+∞

u = −6c2. (2)
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Here, ε and c are real, positive constants, and ε corresponds to
the size of the regularizing dispersive effects. We require that
u goes to these limits sufficiently rapidly; so we assume that∫ ∞

−∞

∣∣∣u(x, 0) + 6c2H(x)
∣∣∣ (1 + |x|n) dx < ∞, (3)

for n = 1, 2, . . . and where H(x > 0) = 1 and H(x ≤ 0) = 0
is the Heaviside function. Since the KdV equation is Galilean
invariant, we can transform any constant boundary conditions
where limx→−∞ u > limx→+∞ u to (2). We use the IST method
(see [15–18]) and matched-asymptotic expansions (see [19,
20]) to find a long-time-asymptotic solution.

IST method

The IST method is the nonlinear analog of the Fourier trans-
form method: we transform the initial data into scattering
data; we evolve this scattering data in time; and we then
recover the solution from the evolved scattering data. First
we associate the nonlinear partial differential equation (PDE)
with a (linear) Lax pair. Then we use the scattering equa-
tion of the Lax pair to transform the initial data into scattering
data. Then we use the other linear equation of the Lax pair
to evolve the scattering data. Finally, we use a linear inte-
gral equation, the Gel’fand–Levitan–Marchenko (GLM) inte-
gral equation, to recover the solution at any time.

Elegant and powerful asymptotic methods based on
Riemann–Hilbert problems can also be used to recover the
solution at any time. They have been used to find the asymp-
totic solution for large time with vanishing boundary condi-
tions (see [21, 22]); see [23] for a NLS shock example. For
our purposes, the GLM integral equation and our matched-
asymptotic method is sufficient.

Hruslov [24] and then Cohen [25] and Cohen and Kap-
peler [26] studied the IST theory for step-like initial data; we
state the IST results that we need to find our asymptotic so-
lution in section II. Hruslov [24], based on [27], presented
the GLM integral equations and investigated the soliton train
at the DSW’s right. Cohen [25] and Cohen and Kappeler
[26], using the methods of [16, 27], rigorously studied some
scattering-data properties, rederived the GLM integral equa-
tions, and analyzed existence for piecewise-constant initial
conditions. We derive the GLM integral equations in a dif-
ferent way in appendix B.

Long-time asymptotic solution

Our long-time-asymptotic-analysis results are new. We find
the long-time-asymptotic solution for non-vanishing bound-
ary conditions (where c , 0) by using and suitably modifying
the methods in [19, 20]. Ablowitz and Segur [19, 20] devel-
oped these IST and matched-asymptotic methods to find the
long-time-asymptotic solution for vanishing boundary condi-
tions (where c = 0). We show, for large time, that u(x, t) goes
to a single-phase DSW that has three basic regions (Fig. 2):
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FIG. 2. Numerically computed solutions of the KdV equation for
the initial conditions shown in gray. (a) Non-vanishing boundary
conditions, c , 0. This solution has three basic regions: rapid decay
in region A, right of the DSW; strong nonlinearity of width O(t) in
region B; and an oscillating tail in region C, left of the DSW. (b) A
vanishing boundary conditions, c = 0. Here, the solution that has
four basic regions (see [19]). Region III has strong nonlinearity with
height O[(log t)1/2t−2/3] and width O[t1/3(log t)2/3].

• an exponentially small solution for x ≥ O(t) (region A
in Fig. 2a);
• a slowly varying cnoidal-wave solution for |x| ≤ O(t)

(region B in Fig. 2a), which has a soliton train on its
right and an oscillatory wave on its left; and
• a slowly varying oscillatory solution for (−x) ≥ O(t)

(region C in Fig. 2a).

Comparison with vanishing boundary conditions

The long-time-asymptotic solution of the KdV equation
when c , 0 is quite different from when c = 0 (see
Fig. 2): the strong nonlinearity when c = 0 is only over
|x| ≤ O[t1/3(log t)2/3], but when c , 0 it is over |x| ≤ O(t).
From [19], the long-time-asymptotic solution when c = 0 has
four basic regions:
• an exponentially small solution for x ≥ O(t) (region I in

Fig. 2b);
• a growing similarity solution for |x| ≤ O(t1/3) (region II

in Fig. 2b), which is related to Painlevé II’s solution;
• a collisionless-shock solution for (−x) =

O[t1/3(log t)2/3] (region III in Fig. 2b), which is a
slowly varying cnoidal wave analogous to a DSW; and
• an oscillatory similarity solution for (−x) ≥ O(t) (region

IV in Fig. 2b), which has the same form as region C in
Fig. 2a.

The amplitude for all these regions when c = 0 decays in time
at least as O(t−1/2); the amplitude when c , 0 is O(1).

Comparison with the linear problem

The long-time-asymptotic solution of the KdV equation is
also quite different from the linear problem (ũt + ε2ũxxx =

0). Both problems have three basic regions; but the middle
regions have different widths: the linear KdV equation has
a middle region with strong nonlinearity over |x| ≤ O(t1/3),
while the nonlinear KdV equation has a middle region (region
B in Fig. 2a) over |x| ≤ O(t). The linear problem’s solution in
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the middle region is

ũ(x, t) ∼ U0(0)
∫ η

−∞

Ai(η′) dη′, η =
x

(3ε2t)1/3 ,

where Ai(x) is the Airy function and U0 is the Fourier trans-
form of ũx(x, 0).

Comparison with viscous shock waves

In the long-time limit, both DSWs and VSWs merge to
form a single shock wave. For shock waves where dissipation
dominates dispersion, Burgers’ equation is the leading-order
asymptotic equation. Burgers’ equation, in normalized form,
is

wt + wwx − νwxx = 0,

where ν > 0 is a measure of dissipation and is typically small.
If we take initial data that go rapidly to the boundary condi-
tions limx→−∞ w(x, t) = 0 and limx→+∞ w(x, t) = −h2, then the
long-time-asymptotic solution is

w(x, t) ∼ −
h2

2

{
1 + tanh

[
h2

4ν

(
x − x0 +

h2

2
t
)]}

,

where x0 is a real constant that depends on the initial data —
see appendix A for details. Thus, for both Burgers’ and the
KdV equation, well-separated step data go to a single shock
wave in the long-time limit: the boundary conditions deter-
mine its form, and the initial data determine its location. But
unlike with Burgers’ equation, the solution of the KdV equa-
tion can also have a finite number of solitons, which move to
the DSW’s right in the long-time limit.

Relation to previous work

Single-step data, such as a Heaviside function, have been
studied extensively (see [28–31]) using wave-averaging tech-
niques, which are often called Whitham theory [32, 33].
Whitham theory averages over suitable, slowly varying peri-
odic waves to get reduced equations; these reduced equations
are a quasi-linear, first-order, hyperbolic system that describes
how the periodic wave’s parameters slowly evolve.

The evolution of multiphase DSWs to a single-phase DSW
was investigated in the two-phase case by Grava and Tian [13]
using Whitham theory in the zero-dispersion limit (ε→ 0) for
finite time and by Ablowitz et al. [14] using numerical and
asymptotic methods in the fixed-dispersion, long-time limit.
Both zero-dispersion and long-time are important, but differ-
ent, limits. Here we study the long-time limit with fixed dis-
persion. By using the IST method, we find the asymptotic
solution directly: we can investigate general, step-like initial
data and DSW interactions without having to find the solution
at intermediate times. On the other hand, Whitham theory in
the zero-dispersion limit requires that the solution is found at
intermediate times through a nonlinear hyperbolic system.

The IST method also gives the behavior to the left and
right of the DSW; it’s nontrivial to get such behavior from
the Whitham theory results. For example, it’s useful to com-
pare [34] with [19, 20] to see how each matches the solution
(for vanishing boundary conditions) in region III (Fig. 2b) to
that in region IV. Also compare [35] with [19] to see how each
matches the solution in region II to that in region III.

The key result for the fixed-dispersion, long-time limit is
that the DSWs from well-separated, multi-step data merge to
form a single-phase DSW.

To find the KdV equation’s long-time-asymptotic solution:
We give the IST results that we need in section II. Then we
asymptotically solve the linear GLM integral equation to find
the exponentially small solution right of the DSW (sec. III A);
use matched asymptotics to get the DSW (sec. III B), which
is a slowly varying cnoidal wave that has a soliton train on
its right and an oscillatory tail on its left; and find the small,
decaying, oscillatory solution left of the DSW (sec. III C) that
matches into the DSW. Finally, we draw some conclusions
(sec. IV), find Burgers’ equation’s long-time-asymptotic solu-
tion (app. A), derive the GLM integral equation (app. B), and
outline (app. C) how we find the solution in section III C.

II. IST SOLUTION

The IST method first associates a Lax pair with the nonlin-
ear PDE. Using the Lax pair’s scattering equation, we trans-
form the initial data into the scattering data. We then evolve
the scattering data in time using the associated linear equa-
tion. The GLM integral equation, a linear integral equation,
provides the inversion at any time, and so we can recover the
solution at any time.

The Lax pair associated with (1) is

vxx +
(
u/6 + λ2

)
v/ε2 = 0, (4a)

vt = (ux/6 + γ) v +
(
4λ2 − u/3

)
vx, (4b)

where λ is the spectral parameter and γ is a constant. This
linear pair is compatible (vxxt = vtxx) when u = u(x, t) satisfies
(1) and λ is isospectral (∂λ/∂t = 0).

We use (2) to define the eigenfunctions that satisfy (4a) (for
notational simplicity, we often suppress the time dependence):

φ(x; λ) ∼ exp(−iλx/ε), φ̄(x; λ) ∼ exp(iλx/ε), (5a)

as x→ −∞ and

ψ(x; λr) ∼ exp(iλr x/ε), ψ̄(x; λr) ∼ exp(−iλr x/ε), (5b)

as x → +∞, where λr ≡
√
λ2 − c2. We take the branch

cut of λr to be λ ∈ [−c, c], and the branch cut of λ to be
λr ∈ [−ic, ic]; then Im(λr) ≷ 0 when Im(λ) ≷ 0. This branch
cut is one of the main differences between vanishing and non-
vanishing boundary conditions: vanishing boundary condi-
tions give eigenfunctions that do not have a branch cut.
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The Wronskian, W( f , g) ≡ f gx − fxg, is constant (in x)
for (4a) by Abel’s identity; so, from (5), W(φ, φ̄) = 2iλ/ε
and W(ψ, ψ̄) = −2iλr/ε. The scattering eigenfunctions and
scattering data a and b associated with (4a) satisfy

φ(x; λ) = a(λ, λr)ψ̄(x; λr) + b(λ, λr)ψ(x; λr) (6)

for λr , 0, λr ∈ R (or, equivalently, |λ| > c, λ ∈ R). The
scattering data can be written as

a =
ε

2iλr
W(φ, ψ) and b =

ε

2iλr
W(ψ̄, φ). (7)

We can use this to extend a to |λ| < c, λ ∈ R (where λr is pure
imaginary); when |λ| < c, λ ∈ R, ψ is real and exponentially
decaying. This also gives that a = −b for |λ| ≤ c, λ ∈ R and
|a|2 − |b|2 = λ/λr for |λ| > c, λ ∈ R.

It’s convenient to define the transmission coefficient T ≡
1/a and the reflection coefficient R ≡ b/a. Then (6) can be
written as

T (λ, λr)φ(x; λ) = ψ̄(x; λr) + R(λ, λr)ψ(x; λr). (8)

We use (2), (4b), and (8) to find how T and R evolve in time:

T (λ, λr; t) = T (λ, λr; 0) exp[i(4λ2λr − 4λ3 + 2c2λr)t/ε]

and

R(λ, λr; t) = R(λ, λr; 0) exp[i(8λ2λr + 4c2λr)t/ε].

For vanishing boundary conditions (c = 0), the transmission
coefficient T does not depend on time. But here, where c , 0,
the transmission coefficient does depends on time; this depen-
dance when |λ| < c, λ ∈ R is not pure phase.

The associated GLM integral equation — see appendix B
for a derivation — is

G(x, y; t) + Ω(x + y; t) +

∫ ∞

x
Ω(y + z; t)G(x, z; t) dz = 0, (9)

where

Ω(ξ; t) =
1

2επ

∫ ∞

−∞

Reiλrξ/ε dλr +
∑

j

c je−κ̃ jξ/ε

+
1

2επ

∫ c

0
|λT/λr |

2e−
√

c2−λ2ξ/ε dλ,

the constants {iκ j}
N
j=1 are the (simple) poles of T (iκ j, λr(iκ j); t),

κ̃ j =
√
κ2

j + c2, c j = −iµ j/[ε∂λr a(iκ j)], φ(x; iκ j, t) ≡

µ j(t)ψ(x; iκ j, t), and 0 < κ1 < · · · < κN are real. The kernel
Ω has contributions from the reflection coefficient, from the
poles, and from the branch cut (the |λT/λr |

2 term) — there is
no branch-cut contribution in the c = 0 case. We will omit
any contributions from poles in our asymptotics. These poles
relate to the solitons, which move to the right of the DSW, and
so do not affect the DSW in the long-time limit.

From G, we recover u(x, t) from

u(x, t) = −6c2 + 12ε2 d
dx

G(x, x; t). (10)

III. LONG-TIME ASYMPTOTICS

For large time, we use (9) to asymptotically compute the
behavior right of the DSW (sec. III A). When this asymp-
totic solution breaks down, we use the matched-asymptotic
method introduced in [19] to find the DSW’s slowly varying
elliptic-function solution (sec. III B). This naturally leads to
Whitham’s equations, which Whitham [32] originally found
by an averaging method; Luke [36] later developed a pertur-
bative method (and [37] used such a method on the KdV equa-
tion). Then we use the method in [20] to determine the small-
amplitude, slowly varying, oscillatory solution to the left of
the DSW (sec. III C); this matches the slowly varying elliptic-
function solution in the middle region.

A. Shock front

Right of the DSW: we asymptotically compute Ω(ξ; t) for
large time, use Ω to compute G using a Neumann series, and
use G in (10) to find u. When our asymptotic expansion for Ω

breaks down, the Neumann series for G becomes disordered:
this gives us the boundary condition for the DSW’s right edge.

Far right of the DSW, where x � −2c2t, the reflection co-
efficient’s contribution to Ω dominates. Using the steepest-
descent method (see [38, 39]) gives

Ω(ξ; t) = −
R+(λ∗)e−2t[ξ/(6t)+2c2]3/2/ε

8
√
επ[ξ/(6t) + 2c2]1/4

√
t

[
1 + O(t−1/2)

]
+ cc,

where λ∗ =
√

c2/2 − ξ/(24t) and cc is the complex conjugate.
We can then find G using the Neumann series from the iterates
G(0)(x, y; t) = −Ω(x + y; t) and

G(n)(x, y; t) = −Ω(x + y; t) −
∫ ∞

x
Ω(y + z; t)G(n−1)(x, z; t) dz.

Using (10) then gives the exponentially small solution

u(x, t) = −6c2 +
Re {R+(λ∗)} e−2t[x/(3t)+2c2]3/2/ε

4
√
επ[x/(3t) + 2c2]1/4

√
t

[
1 + O(t−1/2)

]
,

for x � −2c2t.
Near the DSW’s right, the transmission coefficient’s contri-

bution to Ω dominates. The contribution from λ = 0 domi-
nates and is

Ω(ξ; t) =
−e−ct(ξ/t+4c2)/ε √ε

16
√
π[6c − ξ/(2ct)]3/2

[
H2(0)t−3/2 + O(t−5/2)

]
,

where

H j(λ∗) ≡
[
∂ j

∂λ j |T (λ, λr(λ); 0)|2
]
λ=λ∗

.

The terms in the Neumann series become disordered when

[x + 2c2t + 3ε/(4c) log(6c2t − x)] = O(1).
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This is the DSW’s right edge. (See the asymptotic principles
discussed in [40].) When we sum the Neumann series, we find
that

u(x, t) ∼ −6c2 + 12c2 sech2
[ c
ε

(ζ − ζ0)
]
, (11)

where

ζ0 =
ε

2c
log

{
32
√
π

H2(0)c1/2ε3/2

}
,

ζ = −x − 2c2t −
3ε
4c

log(6c2t − x) + A1(x/t)t−1 + · · · , (12)

and

A1(x/t + 6c2) =
3ε2

8c2x/t
+

135ε2

16(x/t)2 +
3c2ε2H4(0)

8(x/t)2H2(0)
.

This provides the boundary condition on the DSW’s right
edge.

This procedure gives the DSW’s phase, ζ0. This phase
only depends on H2(0) (since H0(0) = H1(0) = 0). In the
vanishing case, [19, Eq. (2.25c)] found a similar phase term:
r′′(0) − [r′(0)]2/r(0), where r is the corresponding reflection
coefficient. Burgers’ equation’s long-time-asymptotic solu-
tion also has a phase term that depends on the initial data in a
similar way (see app. A).

B. DSW

For the DSW, we find the slowly varying, cnoidal-wave so-
lution using matched asymptotics. First we make a variable
change in (1) based on (11). Then we use the multiple-scales
method (see [12]) to determine how its solution slowly varies:
the secularity and compatibility conditions lead to three con-
servation laws, which we can transform into Whitham’s equa-
tions [32]. Matching to (11) and assuming a similarity solu-
tion determines the DSW’s long-time-asymptotic solution.

Analogous to [19], we look for a solution of the form

u(x, t) = −6c2 + g(ζ, t),

based on (11), where ζ is defined in (12). We substitute this
into (1). Then we introduce the slow-variables Z ≡ δζ and
T ≡ δt, where δ = O(t−1) is a small parameter. Grouping
terms in like powers of δ gives

ε2gζζζ + ggζ − 4c2gζ − gt

= δ

{
3ε(3ε2gζζζ + ggζ − 12c2gζ)

4c(8c2T + Z)

}
+ · · · . (13)

To leading order, (13) has the special solution

g(ζ, t) ∼ 4c2 − V + 4ε2κ2(1 − 2k2)

+ 12k2ε2κ2 cn2 [
κ(ζ − ζ0 − Vt), k

]
, (14)

where cn(z, k) is the Jacobian elliptic ‘cosine’ (see [41]); it
can be found using the methods in [42]. If we neglect the
right-hand side of (13), κ, k, and V are arbitrary constants but
vary slowly in general. In the special case k = 1, κ = c/ε,
and V = 0, g(ζ, t) = 12c2 sech2[c(ζ − ζ0)/ε], which exactly
matches (11).

As in [36], we use the multiple-scales method — with a
fast variable θ — to determine how κ, k, and V vary with the
slow-variables Z and T . This leads to three conservation laws
from a compatibility condition and two secularity conditions;
we can transform these conservation laws into a convenient
diagonal system of quasilinear, first-order equations, which
were first found by Whitham [32].

To get the compatibility condition, we introduce the rapid-
variable θ(ζ, t) with

θζ ≡ κ(Z,T ) and θt ≡ −ω(Z,T ) ≡ −κV. (15)

This leads to the compatibility condition (θζ)t = (θt)ζ or

κT + ωZ = 0, (16)

which is a conservation law.
To get the secularity conditions: we rewrite (13) in terms of

θ, and then require that the leading-order solution is periodic
in θ. We use ∂t = −ω∂θ + δ∂T and ∂ζ = κ∂θ + δ∂Z to transform
(13) into

ε2κ3gθθθ + κggθ + (ω − 4c2κ)gθ

= δ

[
3εκ

4c(8c2T + Z)

(
3ε2κ2gθθθ + ggθ − 12c2gθ

)
+ gT −

(
3ε2κ(κgθθ)Z + ggZ − 4c2gZ

)]
+ · · · . (17)

Then we expand g(θ,Z,T ) = g0(θ,Z,T ) + δg1(θ,Z,T ) +

δ2g2(θ,Z,T ) + · · · and group the terms in like powers of δ.
The O(1) equation is

ε2κ3g0,θθθ + κg0g0,θ + (ω − 4c2κ)g0,θ = 0; (18)

the O(δ) equations is

ε2κ3g1,θθθ + κ(g0g1)θ + (ω − 4c2κ)g1,θ

=
3εκ

4c(8c2T + Z)

(
3ε2κ2g0,θθθ + g0g0,θ − 12c2g0,θ

)
+ g0,T − 3ε2κ(κg0,θθ)Z − g0g0,Z + 4c2g0,Z ≡ F. (19)

To eliminate secular terms (that is, terms that grow arbitrarily
large), we enforce the periodicity of g0(θ,Z,T ) in θ:∫ 1

0
F dθ = 0 and

∫ 1

0
g0F dθ = 0.

Using ∫ 1

0

∂ig0

∂θi dθ = 0,
∫ 1

0
g0
∂ jg0

∂θ j dθ = 0,
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for i = 1, 2, 3, . . . and j = 1, 3, 5, . . . , and∫ 1

0
g0g0,θθ dθ = −

∫ 1

0
g2

0,θ dθ,

we get from
∫ 1

0 F dθ = 0 that

∂

∂T

∫ 1

0
g0 dθ +

∂

∂Z

(
4c2

∫ 1

0
g0 dθ −

1
2

∫ 1

0
g2

0 dθ
)

= 0 (20)

and from
∫ 1

0 g0F dθ = 0 that

∂

∂T

∫ 1

0
g2

0 dθ +
∂

∂Z

(
4c2

∫ 1

0
g2

0 dθ

−
2
3

∫ 1

0
g3

0 dθ + 3ε2κ2
∫ 1

0
g2

0,θ dθ
)

= 0. (21)

The solution of (18) is

g0(θ,Z,T ) = a(Z,T ) + b(Z,T ) cn2[2(θ − θ0)K, k(Z,T )], (22)

where K ≡ K(k(Z,T )) is the complete elliptic integral of the
first kind,

κ2 =
b

48ε2k2K2 , and a = 4c2 − V −
2
3

b +
b

3k2 . (23)

We can use these to rewrite the conservation law (16) as

∂

∂T

 1

4
√

3εK

√
b
k2

 +
∂

∂Z

 V

4
√

3εK

√
b
k2

 = 0.

We can also use (22) to rewrite the conservation laws (20)
and (21) in terms of b/k2, V , and k. Using (22) and elliptic-
function properties (see Byrd and Friedman [43, formulas 312
and special values 122]), we can write

∫ 1
0 g0 dθ, . . . ,

∫ 1
0 g3

0 dθ,

and ω2
∫ 1

0 g2
0,θ dθ in terms of b/k2, V , k, and the complete first

(K) and second (E) elliptic integrals. After simplification, we
get the conservation laws

∂

∂T

[
(4c2 − V) +

1
3

(
3

E
K

+ v − 2
) b

k2

]
+

∂

∂Z

[
1
2

(4c2 − V)(4c2 + V) +
V
3

(
3

E
K

+ k2 − 2
) b

k2

−
1

18
(1 − k2 + k4)

(
b
k2

)2 ]
= 0

and

∂

∂T

[
(4c2 − V)2 +

2(4c2 − V)
3

(
3

E
K

+ k2 − 2
) b

k2

+
1
9

(
1 − k2 + k4

) ( b
k2

)2 ]
+

∂

∂Z

[
2
3

(4c2 − V)2(2c2 + V)

+
2V
3

(4c2 − V)
(
3

E
K

+ k2 − 2
) b

k2

−
2
9

(2c2 − V)(1 − k2 + k4)
(

b
k2

)2

+
1
81

(2 − k2)(1 + k2)(2k2 − 1)
(

b
k2

)3 ]
= 0.

10 c2 0
Χ-6 c2

0

6 c2
r2H ΧL

HaL
t�¶=10

10 c2 0
Χ-6 c2

0

6 c2
r2H ΧL

HbL
t�¶=200

FIG. 3. The value of r2(χ) found numerically for 0 < χ < 10c2,
where χ ≡ ζ/t. For comparison, we include −r2(χ) as a dashed line
and a numerical simulation of u(x, t) in gray (inside the envelope of
r2 and −r2) for a single-step at (a) t/ε = 10 and (b) t/ε = 200. Note
that χ = 0 corresponds to x ∼ −2c2t and χ = 10c2 to x ∼ −12c2t.

These three conservation laws determine b, k, and V .
We can transform these conservation laws into Whitham’s

equations. Make the variable changes

b
k2 = 2(r3 − r1), k2 =

r2 − r1

r3 − r1
, V = 4c2 −

r1 + r2 + r3

3
.

Simplifying then gives the convenient diagonal system

∂ri

∂T
+ vi(r1, r2, r3)

∂ri

∂Z
= 0, i = 1, 2, 3, (24)

where v1 = V + bK/[3(K − E)], v2 = V + b(1 − k2)K/[3(E −
(1 − k2)K)], v3 = V − b(1 − k2)K/(3k2E), and

g0(θ,Z,T ) = r1 − r2 + r3 + 2(r2 − r1) cn2 [2(θ − θ0)K, k] .

Whitham first found (24) in [32] (see also [14, 28]). Here, θ is
found through integrating with (15).

For large time, the solution tends to a self-similar solution.
We assume that ri = ri(χ) with χ ≡ Z/T = ζ/t. Taking r1 = 0
and r3 = 6c2 satisfies the boundary conditions; so (24) reduces
to (v2 − χ)r′2(χ) = 0 or

v2 = 2c2 − r2 +
2
3

r2E
(√

r2
6c2

)
E

(√
r2

6c2

)
−

(
1 − r2

6c2

)
K

(√
r2

6c2

) = χ.

We can numerically solve this implicit equation for r2 (Fig. 3).
We can also directly compute the DSW’s left- and right-edge
speed: At the right edge, we take the limit r2 → r3, and get
that v2 → 0 or x ∼ −2c2t — the leading soliton’s speed. At the
left edge, we take the limit r2 → r1, and get that v2 → 10c2 or
x ∼ −12c2t. Moreover, at the left edge where 0 < (10c2−χ) �
1, we have that r2 = 2(10c2−χ)/3 + O[(10c2−χ)2]; using this
and taking x→ −12c2t gives u = (2/3)(10c2−χ) cos[16c3t/ε+
O(log t)].

C. Trailing edge

The solution left of the DSW has the same form for both
vanishing (c = 0) and non-vanishing (c , 0) boundary con-
ditions. In both cases, the GLM integral equation formulated
from −∞ to x has the same form. The scaling symmetry of
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(1) — (u, x, t) → (γ2u, γ−1x, γ−3t) — leads to a similarity so-
lution; in this region, we find that the slowly varying, asymp-
totic similarity solution is

u(x, t) = 2A
X1/4

√
τ

cos(θ) −
A2(1 − cos 2θ)

3τ
√

X
+ O(τ−3/2), (25)

where X = −x/(3t), τ = 3t, and

θ =
τ

ε

[
2
3

X3/2 −
A2

18
log(τX3/2)

τ
+
θ0

τ
+ O(τ−2)

]
.

We can use several methods to find A and θ0 in terms of the
scattering data.

One method for finding A and θ0 is to use the GLM integral
equation formulated from −∞ to x. Following the same pro-
cedure as section III A requires that we sum the whole Neu-
mann series: that is, unlike section III A, we cannot get A and
θ0 from the Neumann series’s first few terms. But the first few
terms are sufficient to show our main result: the long-time
limit of general, step-like data is a single-phase DSW.

While we don’t need expressions for A and θ0 to show our
main result, we can use the method as [20] to find A and θ0.
We find that

A2(X) ∼ −
9ε
π

log
(
1 −

∣∣∣∣R (√
X/2

)∣∣∣∣2) , (26)

where R(
√

X/2) ≡ R(λ =
√

X/2, λr(λ), t = 0), and

θ0

ε
∼
π

4
− arg{r̃(λ)} − arg

{
Γ

(
1 −

iA2(4λ2)
18ε

)}
−

c2A2(4c2)
9ελ2 log

(c − λ
c + λ

)
−

A2

6ε
log 2

−
1

9λ2ε

∫ λ

c

(
ξ2A2(4ξ2)

)
ξ

log
(
ξ − λ

ξ + λ

)
dξ, (27)

where λ =
√

X/2, r̃ ≡ b̃/ã, and φ → ã(λ)e−iλx/ε +

b̃(λ)eiλ(x+8λ2t)/ε as x → −12c2t. This r̃ can be related to a and
b through the GLM integral equation formulated from −∞ to
x. See appendix C for details.

IV. CONCLUSION

DSWs appear when weak dispersion and weak nonlinear-
ity dominate the physics; they arise in many physical systems,
including fluid dynamics, plasmas, superfluids, and nonlin-
ear optics. For systems with weak dispersion and weak,
quadratic nonlinearity, the KdV equation is the leading-order
asymptotic equation. Here we showed that the long-time-
asymptotic solution of the KdV equation for general, step-like
initial data tend to a single-phase DSW; we found this long-
time-asymptotic solution using the IST method and matched-
asymptotic expansions. Therefore, a single-phase DSW even-
tually forms from well-separated, multi-step initial data, de-
spite having more complex multiphase dynamics at intermedi-
ate times. We anticipate that our IST and matched-asymptotic

procedure for general, step-like data will be applied to other
important nonlinear integrable systems.

The long-time-asymptotic solution of the KdV equation for
general, step-like initial data has three basic regions: an ex-
ponentially small region right of the DSW; the main DSW
region, which is a slowly varying cnoidal wave with a soliton-
train on its right and oscillatory behavior on its left; and a
small, decaying, oscillatory region left of the DSW. The DSW
region is over |x| ≤ O(t) and has height O(1). Compare
this with the linear KdV equation with step-like data and the
nonlinear KdV equation with vanishing data: the linear KdV
equation with step-like data has a middle region with strong
nonlinearity over |x| ≤ O(t1/3) and has height O(1); the non-
linear KdV equation with vanishing data has a collisionless-
shock region over (−x) = O[t1/3(log t)2/3] and has height
O[(log t)1/2t−2/3]. The merging of shocks from multistep data
is similar for both the KdV and Burgers’ equations: in both,
the boundary conditions determine its form and the initial data
determine its position — but the KdV equation can also have
a finite number of solitons.
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Appendix A: Long-time asymptotic solution of Burgers’
equation

We can transform Burgers’ equation,

wt + wwx − νwxx = 0, (A1)

into the heat equation (φt = νφxx) using the Hopf–Cole trans-
formation,

w = −2ν
φx

φ
. (A2)

For simplicity, we take

w(x, t = 0) = w0(x) =


0, x ≤ x`
f (x), x` ≤ x ≤ xr

−h2, x ≥ xr

,

where h is real and f is bounded. So, from (A2),

φ(x, t = 0) = φ0(x) = exp
(
−1
2ν

∫ x

−∞

w0(x′) dx′
)

=


1, x ≤ x`
exp

[
−1/(2ν)

∫ x
x`

f (x′) dx′
]
, x` ≤ x ≤ xr

exp
[
h2(x − x̃0)/(2ν)

]
, x ≥ xr

,
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where x̃0 ≡
∫ xr

x`
f (x′)/h2 dx′. Solving the heat equation gives

φ(x, t) =
1
√

4πνt

(∫ x`

−∞

+

∫ xr

x`
+

∫ ∞

xr

)
φ0(x′)e−(x−x′)2/(4νt) dx′

≡ I1 + I2 + I3.

And, in the long-time limit,

I1 ∼
1
2
, I2 → 0, and I3 ∼ exp

[
h2

2ν

(
x − x̃0 +

h2

2
t
)]
.

Therefore, from (A2),

w(x, t) ∼ −
h2

2

{
1 + tanh

[
h2

4ν

(
x − x0 +

h2

2
t
)]}

,

where x0 ≡ x̃0 + (2ν/h2) log 2.

Appendix B: Derivation of GLM integral equation

To find (9), the GLM integral equation, we need to know
the eigenfunctions’s and the scattering data’s analyticity; see
[26, 44] for more details. Using Green’s functions, we can
write eiλx/εφ, eiλx/εφ̄, eiλr x/εψ, and eiλr x/εψ̄ as Volterra integral
equations, which can be solved using Neumann series. From
these Neumann series, we find that
• eiλx/εφ is analytic for Im(λ) > 0,
• e−iλx/εφ̄ is analytic for Im(λ) < 0,
• e−iλr x/εψ is analytic for Im(λr) > 0, and
• eiλr x/εψ̄ is analytic for Im(λr) < 0.

From (7), we have that a is analytic for Im(λ) > 0. If n = 1,
2, . . . , N in (3), then: eiλx/εφ and e−iλx/εφ̄ are N-fold differen-
tiable (with respect to λ) on Im(λ) = 0, λ , 0 and (N − 1)-
differentiable at λ = 0; e−iλr x/εψ and eiλr x/εψ̄ are N-fold dif-
ferentiable (with respect to λr) on Im(λr) = 0, λr , 0 and
(N − 1)-differentiable at λr = 0. Likewise, if u(x, t) satisfies∫ ∞

−∞

|u(x, t) + 6c2H(x)|ed|x| dx < ∞, 0 < d ∈ R,

then eiλx/εφ and e−iλx/εφ̄ are analytic in −d < Im(λ) < d,
e−iλr x/εψ and eiλr x/εψ̄ are analytic in −d < Im(λr) < d, and
b is analytic, from (7), in −d < Im(λ) and Im(λr) < d.

Using the eigenfunctions’s and the scattering-data’s analyt-
icity, we find the GLM integral equation by: assuming that
ψ and ψ̄ have triangular forms; substituting these forms into
(8); and operating on this equation with (2επ)−1−

∫ ∞
−∞

dλr to get
(9). (We use −

∫
to denote the principle-value integral omitting

λr = 0.) Following [18], we assume that ψ and ψ̄ have the
triangular forms

ψ(x; λr; t) = eiλr x/ε +

∫ ∞

x
G(x, s; t)eiλr s/ε ds,

ψ̄(x; λr; t) = e−iλr x/ε +

∫ ∞

x
G(x, s; t)e−iλr s/ε ds,

(B1)

with G(x, s; t) ≡ 0 when s < x. Substituting (B1) into (8)
gives

Tφ = e−iλr x/ε +

∫ ∞

x
G(x, s; t)e−iλr s/ε ds

+ R
{

eiλr x/ε +

∫ ∞

x
G(x, s; t)eiλr s/ε ds

}
;

multiplying by eiλry/ε and rearranging gives(
Tφeiλr x/ε − 1

)
eiλr(y−x)/ε =

∫ ∞

x
G(x, s; t)eiλr(y−s)/ε ds

+ R
{

eiλr(x+y)/ε +

∫ ∞

x
G(x, s; t)eiλr(y+s)/ε ds

}
. (B2)

Now we operate on (B2) with (2επ)−1−
∫ ∞
−∞

dλr, interchange in-
tegrals, and use that δ(x) = (2επ)−1

∫ ∞
−∞

eiλr x/ε dλr. So, for
example,

1
2επ
−

∫ ∞

−∞

∫ ∞

x
G(x, s; t)eiλr(y−s)/ε ds dλr

=

∫ ∞

x
G(x, s; t)

(
1

2επ

∫ ∞

−∞

eiλr(y−s)/ε dλr

)
ds

=

∫ ∞

x
G(x, s; t)δ(y − s) ds = G(x, y; t)

and

1
2επ
−

∫ ∞

−∞

R(λ, t)
∫ ∞

x
G(x, s; t)eiλr(y+s)/ε ds dλr

=

∫ ∞

x
G(x, s; t)

(
1

2επ
−

∫ ∞

−∞

R(λ, t)eiλr(y+s)/ε dλr

)
ds

=

∫ ∞

x
G(x, s; t)F(y + s; t) ds,

where

F(z; t) ≡
1

2επ
−

∫ ∞

−∞

R(λ, t)eiλrz/ε dλr. (B3)

Thus,

G(x, y; t) + F(x + y; t) +

∫ ∞

x
F(y + z; t)G(x, z; t) dz = I,

where

I ≡
1

2επ
−

∫ ∞

−∞

(
Tφeiλr x/ε − 1

)
eiλr(y−x)/ε dλr.

We find I by closing in the upper-half λr-plane because
φeiλr x/ε is analytic in Im(λ) > 0. We get that I ≡ −Ib − Ip,
where Ib is the contribution from the branch cut and Ip is the
contribution from the zeros of a.

To find Ib, we recall that the branch cut of λ is λr ∈ [−ic, ic],
and the branch cut of λr is λ ∈ [−c, c]. So

Ib =
1

2επ

∫ ic−0−

0−0−
−

∫ ic+0+

0+0+

 {φeiλr x/ε

a
− 1

}
eiλr(y−x)/ε dλr

=
1

2επ

∫ ic

0

{(
φ

a

)
λ=−|λ|

−

(
φ

a

)
λ=|λ|

}
eiλry/ε dλr.
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Now we define α and β — the scattering data from the left —
so that

ψ ≡ αφ̄ + βφ, λ , 0; (B4)

then

α =
ε

2iλ
W(φ, ψ) =

λra
λ

and β =
ε

2iλ
W(ψ, φ̄).

For λr ∈ [0, ic], φ∗ = φ̄, ψ = ψ∗ = ψ̄, and α∗ = β from (5),
where ∗ denotes the complex conjugate. So

Ib =
1

2επ

∫ ic

0

{(
φ

λα

)
λ=−|λ|

−

(
φ

λα

)
λ=|λ|

}
eiλry/ελr dλr.

Using (φ/α)λ=−|λ| = (φ∗/α∗)λ=|λ|, from (5a), and noting λ’s sign
change, gives

Ib = −
1

2επ

∫ ic

0

(
φ

λα
+

φ∗

λα∗

)
λ=|λ|

eiλry/ελr dλr

= −
1

2επ

∫ ic

0

[
1
λα∗

(
φ∗ +

α∗

α
φ

)]
λ=|λ|

eiλry/ελr dλr.

Using the identities ψ∗ = ψ̄ and α∗ = β for λr ∈ [0, ic] and
then using (B4) gives

Ib = −
1

2επ

∫ ic

0

[
1
λα∗

(
φ̄ +

β

α
φ
)]
λ=|λ|

eiλry/ελr dλr

= −
1

2επ

∫ ic

0

[
1

λ|α|2
ψ

]
λ=|λ|

eiλry/ελr dλr.

Making the change of variable from λr to λ and using that
T ≡ 1/a gives

Ib =
1

2επ

∫ c

0
|λT/λr |

2ψe−y
√

c2−λ2/ε dλ.

To find Ip, we use the residue theorem to get

Ip = −
i
ε

∑
j

Res
(
φeiyλr/ε

a
, λ = λ j

)
=

∑
j

c jψ(x; iκ j, t)e−κ̃ jy/ε,

where the constants {iκ j} are the simple zeros of a(λ, t), κ̃ j =√
κ2

j + c2,

c j = −
iµ j

ε[∂λr a]λ=iκ j

, φ(x; iκ j, t) ≡ µ j(t)ψ(x; iκ j, t),

and 0 < κ1 < · · · < κN are real.
Using (B1) again gives (9),

G(x, y; t) + Ω(x + y; t) +

∫ ∞

x
Ω(y + z; t)G(x, z; t) dz = 0,

where

Ω(ξ; t) =
1

2επ

∫ ∞

−∞

Reiλrξ/ε dλr +
∑

j

c je−κ̃ jξ/ε

+
1

2επ

∫ c

0
|λT/λr |

2e−
√

c2−λ2ξ/ε dλ.

To get u from G: we differentiate (B1) twice with respect
to x; multiply (B1) by λ2

r/ε
2; and substitute these into (4a)

(where we’ve used that λ2 = λ2
r + c2) to get

eiλr x/ε
(

u(x, t)
6ε2 +

c2

ε2 − 2
d
dx

G(x, x; t)
)

+

∫ ∞

x

[
∂2

∂x2 G(x, s; t) −
∂2

∂s2 G(x, s; t)

+

(
u(x, t)
6ε2 +

c2

ε2

)
G(x, s; t)

]
eiλr s/ε ds = 0.

Therefore,

u(x, t) = −6c2 + 12ε2 d
dx

G(x, x; t)

and

∂2

∂x2 G(x, s; t) −
∂2

∂s2 G(x, s; t) +

(
u(x, t)
6ε2 +

c2

ε2

)
G(x, s; t) = 0.

Appendix C: Determining the amplitude and phase left of the
DSW

To determine A and θ0, we use the method in [20] (see
also [17, sec. 1.7.c]): We substitute (25) into (4a) and use the
boundary values v → φ as x → −∞ and v → ãe−iλx/ε +

b̃eiλ(x+8λ2t)/ε as x → −12c2t. Here, ã and b̃ can be found
through the GLM integral equation from the left or by relat-
ing them to a and b through the asymptotic forms of u for
−12c2t � x � ∞. Then we asymptotically solve for the
eigenfunction φ; this is a WKB-type problem that leads to a
matched-asymptotic problem. From the asymptotic form of
φ, we get A and θ0 in terms of r̃ ≡ b̃/ã.

To get a WKB-type problem for the eigenfunctions: we
substitute (25) and v = φ = φ1eiλx/ε+φ2e−iλx/ε into (4a), break
it into two consistent relations, and keep only the leading-
order terms. This gives

∂φ1

∂x
∼ i

AX1/4

12λε
√
τ

(
ei(θ−η) + e−i(θ+η)

)
φ2,

∂φ2

∂x
∼ −i

AX1/4

12λε
√
τ

(
ei(θ+η) + e−i(θ−η)

)
φ1,

(C1)

where η ≡ 2λx/ε. This has two rapidly varying phases, (θ+η)
and (θ − η). Then we expand φ1 and φ2 as

φi = φi,0(θ, η, X) + τ−1/2φi,1(θ, η, X) + τ−1φi,2(θ, η, X) + · · · ,
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substitute this into (C1), and group terms with like powers of
τ. At O(τ−1/2), we find a resonance or turning-point region
near

1 ±
ηx

θx
= 0 or X ∼ 4λ2,

where secular terms appear. This gives three regions to con-
sider: X � 4λ2, X ∼ 4λ2, and 4λ2 � X � 4c2.

In the left-most region, where 4λ2 � X < ∞, perturbation
theory gives

φ1,0(X) = 0,

φ2,0(X) ∼ exp
{

i
144λ2ε2

∫ ∞

X
A2(z)

√
z
(

1
θx(z)+ηx

− 1
θx(z)−ηx

)
dz

}
,

after matching to φ1 → 0 and φ2 → 1 as x→ −∞. In the limit
as X → 4λ2, we get that

φ2,0(X) ∼ (X − 4λ2)ν(4λ)−2νeI(λ),

where ν ≡ iA2(4λ2)/(18ε) and

I(λ) ≡
i

18λ2ε

∫ ∞

λ

(
ξ2A2(4ξ2)

)
ξ

log
(
ξ − λ

ξ + λ

)
dξ.

In the middle region, where X ∼ 4λ2, we can represent the
solution in terms of parabolic cylinder functions:

w1,0(Y) = e−Ỹ2/4
(
c1U

(
1
2 − ν, Ỹ

)
+ c2U

(
1
2 − ν,−Ỹ

))
,

w2,0(Y) = eỸ2/4
(
c3U

(
− 1

2 − ν, Ỹ
)

+ c4U
(
− 1

2 − ν,−Ỹ
))
,

where U is the parabolic cylinder function (see [41]),

Y ≡ (X − 4λ2)
√
τ ≡ −

x − x0
√

3t
, Ỹ ≡

Yeiπ/4

√
4λε

,

and

c1/c3 = −c2/c4 =
A(4λ2)

3
√

2ε
exp

{
i
(
π

4
−

2λx0 + θ̃0

ε

)}
.

Matching wi as Y → +∞ to φi as X → 4λ2 gives

c3 = e−iπν/4
(

ε

(4λ)3τ

)ν/2
eI(λ) and c4 = 0.

Taking the limit in the other direction, Y → −∞, then gives

φ1,0(Y) =

√
2πν

Γ (1 − ν)
(4λ2 − X)−νe−iπν/2(4λτ)−νεν

× exp
{
− i

2λx0 + θ̃0

ε
+ I(λ)

}
+ O(|Y |−1),

φ2,0(Y) = (4λ2 − X)νe−iπν(4λ)−2νeI(λ) + O(|Y |−1).

For 4λ2 � X � 4c2, perturbation theory and matching to
φ1 → b̃(λ)e8iλ3t/ε and φ2 → ã(λ) as x→ −12c2t gives

φ1,0(X) ∼ b̃(λ)ei8λ3t/ε+J(X;λ) and φ2,0(X) ∼ ã(λ)e−J(X;λ),
where

J(X; λ) ≡
i

144λ2ε2

∫ X

4c2
A2(z)

√
z
(

1
θx(z)+ηx

− 1
θx(z)−ηx

)
dz.

Matching the limits of φ2 as X → 4λ2 and as Y → −∞

gives

ã(λ) ∼ exp
{

c2

λ2

iA2(4c2)
18ε

log
(c − λ
c + λ

)
+

i
18λ2ε

∫ ∞

c

(
ξ2A2(4ξ2)

)
ξ

log
∣∣∣∣∣ξ − λξ + λ

∣∣∣∣∣ dξ
}
.

So, after contour integration,

A2(X) ∼
9ε
π

log
∣∣∣∣ã(
√

X/2)
∣∣∣∣2 = −

9ε
π

log
(
1 −

∣∣∣∣R (√
X/2

)∣∣∣∣2) ,
since X = 4λ2, r̃(λ, t) ≡ b̃(λ, t)/ã(λ) and |r̃(λ, t)| = |R(λ, t)|.
Likewise, matching the limits of φ1 as X → 4λ2 and as Y →
−∞ gives

b̃(λ) ∼

√
2πν

Γ(1 − ν)
eiπν/2εν exp

{
− i

θ0

ε
− 3ν log 2

−
c2

λ2

iA2(4c2)
18ε

log
(c − λ
c + λ

)
+

i
18λ2ε

(
−

∫ λ

c
+

∫ ∞

λ

) (
ξ2A2(4ξ2)

)
ξ

log
(
ξ − λ

ξ + λ

)
dξ

}
.

Using that r̃ ≡ b̃/ã gives (27).

This matches the DSW’s left boundary since taking the lim-
its x → −12c2t and r2 ∼ 2(10c2 − χ)/3 ∼ 2AX1/4τ−1/2 gives
u ∼ 2

√
2c/(3t) cos[16c3t/ε + O(log t)]; see [44] for details.
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