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In social animals, the presence of conflicts of interest or multiple leaders can promote the emer-
gence of two or more subgroups. Such subgroups are easily recognizable by human observers, yet,
a quantitative and objective measure of group fragmentation is currently lacking. In this paper,
we explore the feasibility of detecting group fragmentation by embedding the raw data from the
individuals’ motions on a low-dimensional manifold and analyzing the topological features of this
manifold. To perform the embedding, we employ the ISOMAP algorithm, which is a data-driven
machine learning tool extensively used in computer vision. We implement this procedure on a data
set generated by a modified à la Vicsek model, where agents are partitioned in two or more subsets
and an independent leader is assigned to each subset. The dimensionality of the embedding mani-
fold is shown to be a measure of the number of the emerging subgroups in the selected observation
window and a cluster analysis is proposed to aid the interpretation of these findings. To explore the
feasibility of using this approach to characterize group fragmentation in real time and thus reduce
the computational cost in data processing and storage, we propose an interpolation method based
on an inverse mapping from the embedding space to the original space. The effectiveness of the
interpolation technique is illustrated on a testbed example with potential impact on the regulation
of collective behavior of animal groups using robotic stimuli.

PACS numbers: 89.75.Fb, 02.70.-c, 05.65.+b, 87.23.Cc

I. INTRODUCTION

The coordinated motion of fish schools [1, 2], flocks
of birds [3, 4], and swarms of insects or bacteria [5, 6]
are all examples of collective behaviors in social animals.
Elucidating the mechanisms that underlie such coordi-
nated movements is the subject of considerable ongoing
research [7–11]. Generally, collective behavior is asso-
ciated to the formation of a sole self-organized group
in which all members behave like an egalitarian “su-
perorganism” [12]. However, a number of observations
demonstrate the coexistence of a landscape of ordered
subgroups characterized by different objectives and pos-
sible conflicts of interest [13–15]. The existence of such
group partitions and their behavior can be readily distin-
guished by a human observer, yet a quantitative method
for their characterization from raw data is to be estab-
lished.
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Beyond individual variations, the fragmentation of the
group into smaller subgroups may also be elicited by the
presence of multiple leaders differentially affecting the
response of conspecifics [15–18] or even the presence of
robotic stimuli administered to regulate the collective re-
sponse of social animals [19–25]. In these latter applica-
tions, an open problem is to device control strategies for
robots to take decision in real time based on the animals’
collective response without either tracking the motion of
each individual, or inferring their response from an un-
derlying mathematical model.
Here, we provide a data-driven dynamical systems

framework for characterizing group fragmentation in so-
cial animals based on methods from machine learning
and computer vision. While numerical simulations have
played a defining role in modeling and understanding
collective behavior of multi-agent systems [3, 4, 26–30],
these analyses generally rely on global observables that
are defined on the basis of a priori knowledge of group be-
havior and often require explicit tracking of each agent.
In the proposed framework, we seek to characterize col-
lective behavior from raw video data, while minimizing
the input from the experimenter in the data classifica-
tion. This work builds on the recent findings presented
in [31], wherein it is demonstrated that the formation of a
unique group in the system corresponds to the existence
of a nearly one-dimensional manifold embedding the raw
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data of individuals’ motion. Computer simulations of a
system of particles interacting in a modified à la Vicsek
model [27] and experimental data of fish schooling are an-
alyzed therein through the ISOMAP algorithm to extract
the sought low-dimensional structures. The ISOMAP al-
gorithm is an easy to implement dimensionality reduction
method, which finds applications in computer vision and
machine learning [32–34]. Differently than [31], here we
focus on the emergence of multiple coexisting subgroups
and we seek to establish a toolbox of analytical tools
to transition the approach to practical scenarios wherein
available data is limited in quality and size.

As a reference model for our analysis, we consider a
system of agents with à la Vicsek interaction rules [27],
wherein agents’ grouping is manifested by individuals
sharing common headings. Such framework is extensively
studied in the literature [30, 35–39] and finds application
in modeling schools of fish, correlated motion of pedes-
trians, flocks of flying birds, and bacterial colony growth
[4, 17, 40–43]. Differently from the original Vicsek model,
but preserving the same interaction rules, we allow for
the presence of heterogeneous agent subsets that do not
interact with each other. This feature, together with the
presence of multiple leaders, is responsible for the forma-
tion of coexistent subgroups in the system against inher-
ent noise in the individual dynamics. We show how the
dimensionality of the embedding manifold detected by
the ISOMAP algorithm can be considered as a measure
of the number of subgroups in the system for the selected
observation window. Specifically, in the presence of low
noise, agents’ headings cluster along the leaders’ head-
ings and we validate the hypothesis that the manifold
dimensionality equals the number of leaders in the sys-
tem through the analysis of the polarization [27] of each
agents’ subset. As noise in the system is increased, the
ISOMAP algorithm produces embedding manifolds of in-
creasing dimensionality which corresponds to the forma-
tion of ephemeral subgroups in the system. The forma-
tion of such subgroups is further detected by the kmeans
clustering algorithm [44], which allows for a further clas-
sification of the dynamics taking place in the system.

Motivated by potential application to the robotic mod-
ulation of collective behavior, for which minimizing the
size of the data set is of practical relevance, we propose
an interpolation method based on an inverse mapping
from the embedding manifold to the original space. The
mapping uses linear combination of translates of a radial
basis function [45]. We demonstrate the effectiveness of
this approach on a testbed engineering example, where
the system is partitioned into two subsets and one of the
leaders is controlled to minimize fragmentation, that is,
to merge the agents into a sole group. The developed in-
terpolation method is shown to be effective in correctly
detecting the variation in the system fragmentation from
the analysis of a small data set acquired by the controlled
leader.

The outline of the paper is as follows. In Section II,
the interaction model for the multi-agent systems is de-

scribed. In Section III, the ISOMAP algorithm is intro-
duced and shown to be an effective tool for subgroups’
detection. In Section IV, an inverse mapping is presented
and the analysis is extended to the case of small data sets.
Conclusions are drawn in Section V.

II. MODEL OF THE MULTI-AGENT SYSTEM

We consider a system of interacting agents moving in
a two-dimensional domain with a constant speed s. The
domain is a square of side length L ∈ R+ and we select
periodic boundary conditions. We assume that agents are
partitioned into M leaders and N followers, with agents
1, . . . ,M being the leaders. Followers are further parti-
tioned into M disjoint subsets D1, . . . ,DM , with agents
in the j-th subset being assigned to the j-th leader. The
position of the i-th agent at time k ∈ Z+ is given by
xi(k) ∈ C, whose real and imaginary part belong to
[−L/2, L/2] for i = 1, . . . , N + M . The heading of the
i-th agent at time k is denoted by θi(k) and belongs to
[−π, π]. The initial position and heading of the agents
are both taken randomly from a uniform distribution.

The j-th leader moves with a preferential heading ϑj ,
for j = 1, . . . ,M , and only influences the dynamics of
the agents in subset Dj , for j = 1, . . . ,M . Followers
update their headings according to the interactions with
their neighbors. Such neighbors include other followers
from the same subset within a distance r ∈ R+, that
is, N j

i (k) = {c ∈ Dj : ‖xc(k)− xi(k)‖ ≤ r}, and the
corresponding leader if it is within a distance rl ∈ R+.
Specifically, if the follower i ∈ Dj is far from its leader,
then its heading at time step k+ 1 is computed by aver-
aging its heading with the headings of the neighbors at
time step k. Namely, we have

θi(k + 1) = arg





∑

c∈{i}∪N j

i
(k)

eıθc(k)



+∆θ,

where ∆θ is a uniformly-distributed random variable
which takes values in [−ηπ, ηπ] with η ∈ [0, 1] and ı is the
imaginary unit. Otherwise, if the corresponding leader is
within the distance rl, then the averaging process also
involves the leader and the corresponding heading θj(k)
is weighted by ω. This process is used to model the in-
fluence of each leader on its followers, that is,

θi(k + 1) = arg





∑

c∈{i}∪N j

i
(k)

eıθc(k) + ωeıθj(k)



+∆θ.

In summary, these two cases can be consolidated in the
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following update rule

θi(k + 1) = arg





∑

c∈{i}∪N j

i
(k)

eıθc(k)

+ ω ind
Lj(k)

(i)eıθj(k)
)

+∆θ, (1)

where ind
Lj(k)

(·) is the indicator function for the neighbors

of the j-th leader, and Lj(k) = {c ∈ Dj : ‖xc(k) −
xj(k)‖ ≤ rl}. The heading of the leaders, instead, is
not affected by the heading of the neighbors. Namely,

θi(k + 1) = ϑi +∆θ, i = 1, . . . ,M. (2)

The position of all agents is updated according to

xi(k+1) = xi(k)+seıθi(k+1), i = 1, . . . , N+M. (3)

We comment that while the proposed approach is spe-
cialized to model (1), the analysis can be adapted to al-
ternative models for multi-agent systems [22, 46–48].

III. SUBGROUPS’ DETECTION THROUGH

ISOMAP

In this section, after a brief review of the ISOMAP
algorithm, we illustrate its effectiveness in detecting the
presence of subgroups in the system.

A. ISOMAP algorithm

The ISOMAP algorithm is a method for computing
a quasi-isometric low-dimensional embedding of a set of
high-dimensional data points [32]. Here, we briefly re-
view the main steps of the algorithm. We consider an
array of n d-dimensional data points with the goal of em-
bedding them on a possibly lower dimensional manifold.
Namely, given a data set Z = {zi}ni=1 ⊂ Rd, we aim at

building a corresponding data set Y = {yi}ni=1 ⊂ Rd̄, em-
bedded in an invariant manifold, and assessing if d̄ ≪ d.
The manifold can be represented through the following
implicit parametrization

µ : Y → Z, (4)

where

zij = µj(yi1, . . . , yid̄), (5)

for i = 1, . . . , n, and j = 1, . . . , d. Here, the second
subscript is used to identify vector components.
The ISOMAP algorithm is based on the classical mul-

tidimensional scaling method (MDS) [49], which is not
applied to the ambient Euclidean space, but rather con-
siders shortest paths along a discrete graph approxima-
tion of the manifold. The main steps of the algorithm
can be summarized as follows:

1. Construct a neighbors graph to approximate
the embedding manifold. We introduce the
graph G = {V , E}: the elements of the set of ver-
tices V = {vi}ni=1 match the data points Z =
{zi}ni=1, while the elements of the set of edges E
are unordered pairs of vertices in the graph. We
assign edges to connect vertices that are either ǫ-
neighbors or ν-nearest neighbors. For instance, we
can build a ν-nearest neighbors graph, consisting of
edges {vi, vj} corresponding to the ν-closest data
points zj to zi, for each i = 1, . . . , n, with respect
to the Euclidean distance in the ambient space,
denoted by dZ(zi, zj). We define Mn ∈ Rn×n as
the matrix encoding the weighted graph of intrin-
sic manifold distances corresponding to the graph
G, whose ij-th entry is denoted by Mn(i, j). For
each edge {vi, vj} ∈ E , we define the distances
Mn(i, j) ≈ dZ(zi, zj) and for all {vi, vj} /∈ E , we set
Mn(i, j) = ∞ to prevent jumps between branches
of the underlying manifold.

2. Compute the graph geodesic matrix approxi-
mating the geodesic of the manifold. This step
can be performed using well-established methods to
compute shortest paths, such as Floyd’s algorithm
[50] for small to medium sized data sets or Dijk-
stra’s algorithms [51] for small to large data sets.
From Mn, we compute an approximate geodesic
distance matrix DM ∈ Rn×n, whose ij-th ele-
ment is the shortest weighted path length between
each vi to vj , being an approximation of manifold
geodesic distances.

3. Approximate manifold distance by ν-nearest
neighbor distance. The distance matrix DM

from step 2) approximates the geodesic distances
of the manifold between zi and zj by the distance
between vi and vj . The accuracy of the approxima-
tion increases with data density. If ν is too large or
data density is too low, then some neighbors could
be on separate branches of the manifold, resulting
in a poor representation of the manifold.

4. Perform an MDS on DM . The only input to
the MDS is DM , that is computed in step 2) from
the input data Z. The outputs are the projective
variables Y in the intrinsic variables.

The outputs of the ISOMAP algorithm are an embed-
ding manifold for the input data set Z and the vector
R of residual variances, which, in turn, quantifies the
proportion of data points not lying on such manifold.
From the norm of the residual variances, we determine
the dimensionality of the embedding manifold that well
approximates Z. If this overall residual variance for di-
mension one is less than 0.05, we say that the embedding
manifold has dimension one. If this is not the case, we
seek for an elbow in this curve. As a quantitative defi-
nition of the elbow location, we select a decrease of the
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residual variance, scaled with respect to dimension one,
to less than 0.05.

B. Subgroups’ detection

In [31], it is shown that the ISOMAP algorithm is ef-
fective in detecting the presence of collective behavior of
animal groups acting as a single superorganism. Here, we
show how ISOMAP can be used for gathering additional
information on the nature of the system dynamics and,
particularly, to learn about group fragmentation. To il-
lustrate our claims, we consider three different scenarios
for model (1), wherein the system is composed of one,
two, or three subsets.
In the following simulations, we acquire the two-

dimensional positions of the agents and implement the
ISOMAP algorithm on their distribution in a discretized
spatial domain: the original domain [−L/2, L/2] ×
[−L/2, L/2] is partitioned into a square two-dimensional
grid of 50× 50 cells, that can be viewed as “pixels of an
image on a screen”. At every time step, the entries of the
1 × 2500 position distribution vector report the number
of agents residing in each cell.
Here, we consider N = 40 followers and we take

L = 50, s = 0.12, r = 1, rl = 2, η = 0.005, and ω = 40.
The length of each simulation is of kmax = 20000 time
steps, while the ISOMAP algorithm is performed on the
last n = 2000 data points ordered in time. With refer-
ence to the steps in Section III.A, we execute step 1) with
11-nearest neighbors and we use Dijkstras algorithm for
performing step 2). For simulations with a single leader,
its preferential heading is π/6. For the case of two lead-
ers, we take ϑ1 = π/6 and ϑ2 = π/3. For three leaders,
we set ϑ1 = π/6, ϑ2 = π/3, and ϑ3 = 4π/3.
As an independent measure of grouping in the multi-

agent system, we introduce the polarization of the m-th
followers’ subset with the corresponding leader:

Polm(k) =
1

|Dm|+ 1

∥

∥

∥

∥

∥

∑

i∈Dm

eıθi(k) + eıθm(k)

∥

∥

∥

∥

∥

(6)

where m = 1, . . . ,M . This quantity ranges from 0 to
1 and is equal to 1 if followers in that subset share the
same heading of their leader. Notably, in the limit of a
large number of agents, the polarization is used to detect
phase transitions [27]. Additional global observables to
describe collective behavior can be found in [24, 52].
When the system is homogeneous, that is, the fol-

lowers’ set is not partitioned into subsets, Figure 1(d)
demonstrates that the dimension of the manifold is one
in agreement with [31]. In this case, all the agents in
the system move with a common heading as evidenced
by the time trace of the polarization in Figure 2(a). In
the presence of two leaders, the two followers’ subsets are
D1 = {1, . . . , 20} and D2 = {21, . . . , 40} and the mani-
fold appears to be sharply two-dimensional, as illustrated
in Figures 1(b) and 1(e). In this case, each followers’
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FIG. 1. (Color online) Two-dimensional embedding manifolds
generated by the ISOMAP algorithm (top) and scaled resid-
ual variance (bottom) for one (left), two (center), and three
(right) leaders and η = 0.005. Residual variances for dimen-
sion one are: 2.20 × 10−5, 0.24, 0.34 for 1, 2, and 3 subsets,
respectively.

0 1 2
0.3

0.7

1.1

104
k

(a)

0 1 2
0.3

0.7

1.1

104
k

(b)

0 1 2
0.3

0.7

1.1

104
k

(c)

FIG. 2. (Color online) Time trace of the polarization for
varying number of leaders and η = 0.005.

subset tracks its leader as illustrated in Figure 2(b). In
the case of three leaders, the followers’ partition is D1 =
{1, . . . , 13}, D2 = {14, . . . , 26}, and D3 = {27, . . . , 40}.
For this system, the proposed methodology indicates the
existence of a three-dimensional manifold corresponding
to three subgroups, see Figure 1(f). Such structure corre-
sponds to each follower tracking its corresponding leader,
as depicted in Figure 2(c). We comment that, whereas
a differentiable manifold is characterized by the presence
of a well-defined tangent space at each point, dynamical
systems can give rise to attractors embedded in branched
manifolds [53]. The latter generalize the notion of differ-
entiable manifolds in that certain points may have singu-
larities. In the case of multi-agent systems that fragment
into distinct subgroups, it could be expected a priori that
a branched manifold may result and, indeed, Figures 1(e)
and 1(f) suggest this scenario. Nonetheless, for the sake
of local modeling, most points are still well described by
a tangent space. Similar practices have been used in the
parallel problem of nonlinear time series prediction [54–
56].
These findings demonstrate a close correspondence be-

tween subgroups’ detection using the proposed data-
driven dynamical system framework and supervised anal-
ysis based on ad hoc global observables when the noise in
the system is limited. Figure 3(b) illustrates findings for
the case of two leaders, earlier considered in Figures 1(b)
and 1(e), when the noise is raised to η = 0.025. Figure
3(b) shows that, as the noise increases, the ISOMAP al-
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FIG. 3. (Color online) Results for simulations involving two
agents’ subsets with η = 0.025: two-dimensional embedding
manifolds generated by the ISOMAP algorithm (left); scaled
residual variance (center); and time trace of the polarization
(right). Residual variance for dimension one is 0.26.

gorithm detects the formation of a larger number of sub-
groups. Indeed, as the noise increases, the elbow in the
residual curve slowly shifts towards larger dimensions.
At the same time, the average polarization of each sub-
set rapidly decreases while displaying larger oscillations
in time. Such oscillations indicate the recurrence of or-
dered states within each subsystem which cyclically arise
and disappear in time [57] and are thus filtered by the
ISOMAP algorithm which operates on the last 2000 time
steps. Thus, the modest increase in the embedding man-
ifold dimensionality is likely to be due to the interplay
of two factors: the presence of two agents’ subsets with
different leaders’ heading and the oscillations inside each
partition due to the presence of noise, which may be re-
sponsible of complex landscapes of headings’ clustering
[57].
To shed further light on the system dynamics while

avoiding the tracking of each agent trajectory, we com-
plement ISOMAP with a cluster analysis executed on the

two-dimensional coordinates {qi}Q(k)
i=1 ∈ R2 of the pixels

identifying the agents on the screen, referred to as “acti-
vated pixels” for brevity, where Q(k) is the total number
of pixels occupied by the agents at time k. In particular,
we seek to infer the process of fragmentation and aggre-
gation within the multi-agent system by analyzing the
time trace of the number of clusters υ∗(k) for the acti-
vated pixels. The implementation is performed by using
the so-called silhouette index [58] while assuming that
υ∗(k) is considerably smaller than the number of agents
in the system, that is, υ∗(k) < c ≪ N +M . To this aim,
the following steps are performed at each time instant k:

1. Execute the kmeans algorithm c−1 times and
analyze intra/inter-cluster distances. For
each tentative number of clusters υ = 2, . . . , c, we
implement the kmeans algorithm [44] to partition

the set {qi}Q(k)
i=1 into υ disjoint subsets with indices

in the clusters C1(k), . . . , Cυ(k). Once these clusters
are assembled, for j = 1, . . . , υ we calculate the av-
erage intra-cluster distance between each activated
pixel i ∈ Cj and the other activated pixels in the
same cluster. Namely, we compute

aji (k) =
1

|Cj(k)| − 1

∑

l∈Cj(k)

l 6=i

‖qi(k)− ql(k)‖ ,

for j = 1, . . . , υ and i ∈ Cj(k). In addition, we com-
pute the minimum average inter-cluster distance
between each activated pixel i ∈ Cj and the ac-
tivated pixels in any other cluster Ch, with h 6= j.
Specifically, we calculate

bji (k) = min
h 6=j







1

|Ch(k)|
∑

l∈Ch(k)

‖qi(k)− ql(k)‖







,

for j = 1, . . . , υ and i ∈ Cj(k).
2. Compute the silhouette width of each ac-

tivated pixel for all clustering trials. For
υ = 2, . . . , c, we calculate the silhouette width of
pixel i in cluster Cj(k) as

Sj
i (k, υ) =

bji (k)− aji (k)

max{aji (k), bji (k)}
,

for j = 1, . . . , υ and i ∈ Cj(k). The silhouette width
of an activated ranges from −1 to 1. Values proxi-
mal to 1 indicate that the average intra-cluster dis-
tance of the activated pixel is much higher than any
of its average inter-cluster distances. On the other
hand, values close to −1 indicate that, for some
cluster Ch(k), with h 6= j, the corresponding aver-
age inter-cluster distance of the activated pixel i is
much higher than its average intra-cluster distance.

3. Determine the optimal number of clusters.
The sought number of clusters υ∗(k) is determined
by solving an optimization problem for the mean
silhouette index as a function of υ, defined as

Sav(k, υ) =
1

υ |Cj(k)|

υ
∑

j=1

∑

i∈Cj(k)

Si
j(k, υ).

Specifically, we solve

υ∗(k) = argmax
υ=2,...,c

Sav(k, υ). (7)

In practice, when the dimension of the embedding
manifold is larger than one, we propose to use a cluster
analysis to garner a further understanding of the system
dynamics without tracking individuals’ trajectories. We
compute the number of clusters υ∗(k) in the same time
window considered for the ISOMAP and then we analyze
the statistical properties of its distribution to identify
the emergence of either temporally-stable or ephemeral
subgroups in the system. Figures 4(a) and 4(b) illus-
trate results from the cluster analysis implemented on
the multi-agent system in presence of two leaders for the
varying noise levels considered in Figures 1(b) and 1(e)
and Figures 3(a) and 3(b), respectively.
As depicted in Figures 4(a), for low noise in the system,

the number of clusters is two for almost all times. This
peaked distribution confirms the consistent fragmenta-
tion of the system in two subgroups. As the noise in
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FIG. 4. (Color online) Comparison of the distribution of the
number of clusters for simulations in presence of two agents’
subsets: η = 0.005 (left) and η = 0.025 (right).

the system increases, the dynamics of fragmentation is
significantly different. In this case, the probability that
the group is organized in two subgroups is much smaller,
about the 8%, while the effect of the noise is to split the
system into three or more subgroups, with the mode of
the distribution being equal to six. Hence, the higher
dimensionality identified by the ISOMAP algorithm, see
Figure 3(b), is well explained by the continuous fragmen-
tation and aggregation of the agents. We comment that
the analysis is unlikely to offer valuable insight on the
formation and disintegration of subgroups, for the Vic-
sek model, in case that the interaction radius r is com-
parable with the domain length L. In this case, agents
would be able to group along certain headings without
spatially splitting into observable clusters as those de-
tected through the mean silhouette index.

IV. ANALYSIS OF SMALL DATA SET

The ISOMAP algorithm, possibly complemented by a
cluster analysis, can be effectively used for subgroups’
detection without the need for tracking the individual
agents’ dynamics. In view of possible control applica-
tions, it is crucial to understand the requirements on
the size of the data set to allow for a proper identifica-
tion of its fragmentation through the ISOMAP algorithm
and establish methodologies for a-posteriori increasing
the data density.

A. Interpolation through inverse mapping

When the data set under analysis is small, the dimen-
sionality detected by the ISOMAP algorithmmay be mis-
leading, as further illustrated in simulations presented
below. Hence, we propose to enrich the data set by: i)
performing a standard interpolation of the data embed-
ded on the low-dimensional manifold to add new points
therein and ii) mapping the newly added points back to
the original space.
The first step can be executed by using linear interpo-

lation, that is, by connecting adjacent data points on the
manifold, say yk and yk+1, with k = 1, . . . , n− 1 through

an interpolating hyperplane. Once such hyperplanes are
constructed for all times, points are added to the mani-
fold by sampling along the hyperplanes with a prescribed
refinement ρ, so that ρ values are added between yk and
yk+1, with k = 1, . . . , n− 1.
The second step requires the construction of an inverse

mapping. We aim at approximating the maps µ1, . . . , µd

in (5) through d mappings

µ̂j : R
d̄ → R, j = 1, . . . , d, (8)

such that

zij = µ̂j(yi1, . . . , yid̄), i = 1, . . . , n, j = 1, . . . , d. (9)

The approximation is performed using linear combina-
tions of translates of a rotationally invariant function,
called radial basis function [45]. Approximation through
radial basis functions is a well-established approach in the
field of learning theory with excellent convergence prop-
erties [59] along with fast computational implementation
[60]. In our interpolation, we consider the multiquadratic

function ϕ(u, α) =
√
u2 + α2, with α ∈ R, which is a con-

ditionally positive definite radial function of order one
[61]. In this context, the approximating function is given
by

µ̂j(ξ, α) =

n̄
∑

i=1

wij(α)ϕ (‖ξ − βi‖ , α) , (10)

for ξ ∈ Rd̄, where wij are coefficients to be estimated
and n̄ ≤ n is the number of reference points β1, . . . , βn̄ ∈
Rd̄ used for the interpolation. Such points are generally
different from the original data points y1, . . . , yn.
Equations (9) and (10) can be rewritten in matrix form

as

Φ(α)W (α) = Z, (11)

where Φ(α) ∈ Rn×n̄ with Φij(α) = ϕ (‖yi − βj‖ , α),
Z = [z1 · · · zn]T ∈ Rn×d, and W (α) ∈ Rn̄×d is the co-
efficient matrix to be estimated. For a selection of the
parameter α, the matrix of coefficients W can be cal-
culated from the pseudoinverse of Φ(α) [62]. Once the
matrix W (α) is computed, all the coefficients in (10) are
available along with the approximating maps (9) which
can be used to calculate new points in the original space
from the refined points on the manifold. We refer to the
data set composed of y1, . . . , yn and these newly added
data points as the “synthetic” data set. Estimating the
local manifold based on fitting hyperplanes to the nearby
observations has a strong background in dynamical sys-
tems theory and specifically in the extensive literature on
time-delay embedding prediction [54–56].

B. Subgroups’ detection in a control example

Here, we analyze the effectiveness of the approximation
technique described above on a testbed control example.
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By control we mean that the followers are divided in two
subsets D1 and D2 and the leader of D1 is controlled to
align the heading of its followers with D2. We assume
that the controlled leader acquires the discretized data
from video recordings and is thus not able to track indi-
vidually the trajectory of the agents. Yet, we hypothesize
that agents belonging to the two subsets can be distin-
guished for control purposes. To model practical limi-
tations in the experimental design, we assume that the
controlled leader possesses finite memory and only 500
frames can be stored and processed. In what follows, we
first describe the control algorithm and then analyze the
system fragmentation through the ISOMAP algorithm
when the only available data are those currently stored
by the controlled leader.
In this control example, we consider the same param-

eters as in Section III, except for the simulation time
which is doubled, that is, kmax = 40000. The preferen-
tial heading of the leader of D2 is ϑ2 = 2π/3, the ini-
tial heading of the controlled leader is ϑ1(0) = π/3, and
η = 0.005. The preferential heading of the controlled
leader is held to ϑ1(0) until the control system is trig-
gered. The controlled leader stores frames every 4 time
steps and executes the cluster analysis in Section III on
them. The control algorithm is triggered at the first time
instant when the controlled leader observes the presence
of two stable clusters. For the selected initial conditions,
the control system is activated at time k0 = 20100 when
the leader identifies the presence of two clusters over 80%
of its observations. For k ≥ k0, the controlled leader up-
dates its heading according to

θ1(k + 1) = ϑ1(k) + ∆θ,

ϑ1(k + 1) = ϑ1(k) + u(k),

where u(k) is the control input. To select the input u(k),
the controlled leader initially estimates the heading of the
agents in the other subset. To this aim, it estimates the
position of the center of mass of the uncontrolled agent
subset in the last two stored frames from the coordinates
of the activated points at time steps k− 4 and k, respec-
tively. Then, the average heading of the agents in the
uncontrolled subset at time k is estimated as

θ̂2(k) = arg (x̂cm(k)− x̂cm(k − 4)) ,

where x̂cm(k) is the estimated location of the center of
mass of the uncontrolled agent subset. The control input
is selected so that the preferential heading of the con-

trolled leader is the average of θ̂2 over the last stored 500
frames. Namely,

ū(k) =
1

500

499
∑

i=0

θ̂2(k − 4i)− ϑ1(k).

Figure 5(a) demonstrates that the controlled leader is
able to accurately track the heading of the other leader
as soon as the control system is activated. The effective-
ness of the algorithm can be evaluated by computing the
polarization for the whole system
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FIG. 5. (Color online) Assessment of the control algorithm
performance: headings of leader 1 (blue solid line) and 2 (red
dashed line) in radians (left); time trace of the polarization
of the whole system (center); time trace of the polarization
for subset 1 (blue solid line) and subset 2 (red dashed line)
(right).
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FIG. 6. (Color online) Scaled residual variance for the
ISOMAP algorithm for the time windows [1 2000] (left),
[18001 20000] (center), [38001 40000] (right) of the control ex-
ample implemented on all the available 2000 samples. Resid-
ual variances for dimension one are: 0.38, 0.23, 0.01 for time
windows [1 2000], [18001 20000], and [38001 40000], respec-
tively.
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This index is designed so that it equals one when all
agents in the system [27], followers and leaders, have the
same heading, that is, when the control objective is at-
tained. Figure 5(b) shows that at the onset of the simu-
lation the multi-agent system is in a highly disorganized
state and eventually behaves as a single group when the
control system is triggered. Notably, when the control
system is activated, two subgroups are present in the
system, corresponding to followers tracking the heading
of the corresponding leader, see Figure 5(c). In other
words, joining a single group entails forming two sub-
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FIG. 7. (Color online) Distribution of the number of clusters
for the control example computed over: the time windows
[1 2000] (left) and the time window [18001 20000] (right).
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FIG. 8. (Color online) Scaled residual variance for the
ISOMAP algorithm executed on varying time windows of the
control example and based on 500 samples obtained through
uniform downsampling. Results in top panels are imple-
mented on a data set of only 500 samples, while findings in
bottom panels use 2000 synthetic samples obtained from the
500 uniformly downsampled data points. For top panels, the
time windows are: [1 2000] (left), [18001 20000] (center), and
[38001 40000] (right) with residual variances for dimension
one equal to 0.92, 0.61, and 0.99, respectively. For bottom
panels, the time windows are: [1 2000] (left), [18001 20000]
(center), and [38001 40000] (right) with residual variances for
dimension one equal to 0.45, 0.34, and 0.01, respectively.

groups which are then merged as the control system is
activated.
To dissect the system dynamics during the whole sim-

ulation time, we execute the ISOMAP algorithm on the
three representative time windows [12000], [1800120000],
and [3800140000]. Figure 6(a) demonstrates that the pro-
posed approach is able to identify the process of group-
ing taking place in the multi-agent system through a di-
mensionality of the embedding manifold equal to five.
The algorithm is also able to detect the formation of
two temporally-stable subgroups prior to the activation
of the control system through an embedding manifold of
dimensionality equal to two, see Figure 6(b). The cluster
analysis presented in Figures 7(a) and 7(b) further illus-
trates the fundamental differences between the state of
the multi-agent system in these two time windows. While
a broad variation of the number of clusters is observed at
the onset of the simulation, two stable clusters develop
before the control activation. Finally, the emergence of
a single group corresponding to the accomplishment of
the control objective is manifested through the detection
of an embedding manifold of dimension equal to one, see
Figure 6(c).
If the ISOMAP algorithm were performed only on the

500 frames stored by the controlled leader, the identi-
fication of subgroups in the system would fail. Indeed,
embedding manifolds stemming from the analysis of such
downsampled data have dimensions which are consis-
tently higher than the number of subgroups identified
from the whole data set, see Figures 8(a), 8(b) and 8(c).
Yet, the data stored by the controlled leader is suffi-
cient for characterizing the formation of subgroups in the

system, as demonstrated in Figures 8(d), 8(e) and 8(f),
where the downsampled data set is enriched through the
procedure explained in Section IVA. In other words, de-
tection of subgroups in the system is also possible for
smaller data sets provided that a larger synthetic data
set is fed into the ISOMAP algorithm.

V. CONCLUSIONS

In this paper, we have presented a data-driven dy-
namical systems framework to study fragmentation in
multi-agent systems. The approach uses raw data from
the agents’ motion to construct a low-dimensional man-
ifold where collective behavior is manifested and whose
dimensionality is a direct measure of the numbers of sub-
groups constituting the multi-agent system. The detec-
tion of such low-dimensional embedding manifold is ex-
ecuted through the ISOMAP algorithm, that is a well-
established tool for dimensionality reduction in large data
sets with extensive applications in computer vision.
The proposed methodology has been illustrated

through the analysis of simulation data of a system of
à la Vicsek self-propelled particles, where agents are par-
titioned into different subsets, each of them being guided
by a separate leader. In this model, agents are bound to
interact only with individuals from the same subset and,
for limited noise in the model, the leaders produce the
formation of well organized and temporally-stable sub-
groups. As the noise in the model is increased, these pat-
terns in the agents’ motion are lost in favor of ephemeral
subgroups of varying size.
The ISOMAP algorithm has been shown to effectively

detect the formation of subgroups in the simulated data
set for limited noise in the system. Indeed, the embed-
ding manifold constructed through such algorithm has
dimension equal to the number of subgroups as confirmed
by analyzing the polarization of each subset composing
the multi-agent system. As the noise in the model is in-
creased, the dimensionality of the embedding manifold
becomes larger and a cluster analysis is proposed to in-
vestigate the determinants of such variation. Specifically,
the kmeans algorithm is used to understand whether the
increase of dimensionality of the embedding manifold is
due to the agents steadily being subject to a stronger
noise in their heading update or splitting in a larger num-
ber of subgroups.
The success of the proposed methodology depends on

the size and density of the data set available to execute
the ISOMAP algorithm. Indeed, when the data set are
merely downsampled, the accuracy of subgroups’ detec-
tion may be reduced with false interpretation of the frag-
mentation process. To mitigate this effect while allow-
ing for performing the analysis with limited data stor-
age capabilities, we have proposed a procedure to gen-
erate synthetic data set from downsampled motions of
the multi-agent system. The approach uses an interpola-
tion method based on an inverse mapping from the low-
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dimensional manifold to the original ambient space.
The overall framework has been shown to be success-

ful in characterizing the fragmentation of the multi-agent
system in an ample spectrum of conditions. In particu-
lar, we have explored the feasibility of detecting the for-
mation of subgroups under varying levels of noise in the
decision process and number of coexistent leaders. Such
leaders are either bound to move along prescribed di-
rections or can vary their heading in real time based on
selected control objectives. The latter implementation
is amenable for informing the design of control systems
and experimental methods for regulating the collective

behavior of social animals using robotic stimuli.
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