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Abstract

Identifying changes in the parameters of a dynamical system can be vital in many diagnostic and

sensing applications. Sensitivity vector fields (SVFs) are one way of identifying such parametric

variations by quantifying their effects on the morphology of a dynamical system’s attractor. In

many cases, SVFs are a more effective means of identification than commonly employed modal

methods. Previously, it has only been possible to construct SVFs for a given dynamical system

when a full set of state variables is available. This severely restricts SVF applicability because it

may be cost prohibitive, or even impossible, to measure the entire state in high-dimensional sys-

tems. Thus, the focus of this paper is constructing SVFs with only partial knowledge of the state

by using time-delay coordinate embeddings. Local models are employed in which the embedded

states of a neighborhood are weighted in a novel way referred to as embedded point cloud aver-

aging. Application of the presented methodology to both simulated and experimental time series

demonstrates its utility and reliability.

∗ asloboda@umich.edu
† epureanu@umich.edu

1



I. INTRODUCTION

Change in the dynamic response of a system indicates that its parameters have changed

in some way. Thus, by monitoring a system’s dynamic response it is often possible to

identify and characterize any parametric variations the system undergoes. Knowing about

parametric variations can be valuable in diagnostic or sensing applications, particularly when

identifying incipient changes is paramount, as it is in cases of damage detection.

Vibration-based modal methods [1] have been the traditional means of identifying para-

metric variations via the dynamic response. These methods rely on relating measured

changes in modal parameters, such as resonant frequencies or mode shapes, to underlying

variations in the parameters. Frequently employed in mechanical systems, modal methods

are the basis of both dynamic atomic force microscopy (dAFM) and micro-cantilever based

sensing. For these systems, accurate measurements of frequency shifts of vibrating micro-

cantilevers are the basis of successful devices [2–4]. Continued efforts to improve these and

related technologies attest to the general effectiveness of modal methods.

Under certain circumstances, however, modal methods can be less effective. For example,

when a system is significantly nonlinear, when it has a low quality factor, or when multi-

ple simultaneous parametric variations need to be distinguished from one another, other

methods may be preferable. A specific alternative championed here is based on sensitivity

vector fields (SVFs) [5–7], which quantify how dynamical system attractors deform under

parametric variations. Because a SVF consists of a field of vectors distributed in state space,

it can be successful even when a frequency-shift method would fail. To date, SVFs have

been used in conjunction with a variety of dynamical systems [8] and proven to be an effec-

tive method of identifying parametric variations. Carefully designed nonlinear feedback can

further adjust a system’s sensitivity to the parametric variations of interest.

Although SVFs have been successfully employed in conjunction with data from both

simulations and experiments [9], previous SVF research has been limited to systems where

a full set of state variables is accessible. In all but the simplest real systems, this kind of

complete access is impossible. For some systems, measuring certain dynamical variables

may be difficult. For others, it may be cost prohibitive to measure the full state because

the system has a large dimension. For these kinds of systems, it is typical to have records

of only a few state variables in the form of one or more time series, a time series being a
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sequence of scalar data points measured at successive times. So long as the system has a low-

dimensional attractor, further analysis is feasible. Previous research concerned with methods

of reconstructing dynamical system attractors when only time series data are available has

shown reconstruction is possible using an embedding. The most common form is a time-

delay coordinate embedding, in which the embedded vectors are composed of individual

time series observations separated by a fixed delay time. The mathematical basis of time-

delay coordinate embedding has been rigorously established [10–13] and several texts [14, 15]

illustrate methods for performing such reconstructions.

The focus of this work is creating SVFs within the reconstructed state space established by

a time-delay coordinate embedding of time series data. Specifically, for an initial condition

in the reconstructed space, it is necessary to determine two future embedded states: one

for the system retaining the nominal set of parameters, and a second for the system having

some parametric variation(s). The difference between these two future states is defined

as an embedded sensitivity vector (eSV). A collection of eSVs across the entire attractor

is an embedded sensitivity vector field (eSVF). Thus, the fundamental problem involved

in constructing eSVFs is one of prediction. Making predictions using embedded nonlinear

time series is an established research area, and we draw on the previous body of work [16–

19]. Typically, we choose initial conditions that are on the nominal attractor so that only

the future state of the varied system needs to be predicted. Making a good prediction

then requires gathering neighborhoods of states for the varied system surrounding a given

initial condition belonging to the nominal system and constructing local models to fit these

neighborhoods. Once an eSV is estimated, it must be validated to ensure its accuracy. This

is accomplished by requiring accurate predictions of near-neighbor surrogates, checking local

modeling coefficients, and ensuring the correct linearity and proportionality of eSVs that are

generated by known parametric variations of different magnitudes. A method of quantifying

the error in eSV predictions based on local modeling is outlined for cases where the equations

of motion of the system are known. Applications of the methodology to various simulated

time series, including series for a Duffing oscillator and for the Lorenz attractor demonstrate

the effectiveness of the technique. These systems are also used to explore how additive

noise influences the results. Further application to an experimental time series generated

by a Chua’s oscillator demonstrates how the methodology can be applied to a real, physical

system.
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II. EMBEDDED SENSITIVITY VECTOR FIELDS

A. SVF Definition

A SVF is a collection of vectors that capture how a dynamical system attractor deforms

as a result of a given parametric variation. The individual SVs making up a SVF are con-

structed by sampling trajectories of nominal and varied systems as they diverge over time.

Two trajectories that are initially coincident in state space but differ by some parametric

variation will evolve differently. By sampling these trajectories a time ∆T after their co-

incidence, a SV is generated that connects the sampled point on the nominal attractor to

the sampled point on the varied attractor. This vector quantifies the divergence of the two

trajectories. It depends on the underlying dynamical system, the nature of the paramet-

ric variation, and the evolution time ∆T . For short ∆T , the SV will be proportional to

the parametric variation. Thus, by obtaining SVFs corresponding to several known para-

metric variations, a set of basis vectors can be constructed against which further unknown

parametric variations can be compared, allowing them to be identified.

More mathematically, consider a dynamical system described by the flow ẋ = f(x, p, t),

where x is the state vector, and p is a system parameter that can vary. Using a Taylor series

to develop a variational equation about the nominal trajectory x(t) = xo(t) and nominal

parameter value p = po and retaining only the linear terms results in

˙δx(t) = A(t)δx(t) + b(t)δp , (1)

where A(t) =
∂f

∂x
(t)

∣

∣

∣

∣

x=xo

p=po

, (2)

and b(t) =
∂f

∂p
(t)

∣

∣

∣

∣

x=xo

p=po

. (3)

Here, the state variation (from the nominal trajectory) is represented by δx and the pa-

rameter variation (from the nominal parameter value) is represented by δp. If Eq. (1) is

integrated over the evolution time ∆T , the result is an equivalent map

δx(t +∆T ) = Φ(t +∆T, t)δx(t) + q(t+∆T )δp, (4)

where the state transition matrix for the dynamical system Φ, depends only onA(t). Trajec-

tory divergence, expressed in the state variation δx(t+∆T ) that develops over the evolution
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time ∆t, can be interpreted as the sensitivity vector q(t + ∆T )δp when δx(t) = 0 at the

initial time (that is, if the trajectories are truly initially coincident at time t). In general, q

will depend on both A(t) and b(t). The linearity of Eq. (4) highlights the fact that a specific

parametric variation will elicit a proportional change in the generated SVF. This propor-

tionality is what enables quantification of parametric variations through the comparison of

newly generated SVFs to known, reference SVFs.

B. eSVF Definition

Consider again the flow ẋ = f(x, p, t), where the state is given by x = [x1 x2 . . . xn]
T ,

with n being the dimension of the system. In its simplest form, performing a time-delay

coordinate embedding of the flow involves sampling a single state component and then

constructing time-delay coordinate vectors having the form

s(t) = [x∗(t) x∗(t− τ) . . . x∗(t−mτ)]T , (5)

where ∗ indicates a single state of the system (from the total of n states), τ is the delay

time, and m is the number of time-delay coordinates. It has been proven [13] that m ≥ 2dA

is a sufficient condition to reconstruct an attractor of dimension dA, although the necessary

dimension may be less. In this time-delay coordinate embedding space, the definition of an

eSVF is similar to that of a SVF in ordinary state space, but what is measured is time-delay

coordinate variation δs rather than state variation δx. Time-delay coordinate variation

is variation solely in the component of the state x∗ selected for constructing the time-

delay coordinate vectors. Figure 1 shows the flow and its variation for a two dimensional

embedding in x∗, illustrating graphically how the time-delay coordinate variation has the

general form

δs(t +∆T ) = [δx∗(t+∆T )δx∗(t− τ +∆T ) . . . δx∗(t−mτ +∆T )]T . (6)

In the embedding space, time-delay coordinate vectors are guaranteed to have a map of

the form s(t+∆T ) = H(s(t)), where H depends on ∆T (which we assume is some multiple

of τ) and p. This means we can define an eSV q∗δp as

δs(t +∆T ) =
∂H

∂s
(t +∆T, t)

∣

∣

∣

∣

s=so

p=po

δs(t) + q∗(t+∆T )δp, (7)
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FIG. 1. Consider a flow with two state variables x1 and x2 embedded two dimensionally in x∗.

This figure illustrates the required initial coincidence of the nominal and varied trajectories, and

the variations δx∗ at later times which comprise an eSV.

where q∗(t+∆T ) =
∂H

∂p
(t+∆T, t)

∣

∣

∣

∣

s=so

p=po

. (8)

Note that one can numerically compute the eSVs using Eq. (4) when the state space and

the time-delay embedding space have the same dimension and the equations for the original

flow ẋ = f(x, p, t) are available. This idea is further developed in Section III E in the context

of eSV validation.

In practical cases, one is unlikely to know the function H, and must rely on some form of

modeling to generate eSVs. The natural choice is to use local modeling, where neighborhoods

of states are collected that serve as analogues for the initial conditions of interest. The

future images of these states, used in conjunction with the local modeling, allow unknown

trajectories to be predicted.

III. METHODOLOGY

There are four steps to generate an eSV for a given initial condition drawn from the

nominal system’s data set, namely:

1. Gather a neighborhood of nearby states from the varied system’s data set.

2. Adjust the size of the neighborhood to optimize its accuracy in making predictions.

3. Use local modeling in conjunction with the resized neighborhood to make a prediction

of the varied system’s trajectory beginning at the given initial condition.
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4. Take the difference between the varied trajectory (predicted by local modeling) and

the nominal trajectory (known) in order to construct an eSV.

This process of eSV construction is illustrated in Fig. 2.

Once eSVs have been constructed, they are validated. There are three steps in this

validation, namely:

1. Rank eSV neighborhoods based on the distance between the initial condition and the

nearest state of the varied system along with the error in predicting that state’s future

trajectory.

2. Examine the coefficients resulting from the local modeling used to generate a given

eSV and discard those eSVs whose coefficients are poor. For example, discard all

neighborhoods when any coefficients are larger than 1.

3. If the eSVs are being used to build up basis vectors for future testing (and hence have

known parametric variations), check their colinearity and proportionality in conjunc-

tion with the eSVs of other calibration sets.

This process of eSV validation is also illustrated in Fig. 2.

Below some important details regarding both the eSV construction process and the eSV

validation process are provided.

A. Local Modeling using ePCA

The question of how to effectively predict nonlinear time series using local models has

been studied by several authors [16, 18, 19]. Global approaches for nonlinear time series

prediction have also been proposed, including methods based on radial basis functions [17].

However, global methods are more difficult to implement and less likely to give accurate

results. Thus, our focus is constructing eSVs using local models exclusively, specifically

using embedded point cloud averaging (ePCA) (similar to the original PCA [7]).

For an initial condition on the nominal attractor, ePCA involves solving an underdeter-

mined problem involving the neighboring embedded states from the varied data set given

by




1

xt
k,center





m+1×1

= Xt
kα , (9)
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FIG. 2. The process of generating and validating eSVs that are suitable for analyzing parametric

variations.

with α =
[

α1 . . . αn

]T

, (10)

and Xt
k =





1 1 . . . 1

xt
1 xt

2 . . . xt
n





m+1×n

. (11)

Here xt
k,center is an initial condition of interest on the nominal attractor (i.e. the center of

neighborhood k at time t), and α is a vector of unknowns. Xt
k holds the n embedded states

from the varied data set in neighborhood k, and m is the embedding dimension. This is the

original PCA formulation [7]. For ePCA, we enforce the additional condition that

n
∑

i=1

αix
t
i,rx

t
i,s = xt

center,rx
t
center,s, ∀ r, s = 1, . . . , m (12)

where xt
i,s refers to the s-th component of the measured embedded state xt

i. Solving Eqs. (9)

and (12) together in the least-norm sense determines the weights each measured embedded

state should be given so that their weighted average matches the initial condition as closely

as possible while also minimizing quadratic cross terms.
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Minimizing the terms in Eq. (12) minimizes the second order terms in the Taylor series

expansion Eq. (7). This is important and can improve eSV accuracy. A (future) prediction

at time t +∆T can then be made using the previously determined α by calculating

xt+∆T
k,center = Xt+∆T

k α, (13)

with Xt+∆T
k =

[

xt+∆T
1 xt+∆T

2 . . . xt+∆T
n

]

. (14)

Here Xt+∆T
k holds (future) states that correspond to the embedded states in the initial

neighborhood k at time t+∆T . The eSV q is given by the difference between future points

on the nominal and varied trajectories, i.e. the known nominal system trajectory known

and the varied system trajectory predicted by the model. That is

q = δx = yt+∆T
k,center − xt+∆T

k,center (15)

where yt+∆T
k,center is the predicted embedded future state of the varied system and xt+∆T

k,center is

the known embedded future state of the nominal system.

More typical linear (first-order) approximations found in the literature [19] have the form

[Xt+∆T
k ]T = [Xt

k]
Tβ + ǫ, (16)

with β =











β1,1 . . . β1,m

...
...

...

βm,1 . . . βm,n











. (17)

Here, β is, in general, a collection of vectors of unknowns, and ǫ represents error terms.

Solving this overdetermined system for β in the least-squares sense, and then using the β

vector in conjunction with an initial state allows computation of a predicted (future) state

at t + ∆T . Using this general framework, more accurate predictions may be possible by

using higher-order models [20], but these quickly require a large number of neighborhood

points, as the required coefficients increase as m(s + m)!/s!m!, where m is the embedding

dimension and s is the order of the model. Related methods with additional complexities

such as filtering [21] or methods which avoid a least-squares solution [22] have also been

proposed.

The primary advantage of ePCA over these other methods is that the α vector provides

a metric that can be used to judge the relative contribution of each neighborhood point in

constructing eSVs. Different magnitudes in the α entries can indicate a poor neighborhood

that will generate an inaccurate eSV.
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B. Neighborhood Sizing

Once a neighborhood of nearby states from the varied system’s data set have been gath-

ered, the closest of these states is sequestered as a surrogate for the initial condition. Pre-

dictions are made for this surrogate using local modeling in conjunction with neighborhoods

of various sizes to determine what neighborhood size to use when making a prediction from

the actual initial condition. Because we know the future (embedded) state of the surrogate,

it is easy to determine what neighborhood size results in the most accurate prediction of its

future trajectory.

This optimal neighborhood sizing capability is incorporated into the algorithm in two

different ways. The first is suitable for cases where there are a large number of measured

embedded states. Using the points closest to the initial condition, one can set up a series

of increasing radii around the initial condition and consider the accuracy of predictions

based on the neighborhood of embedded states contained within each radii. The radius

with the lowest prediction error is selected for making predictions from the actual initial

condition. The second way, appropriate when data are sparser, eschews the need for radii and

simply drops the embedded state furthest from the initial condition in making consecutive

predictions. One again chooses the neighborhood that results in the minimum prediction

error.

C. Validation

To avoid regions of the state space giving poor eSVs, one can calculate the distance

between the surrogate embedded states and the initial condition of interest. Then, one

can rank eSV generating neighborhoods according to the product of this distance and the

prediction error. Thus, close surrogate embedded states with good predictions are highly

ranked whereas neighborhoods with surrogates that are distant or poorly predicted are not.

This helps to avoid neighborhoods with especially bad predictions or disparate state space

structure.

When the state space is highly structured, as is the case for many chaotic attractors,

an initial condition that lies on the attractor of the nominal data set likely will not lie

on the attractor of the varied data set. This occurs, for instance, when the parametric
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variation is large enough to significantly deform the varied attractor with respect to the

nominal attractor. Simply using the neighborhood of embedded states in the varied set that

is closest to the initial condition could lead to an incorrect eSV in this case because the

selected neighborhood does not provide reasonable analogues for the initial condition.

In general, the ranking methodology places the worst performing neighborhoods near the

bottom of the ranking. However, there is still considerable variability in eSVF accuracy for

highly ranked neighborhoods so it is not sufficient in and of itself. The method’s value lies

in the fact that it quickly provides a list of reasonably good neighborhoods, and thus can be

used to save time when checking for proportionality (discussed next) by providing a basis

for limiting the number of neighborhoods that need to be checked in this subsequent stage.

The second validation of constructed eSVs is ensuring reasonable neighborhood coeffi-

cients. The α coefficients for successful eSVs must all be less than 1 for the eSV to meet

the requirements of this test. This ensures that all of the states in the neighborhood are

contributing relatively equally in predicting the future trajectory.

The third validation of constructed eSVs is a proportionality check (in conjunction with a

colinearity check). It only applies to eSVs for which we know the corresponding parametric

variations, such as those generated to serve as part of a basis set. The proportionality check

requires eSVs meet the linearity requirement of Eq. (7). That is, any change in a given

parameter perturbation δp should elicit a proportional change in the magnitude of the eSV.

Checking proportionality requires having at least two different parameter perturbations for

each parameter of interest available when generating SVFs belonging to the basis sets. The

proportionality check can be used to reduce the error in the acceptable eSVs to very low

levels for noiseless data.

D. Combination

Once a collection of validated eSVs is obtained, one can combine them into an eSVF

in the form of a column vector of individual eSVs. If one is concerned with identifying

only a single parameter, simply examining a test vector’s proportionality to this eSVF can

determine the unknown variation. However, to identify linearly independent changes in the

attractor that occur under multiple simultaneous parameter variations, proper orthogonal

decomposition (POD) is required [5–9]. When different eSVFs corresponding to several
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different parameter variations are collected as column vectors, they can be used to form

a matrix Q. The correlation matrix C = QQT can then be constructed. The dominant

eigenvalues of the correlation matrix indicate the number of linearly independent parameter

changes that can be identified and the corresponding eigenvectors provide the basis for doing

so.

E. Measuring Prediction Error

To determine the accuracy of eSVs, it is necessary to have some means of determining

eSV error. When predictions are made for a single time series, it is typical to report the root

mean square (rms) prediction error for out-of-sample data. This means that while most of

the time series is used as a training set to determine the parameters to be used in the local

modeling, the remainder of the series is sequestered to serve as a test set. This provides an

independent repository of states for which predictions can be made using local models, but

for which one also knows future states exactly. To determine the modeling error, one simply

compares model predictions to known future states.

However, in constructing eSVs, we are making predictions for initial conditions on the

nominal attractor using data from the varied attractor. This means that we have no test

set to sequester. Thus, for cases when time series data alone is available, it seems that

estimates of an eSVF’s efficacy must be based solely on its ability to identify parameter

variations accurately. However, when generating time series data from flow equations, there

is an advantage in that the variables of the dynamical state that are not being embedded

(and that would normally be unknown) can be retained. Having knowledge of these normally

hidden state variables allows eSVs to be checked analytically.

An example serves to illustrate the methodology. Consider a two dimensional dynamical

system with a state x = [x1 x2]
T that is also embedded in two dimensions using the x1

variable. One can rewrite Eq. (1) as





˙δx1

˙δx2



 =





∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2









δx1

δx2



+





∂f1
∂p

∂f2
∂p



 δp. (18)
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The equivalent of Eq. (4), the map involving the state transition matrix, is then given by




δx1(t+ τ)

δx2(t+ τ)



 =





φx1x1
φx1x2

φx2x1
φx2x2









δx1(t)

δx2(t)



+





bx1

bx2



 δp. (19)

Here, the time t corresponds to the initial condition in the embedded state, and the time

t + τ corresponds to a future state, which occurs at a time lag τ later. Since both the

nominal and the varied trajectories are required to have the same initial embedded state,

one has a boundary value problem, as δx1(t) = δx1(t+ τ) = 0, in Eq. (19). One obtains two

equations for variations in the variable x2 as

δx2(t) =
−bx1

δp

φx1x2

, (20)

and δx2(t+ τ) = φx2x2
δx2(t) + bx2

δp. (21)

Integrating Eq. (18) between t and t+ τ in conjunction with the original flow ẋ = f(x, p, t),

allows one to obtain the unknown entries of Eqs. (20) and (21). One integrates once with the

initial conditions [δx1 δx2]
T = [0 1]T and δp = 0 to obtain δx1(τ) = φx1x2

and δx2(τ) = φx2x2
,

and again with initial conditions [δx1 δx2]
T = [0 0]T and δp = 1 to obtain δx1(τ) = bx1

and

δx2(τ) = bx2
. Using these to solve Eqs. (20) and (21), one finds the δx2 values for δx1 = 0 at

t and t+τ . Integrating from either of these states with the known δx2 values and a specified

δp allows the calculation of δx1A and δx1B at t + ∆T and t + τ + ∆T . These quantities,

δx1 and δx2, are the two components of the eSV. Figure 1 illustrates this when x∗ = x1.

Note that this technique for validating eSV predictions only works when the dimensions

of the original state space and the embedded state space are equal and is susceptible to

singularities if the parametric variation is large or the evolution time is long.

IV. TIME SERIES SOURCES

A. Simulated Time Series Sources

Two familiar dynamic systems are used to generate simulated time series for analysis.

The first system is the well-known Lorenz attractor whose equations are given by

ẋ = σ(y − x),

ẏ = −xz + rx− y,

ż = xy − bz,

(22)
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where x, y, and z are state variables, and σ, r, and b are system parameters. For these

parameters, the standard nominal values σ = 10, r = 28, and b = 8/3 were chosen. The

system was sampled every ∆t = 0.05. Collected data consisted of 105 samples for each data

set with 104 samples on the nominal attractor serving as initial conditions.

The second system for demonstrating the approach is a Duffing oscillator whose repre-

sentation is

ẋ = y,

ẏ = −x3 + x− by + A sin z,

ż = ω,

(23)

where x, y, and z are state variables, and A, b, and ω are system parameters. The nominal

parameter values were A = 0.4, b = 0.25, and ω = 1. The system was sampled 100 times

each driving period, and 105 samples for each data set were collected with 104 samples on

the nominal attractor serving as initial conditions.

The data sets generated computationally were also corrupted by having various levels of

Gaussian white noise added to them. This additive noise has the form

xn = sn + ηn, (24)

where xn is the noisy signal, sn is the clean signal, and ηn is the additive white noise included

at each time instant indicated by subscript n. The relative noise level can then be expressed

as
< η2 >

< (s− < s >)2 >
, (25)

with <> representing the mean.

B. Experimental Time Series Sources

The source of experimental time series is a variant on the well-known Chua’s circuit where

the inductor is replaced by an op-amp realization of a gyrator [23]. Fig. 3 shows the layout

of the circuit. The relevant component values are given in Tab. I. These are identical to

those in [23] except the capacitors are adjusted to 10 nF and 100 nF respectively. Within

the gyrator is a variable resistance RL. One of the resistors within the realization of Chua’s

diode is also replaced with a variable resistor RN . Thus, the circuit has three parameters

(R, RL, and RN ) which can be varied (to construct eSVFs) and also be identified.
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TABLE I. Chua’s Circuit Properties

Component Value

R1 220 Ω

R2 220 Ω

R3 2.2k Ω

R4 220k Ω

R5 220k Ω

R7 100 Ω

R8 1k Ω

R9 1k Ω

R 2k Ω pot

RL 2k Ω pot

RN 5k Ω pot

C 100 nF

C1 10 nF

C1 100 nF

During each test, the system was sampled for approximately 106 data points using a

digital to analogue converter having a 16-bit resolution over a ±10V range. A set of 104

samples was drawn from the nominal system to serve as the set of initial conditions.

C. Initial Data Processing

Before any eSVFs can be constructed in an embedded state space, an appropriate dimen-

sion [24, 25] and time-delay [26, 27] with which to construct time-delay coordinate vectors

need to be determined. These two quantities depend on both the dynamical system being

studied and the way in which the system is sampled. Both factors can be determined using

available software, such as the TISEAN package [28] or other specialized programs, such as

those for determining dimension based on false strands [25]. The TISEAN package is also
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FIG. 3. Layout of the Chua’s circuit used to acquire the experimental data.

useful for determining whether or not given dynamics are chaotic via a calculation of the

largest Lyapunov exponent (a system is chaotic when this exponent is positive).

V. RESULTS AND DISCUSSION

A. Simulated Time Series

For the simulated time series, using the data processing techniques in Section IVC, we

found that an embedding dimension m = 3 appears sufficient for the Lorenz system, and

the best time-lag based on mutual information is approximately τ = 3 (∆t = 0.15). For

the Duffing oscillator, we choose either to embed x and y in an m = 2 embedding, treating

the phase information (z) as known, or to separately fully embed in a m = 3 dimension

embedding. For the Duffing system, the appropriate time delay is approximately τ = 10.

The choice of time-delay is a critical factor in constructing eSVs. If the time-delay

selected in the case of the Lorenz attractor is not optimal according to the first minimum of

the mutual information, the error in eSV magnitudes increases significantly, in some cases

doubling versus the error at the optimal time-delay.

With embedding and time-delay determined, one can apply the proposed methods to

construct embedded eSVs. An example of such a construction is shown in Fig. 4. The

states indicated by small o’s represent varied trajectory points while the nominal trajectory
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FIG. 4. An example of a good SV prediction for the Lorenz attractor. The large O represents

the nominal trajectory; small o’s indicate the varied data in the neighborhood nearby. The ×

represents a prediction of the varied trajectory via local modelling and the � via semi-analytical

methods. Coincidence of the × and � indicate a good prediction.

is indicated by the large O. The semi-analytical prediction of the varied trajectory based

on the state transition matrix formulation is indicated by the �, while the prediction of the

local model is indicated by ×. A coincident � and × indicate an accurate prediction. A 1%

variation in σ is being captured by this eSV for the Lorenz attractor.

The Lorenz system affords one the opportunity to compare the locations of initial con-

ditions which are appropriate for constructing eSVs (as determined by the process outlined

in Section III) with the locations of initial conditions generating low error eSVs (as deter-

mined via the analytical methodology outlined in Section III E). Figure 5 illustrates one

way to make this comparison. On the left, validated eSV initial conditions for 1% and 2%

variations in σ are indicated by the darker points; the remainder of the initial conditions

are shown by the lighter points. We consider the eSV validated if its proportionality is

within 5% of the expectation. On the right, the same sets of initial conditions are shown,

but in this case they are darker if the error in constructing a vector corresponding to 1%

variation in σ is less than 10% and lighter otherwise. Here we are making predictions for

∆T = 9. The similarity between the two plots confirms the methodology we have outlined

for validating eSVs does select the eSVs with the lowest error. Moreover, these plots show

that the distribution of low error / successfully validated eSVs is non-uniform across the

attractor, often being concentrated in bands or clusters based on the deformation. Careful
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FIG. 5. Initial conditions used in generating eSVs for the Lorenz data; darker points indicate valid

eSVs (left). The same set of initial conditions; darker points indicate eSVs having less than 10%

error (right).

tightening of the proportionality requirement in the validation step will reduce the number

of acceptable initial conditions but those that remain will generally produce eSVs with less

error. Similar results hold for the Duffing oscillator, and when one only embeds two of the

state vectors and retains the phase as additional information, the average eSV magnitude

prediction error is generally lower.

With both surrogate ranking and proportionality validation one can consistently generate

eSVFs with low error in low noise environments. These accurate eSVFs allow for excellent

parameter reconstructions. For example, in the case of the Lorenz attractor after having

collected initial eSVFs for changes in σ, r, and b of 1% and 2% one can perform the recon-

structions shown in Tab. II. These required the calibration eSVs to have a proportionality

within 5% of the expectation based on the specified parameter variations. The eSVs were

recorded for an evolution time of one time step (∆T = 1).

These results demonstrate the ability to make good predictions of parameter variations

in this system, even when they occur simultaneously. The case where both parameters are

changed by 3% also shows that even in cases where one extrapolates beyond the eSVFs

collected initially (here validations were performed only up to 2%) one can still generate

good results.

The accuracy of these types of parameter variation predictions is affected by several

factors. The first of these is the level of proportionality required to validate calibration

vectors. Figure 6 illustrates how tightening the proportionality requirement influences the
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TABLE II. Simulated Time Series Parameter Reconstruction

Case Parameter Variation (%) eSVF Prediction (%)

1
σ 1.50 1.47

r 0.00 0.01

2
σ 0.00 0.04

r 1.50 1.65

3
σ 1.50 1.46

r 1.50 1.62

4
σ 3.00 2.97

r 3.00 3.18
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FIG. 6. Number of initial conditions validated for eSV construction (out of 103) (left). Predictions

of the parameter variations (right). Solid line corresponds to 5% proportionality, dashed line

corresponds to 2% proportionality, dashed-dotted line corresponds to 1% proportionality.

predictions over a range of different evolution times. Here the actual values of the variations

are −0.15 in σ, −0.2 in b and 0 in r. It is obvious that as the proportionality requirement

is tightened, the predictions generally improve, markedly from 5% to 2% and only slightly

from 2% to 1%. The number of initial conditions that are considered valid also declines.

Figure 6 also demonstrates that the length of the evolution time ∆T can have a large

effect on eSV accuracy. If this time is too short, the eSVs will have small magnitude and

will be prone to large error for any small errors in the individual time series predictions. For

large times, a dynamic system that is chaotic will lose predictability and the error will again
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FIG. 7. Number of initial conditions validated for eSV construction (out of 103) (left). Predictions

of the parameter variations (right). Solid line corresponds to 105 points in time series, dashed line

corresponds to 106 points.

be large. Our predictions of b with a 5% proportionality requirement become inaccurate for

∆T > 10 because a few of the initial conditions that pass the proportionality test generate

eSVs that are in error. This suggests that it is prudent to make variation predictions over

several different ∆T values and look for a consistent result before drawing any conclusions

about how parameters may have changed.

A third factor affecting the accuracy of parameter predictions is quantity and density

of the time series themselves. Having more data from which to construct a local model

about a given initial condition can lead to an improvement in the predictions. The results

are more subtle, but Fig. 7 shows how increasing the number of points in the time series

from 105 to 106 can slightly reduce some of the variability in the variation predictions. The

proportionality enforced for this plot was 2%.

The error in embedded eSVs is also significantly influenced by noise. To investigate

this, noise was added to the simulated time series as described in Eq. (24). The levels

added ranged from 0.0001 to 0.1. For levels of noise 0.0001 and below, errors in eSV

magnitude were not significantly influenced. However, for noise around 0.001 the variation

prediction began to be degraded. For higher levels of noise it was often impossible to find

any initial conditions that generated eSVs meeting the proportionality requirements. This

suggests that minimizing noise in any experimental system is very important in order to

be able to construct eSVs. It is possible that by predicting both the future points on

the nominal trajectory as well as on the varied trajectory (rather than just accepting the
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TABLE III. Simulated Time Series Parameter Reconstruction With Noise

Noise Level Parameter Variation eSVF Prediction

0

σ -0.15 -0.149

b -0.20 -0.191

r 0.00 0.001

0.0001

σ -0.15 -0.144

b -0.20 -0.194

r 0.00 -0.001

0.001

σ -0.15 -0.132

b -0.20 -0.127

r 0.00 -0.008

nominal trajectory data at face value) the impact of noise could be further reduced through

the effects of neighborhood averaging, but this has not been explored here. Table (III) shows

the impact of noise on eSV parametric variation reconstruction for ∆T = 3.

B. Experimental Time Series

The investigation of eSVs using time series data generated by simulated systems shows

that the methodology laid out for eSV construction is reliable. However, it is also important

to be able to achieve similar results with experimental data to confirm that embedded

SVF construction is applicable to real systems. For this reason, we examine the effects of

parametric variation by adjusting R and RL in Chua’s circuit.

Applying the techniques for determining state dimension and time-delay, we found that

the experimental data should be embedded in a state space having m = 3 and a time-delay

of τ = 9. The reconstructed attractor using these parameter values is shown in Fig. (8).

Once initial calibration eSVFs are taken about the nominal parameter values one can

perform the reconstructions shown in Table IV. The fact that the data has low noise (the

noise to signal ratio could be as low as 10−10 based on the resolution of the analogue to

digital converter) no doubt contributes to the predictions being accurate.
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FIG. 8. A 3-dimensional projection of the Chua’s oscillator attractor.

TABLE IV. Chua’s Circuit Time Series Parameter Reconstruction

Case Parameter Variation (δΩ) eSVF Prediction (δΩ)

1
R 32 34.3

RL 0 0.3

2
R 0 3.9

RL -47 -44.2

3
R -33 -27.2

RL 48 49.8

VI. CONCLUSIONS

This paper presents a methodology for the construction of SVFs in time-delay embedded

coordinates based on local linear modeling of time series. A specific method for weighting

neighborhood states in local modeling called ePCA was introduced. This method minimizes

quadratic cross terms in an effort to improve eSV accuracy. Local modeling proved to

be a reliable means of constructing eSVFs and identifying parametric variations for both

simulated and experimental time series. A technique for checking the accuracy of these

SVF predictions was also presented for cases where the system equations are known and

the dimension of the non-embedded state and the embedded state are equal. Being able

to construct SVFs in embedded coordinates will make the application of SVFs to a wide
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variety of physical systems feasible, even when it is not possible to measure the complete

state.
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