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Vaccination is an important measure available for prementr reducing the spread of infectious diseases.
In this paper, an epidemic model including susceptiblesdtéfd and imperfectly vaccinated compartments is
studied on Watts-Strogatz small-world, Barabasi-Allsedle-free, and random scale-free networks. The epi-
demic threshold and prevalence are analyzed. For smalthwmetworks, the effective vaccination intervention
is suggested and its influence on the threshold and prewlsranalyzed. For scale-free networks, the thresh-
old is found to be strongly dependent both on the effectieeivetion rate and on the connectivity distribution.
Moreover, so long as vaccination is effective, it can lihedecrease the epidemic prevalence in small-world
networks, whereas for scale-free networks, it acts expg@ign These results can help adopting pragmatic
treatment upon diseases in structured populations.

PACS numbers: 89.75.Hc, 87.23.Ge, 87.19.X-

I. INTRODUCTION law behaviorP(k) ~ k=7, the statistical relevance of hubs
makes the network highly permeable to disease propagating

Mathematical characterization of infectious diseases hakl6l- This radical change in the behavior of the processes sug-
contributed greatly to getting insight on transmission- pat 9€StS that th_e _standard epidemiological frameworks shueild
terns of a disease in host populations, as well as on putarefully revisited.
lic health policies to prevent, reduce, and possibly erad- The mathematical compartmental theory focuses on epi-
icate the diseaself3]. Classical epidemic models usu- demic equilibria and their stability. The network-baseddmo
ally assume that either individuals do not have immu-eling, however, pays much attention to the underlying azinta
nity to infection (the susceptible-infected-suscepti(®S)  structure among individuals. The goal of this paper is to in-
model) or experiencing infection with permanent or tem-vestigate the influence of vaccination on disease spreading
porary protection against it (susceptible-infected-veced  Different from the classic study of the SIS model with vacci-
(SIR) and susceptible-infected-recovered-susceptBlR$)  nation by the compartmental theory which focuses on the sta-
models). However, there is increasing evidence that mest inbility of equilibria [5], the present work revisits the model on
fections, such as pertussis and tuberculosis, can provilye o Watts-Strogatz (WS), Barabasi-Albert (BA), and random SF
partial immunity and spread among seropositive individual networks concentrating on the epidemic threshold and preva
regardless of a reduced transmission rate. In view of tltis fa lence. The choice of this model is based on three factors as
vaccination was introduced into mathematical compartaient follows. (i) The SIS epidemic framework has been widely
models which is often represented by a transfer between thgsed in modeling disease spreading within a populationh Eac
susceptible and removed classés9). Whether vaccination individual is simply assumed to have only one of the two
is inoculation or education, typically it reaches only ecfian  states: susceptible (S) and infected (l). Each susceptible
of the susceptible populations and is not perfectly eféecti dividual gets infection with a transmission ratence it con-
Thus, a backward transfer must be considered because vacticts an infected one. Meanwhile, infected individualevec
nated individuals may return to be susceptible or become diand become susceptible again with a recovery fat&hen
rectly infected. When these aspects are included in the lnodehe process of disease transmission flows-a$-SS. (i) Im-
rich dynamical behaviors may arise, such as backward bifurunization of population through vaccination strategyrs a
cation and bistability$, 6]. important and feasible practice with obvious implicatiéms

Previous studies of mathematical models incorporating vacthe public health. At the population level, it is interegtito
cination either ignore the population structure or tregiija-  determine the critical vaccination rate necessary foriesdd
tions as distributed in a regular medium, that is, all the in-ing diseases or preventing infection, and to investigate ho
dividuals have the same probability of contacting the ather vaccination affects the epidemic prevalence in the stetady s
Recently, classical epidemic models have been extended n different networks. In this paper, to study possiblecffe
many ways (e.g., to study the disease spreading in a populaf vaccination on epidemic dynamics in different networked
tion divided into subgroups which may influence each othepopulations, a vaccinated (V) state is introduced into tt® S
[10)). Especially, a great source of inspiration to mathematmodel by vaccinating the susceptible individuals with a-vac
ical epidemiology has been provided by the network theorycination ratep, corresponding to the transition-8V. (iii) In
whose nodes represent individuals and links stand for-interthe real world, there are various types of vaccines: some may
actions among theni[l-14]. The structure of the underlying offer temporary immunity; vaccines may not possess 100%
network (e.g., the degree distribution) may strongly inflcee  efficacy (leaky vaccinespB], and finally, on most occasions,
spreading dynamicd p-27]. For instance, in scale-free (SF) vaccination may cover only a fraction of susceptible indliwi
networks, characterized by degree distributions with pewe als. Therefore, the vaccinated individuals return to treesp-



a to inspect the vaccination program for different networkist
S L 1 tures.
B B In this paper the SIS model with vaccination is formulated

on the static network framework, where nodes represent in-
dividuals and links stand for the contacts among individual
along which a disease can spread. At each time step, each
) o node exists in only one of the three states: susceptible, in-
fected and vaccinated. A disease spreads in the network fol-
VvV lowing mechanisms below (as shown in Flg. a susceptible
node will be infected with the transmission rateonce it is
connected to an infected one; an infected node is cured and
become susceptible again with the recovery fataccording
to the random vaccination strategy, each susceptible netde g
« and are vaccinated at a per capita ratelnfected nodes recover vaccinated with the vaccination rajeand each vaccinated

to be susceptible at a per capita ra@te Vaccinated nodes become node returns to the susceptible class at the resuscefptiaie

susceptible at a per capita rat@nd are infected at a per capita rate ¢ @S the vaccine wears off; due to the imperfect immunity,
Sa due to imperfect vaccination. a vaccinated node will be infected with a reduced infection

rateda, where the parametérmeasures the inefficacy of the

vaccine-induced protection against infection= 0 and1 re-
tible class with a resusceptibility rateas the vaccine wears spectively represent completely effective and utterlyalia
off, or directly get infected with a reduced transmissiotera but0 < § < 1 holds for most case8§]). In present work it
Sa, whered denotes the degree to which the vaccine-induceds always assumed thatis sufficiently small. The epidemic
protection against infection is inefficient. Thus, the aated ~ dynamics is determined by five parametersg, ¢, ¢, ands.

FIG. 1: Flowchart of the SIS model with vaccination. Susit#gt
nodes are infected by their infected neighbors at a per aapte

class flows in two directionsSV—l. For convenience, two ratiok, n are particularly denoted as
To study the SIS model with vaccination on networks, bothA = /3 andn = ¢/¢ [29). o
analytical calculations and numerical simulations areiedr In the theoretical study of epidemiology, there are two

out. Depending on network structures, two types of epiparamount indicators. One is to formulate the epidemic
demic thresholds and corresponding prevalence behawor athreshold, which determines whether the infection breaks o
obtained. For WS networks, there is a nonzero thresholéh the population and results in an EE or dies out eventually
similar to that obtained in the classic compartmental modelcorresponding to a DFE3)]. The other is to predict the epi-
Whereas for SF networks, the threshold is quite differentlemic prevalence. The present work make a comprehensive
which is strongly related both to the vaccination rate and tcstudy of the SIS model with vaccination on WS, BA, and ran-
the node-degree distribution. While the disease is endemidom SF networks, employing the mean-field (MF) approach
in the network, it is found that vaccination interventiomeo and computational simulations. As will be seen below, vacci
tributes to linearly reducing the prevalence in WS netwprksnation indeed has a great influence on the epidemic dynamics
whereas in SF networks it functions exponentially. over such networks.

The rest of the paper is arranged as follows. In Sec. Il the
SIS model with vaccination is introduced. Then the model is
studied on WS, BA, and random SF networks in Secs. IlI, IV, lll. THE MODEL ON WS NETWORKS
and V, respectively. Finally, conclusions are given in SAc.

The WS network31], as a reference of homogeneous net-
works, can be constructed as follows. Start from a ring of
Il. THE SIS MODEL WITH VACCINATION N nodes, where each node is connected symmetrically with
its 2K nearest neighbors. Then, every link connected to a
Vaccination scheme has always been a very important andockwise neighbor is rewired to a randomly chosen node with
effective way for preventing or controlling infectious dases.  probabilityp. After the whole sweep, a WS network with the
In reality, vaccines hardly cover the whole population, andaverage connectivityk) = 2K is generated.
only remain effective for a finite period of time, and are diffi ~ The WS network is a typical example of networks charac-
cult to guarantee a perfect protection from infection. Wgki terized by a narrow degree distribution, in which each nede’
all these points into consideration, Kribs-Zaleta and eta.  degree closes t¢k). Lets(t), p(t), anduv(t) be the densities
Hernandez introduced a vaccinated state into the SIS modef susceptible, infected and vaccinated individuals aetim
to theoretically study the possible effects of vaccination respectively. Obviously, they satisfy the normalizatiam<
epidemics §]. The mathematical compartmental model in dition s(¢) + p(t) + v(t) = 1. Therefore, a set of coupled
Ref. [5] neglects the population structure and assumes all indidifferential equations can be established following the dpF
viduals have the same contact rate. Therefore, itis intigu proach [L7):




(1a)

(1b)

The first term on the right-hand side (rhs) in Etg)(accounts  (1b)) is equivalent to the mass-action law (system (1) in
for the recovery process from the infected class, whichas pr Ref. [5]) with the adaptation of the reaction rates to include
portional to the recovery ratg the average densip(t) ofin-  the average connectivityt). Thus, one can obtain similar re-
fected nodes. The second term on the rhs in Eg.denotes  sults for the epidemic threshold and equilibrium stahilitty

the newly infected nodes transferred from susceptible .oness due to the homogeneity of the WS network, which is also
It is proportional to the density(¢) of susceptible nodes, the the case for the SIS model in Rel7). In accordance with
transmission rate, the average number of neighb@ks, and  the results in Ref.q], there is either a forward bifurcation or
the probabilityp(t) that a randomly chosen neighbor is in- a backward one, depending on the epidemiological parame-
fected. Similarly, the third term on the rhs in E4&( consid-  ters: (1) in case of the model exhibiting the forward bifurca
ers the probability that a node is vaccinaied- p(t) — s(¢)],  tion, there is only one globally stable EE as the transmissio
and gets infection. The probability of this last processrsp rate is above the epidemic threshold, below which the DFE
portional to the vaccine-reduced transmission datethe av-  is the only attractor; (2) in case of the presence of the back-
erage number of neighbo(g), and the probability(¢) thata  ward bifurcation, there are multiple endemic equilibrisEE)
randomly chosen neighbor is infected. On the rhs in Eb),( - meaning that there are two or more EEs in the steady state -
the third term accounts for the increment in the susceptiblexisting between a sub-threshold and the epidemic thréshol
class result from the transition-¥S, which is proportionalto meanwhile both the DFE and the lower EE are locally stable.
the resusceptibility rate; and the fourth term accounts for

the probability of the vaccination process>¥, which is pro-
portional to the vaccination rate
It should be stressed that the MF approach (E4jg). énd

p=(1=PB)p+dak)(l—p)p+ak)(l-0)

for density of infected nodes in steady states.

In the following much attention will be paid on the epi-
demic prevalence in the steady state. Imposing the stagiona
conditions s(t) = 0 and< p(t) = 0 yields

(B—0)p* +dp

Notice that (i) A > A.. Inthis case(' < 0 always holds. Sinc&'(0) =

f(0) = 0andf(1) < 1, Eg. @) has a nonzero solutionon C <0andF(1) = A4+ B+C =48+ (p+¢)/(A\k)) >0,

the interval(0, 1) only if f/(p)’
epidemic threshold

pv+o 1 n+1 1
A = — = —. 3
PRI TR ©
On the other hand, Eg2) can be rewritten as
F(p) = Ap” + Bp+C =0, (4)

with coefficients

A = dalk),
B = Sp+¢+08—dalk),
C = —[(bp+6) - ——(0+0)]

(k)

The solutions to Eq4) correspond to equilibria of systert)(
for given\.

> 1, which defines the System ) has a unique EE,
0

VB? —4AC - B
51 ®)

p:

In contrast to special solutions obtained in R&, this ex-
pression is general. As — A, C closes td). From Eq. b),
it follows thatp — 0. Ignoring the second order term pfin
Eq. @), one has

N dp+¢ A=A
P o+ o+08—0alk) X

~(A=A).  (6)

In fact, as given in Appendix A, applying Taylor series ex-
pansion to the square root part of the first ternd at 0 and
omitting the higher order correction if) Eq. () can be sim-
plified to

p=1——--. (7
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FIG. 2: (Color online) Bifurcation diagrams pfas a function of\ in
the WS network with the average connectiviy) = 10 for various
0: 0.001 (a), 0.01 (b), and 0.1 (c). In each chart, black anadvedes
respectively represent stable and unstable branches tEnsy®).
Parameter valuesi = 0.002, ¢ = 0.001, and¢ = 0.0002.
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FIG. 3: (Color online) lllustration of the dynamic behavion the
0-n plane with parameter§ = 0.002 and¢ = 0.0002, showing
the necessary condition for bistability in the WS networkhwk) =
10. The white (grey) region corresponds to the single stalalee st
(bistable states). The blue (red) line is upper (lower) labofv) for
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(i) A < Ae. In this case, it is impossible to obtain the
general solution of the epidemic prevalence. Following the
parametric analysis in Ref5], one finds that there are two
different EEs in the regima, < A\ < A, on the premise of

Aa < Ap, Where), = ‘%# corresponds to the condition
B =0,and\, = g5 (1 — 5“2? + 75/Bo(1 - 5)@) cor-

responds td32 — 4AC = 0. This finding suggests that under
the condition\, < Ay, which is equivalent to

(6 +¢)* < B3(1 — d)e, (8)

there emerges a sub-thresholg (the persistence threshold,
above which an already established epidemic can pe82Bt [
and an epidemic threshold. (the invasion threshold, which
still denotes the critical parameter value for invasion efn
diseases). Inthe bifurcation diagram, this sub-threstwl-
sponds to a saddle-node bifurcation, and the epidemictthres
old corresponds to a forward bifurcation, and consequently
these two thresholds together exhibit first order transitioe-
tween the healthy phase (without disease) and the endemic
phase (with disease) (see FR&(c)). This reveals the hys-
teresis effect caused by the introduction of vaccinatido in
the infectious disease. However, in other cases, therelys on
the invasion threshold, and hence only the forward bifuocat
(see Figs2(a) and2(b)).

Clearly, whether the intervdl\,,, \.) is a bistable region or
not in the bifurcation diagram qf as a function of\ is com-
pletely determined by the conditio8)(which can be rewritten
as

& + 2 — 5(1 —0)]on+1<0. (9)

Only if g(l — J) > 4 can the inequality has solutions on
the interval(n;,72) C (0,0), which indicates thaf.. =
1 - 4%. On the contrary, there is only one single stable
state if /¢ < 4. Figure3 gives an illustration. In case of
B = 0.002 and¢ = 0.0002, the ratio isg/¢ = 10. To en-
sure%(l —0) > 4, it demandsy < 0.6. In particular, at
0 = 0.001, the upper and lower boundsmare127.18(1) and
7892.81(6), respectively. On the other side, given= 5.0,
only if 0.02(7) < ¢ < 0.51(1) can systemX) experience the
bistable states. From calculation in AppendixBeaches the
minimum2/3 atd = 3/8. The presence of such a bistable
region highlights an important but unexpected influence of
vaccination on disease spreading. The bifurcation diagram
in Fig. 2 correspond to three different valuesdof{= 0.001,
0.01, and0.1) for n = 5.0. At § = 0.1 the system exhibits
the bistable phenomenon, and in order to wipe out the disease
one must ensure that< 0.37(4) rather tham < 0.4.

The emergence of MEE gives rise to complexity in the vac-
cination intervention. In the real world, it is interestibg
study the effective vaccination and its influence on the epi-

givend. Only if n is inside the range between the upper and lowerdemic prevalence. To do that, one can consider sysfigm (
bounds can the MEE occur. Otherwise, there is only one &trac with proper choice of3, ¢, n, andd, respectively, ensuring

(either the DFE or the EE).

that only the forward bifurcation occurs. In the following,
is fixed at a relatively small valug = 0.001 with 8/¢ = 10



Do Dl
simulation | analytical | simulation | analytical
(k) =8 1.07(2) 1 0.14(5) 0.125
Fig.4(b) | (k) =10 1.06(1) 1 0.11(4) 0.1
(k) =12 1.06(7) 1 0.09(6) 1/12
A=0.6 1.01(3) 1 0.11(0) 0.1
Fig.4(c) | A=0.7 1.00(7) 1 0.10(8) 0.1
A=0.8 1.00(3) 1 0.10(4) 0.1

TABLE I: Simulation values ofD,, D, calculated by applying the Levenberg-Marquardt algorifl33] to the least squares curve fitting on
the simulation data plotted in Figé(b) and4(c), with the general function in the form pf= Do — Dl%. The quantitative comparison is
also demonstrated, which shows a good agreement betweanrierical simulation and the analytical prediction by Eg. (

Q 0.4r

FIG. 4: (Color online) Infected densitigsin the WS networks as
functions of (a), 1/ (b), andn (c), respectively. Solid lines are
analytical solutions to Eq5J. Dash lines are theoretical prediction
by Eq. (7). Parameters valuesi = 0.002, ¢ = 0.0002, andé =
0.001.

andn < 127.18(1), where only a globally stable EE exists if
A > ). or a globally stable DFE arises ¥ < \.. Accord-
ing to the model definition) and»n are comparably important
parameters which affect the global spread of the infection.
Fig. 4 both analytical and numerical results pfas a func-
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FIG.5: (Color online)l /Ac vs1/(n+1) in the WS networks for dif-
ferent connectivities. Solid lines correspond to solwioh Eq. @).
Parameter valuegi = 0.002, ¢ = 0.0002, andd = 0.001.

tion of A andn in the WS network are present, respectively.
Simulation of the SIS model with vaccination on the WS net-
work is carried out with parameter§ = 10° andp = 0.1.
The fraction of initial infectious seeds (1% and the preva-
lencep in the steady state is averaged overdifferent real-
izations of the model on each o6 different initial network
configurations. Each realization goes throigk 10* time
steps. The thresholds. in Fig. 4(a) are0.77(4), 0.62(5),
and0.52(3), corresponding to the average degréeés= 8,
10, and12, respectively, which agrees with the prediction of
Eq. 3). Moreover, linear behaviors are shown from both the
simulation results and the theoretical predictions in Figis)
and4(c).

To examine the accuracy of analytical prediction by &g, (
a quantitative comparison is made in Tablewhere the
Levenberg-Marquardtalgorithm is applied to the least segia
curve fitting on the simulation data, with the general fumati
in the form ofp = Dy — D1(n + 1)/, whereD, andD; are
positive constants. In Tablethe numerical valu®, ranges
from 1.00(3) to 1.07(2), matching the theoretical predicti
Dy = 1; and the numericaD; is also in good agreement with
the predictionD; = 1/(k). Thus, given all the epidemiolog-



ical parameters, the larger the average node-de@reehe IV. THE MODEL ON BA NETWORKS

harder for disease to break out, and if it prevails, the hitinee

level of infectionp forms (as shown in Figd). On the other

hand, in a fixed WS network, as the ratip+ 1)/ increases, The BA network B4], as a prototype of heterogeneous net-
p linearly diminishes. This implies that the competition be-works, can be built as follows. Start from a a setiaf nodes,
tween the transmission process and the vaccination campaigvhich are completely connected. At each time step, a new
leads to a linear decrease of the prevalence in networksawithnode is added to the existing network, bringing< m;)
narrow degree distribution, as shown in F4¢c). Notice that  new links connecting to old nodes with degree preference. Af
for sufficiently smalls, as assumed in present work, E@) ( ter iterating this procedure a sufficient number of timespa B
turns intop ~ 1 — Ac/A. In form, this scaling behavior of network is obtained, consisting éf nodes with the node-

p resembles that in the SIS model without vaccinatibil,] degree distributionP(k) = 2m?k~3 and the mean node-
where the threshold ia, = 1/(k) . This similarity, how- degree(k) = 2m.

ever, reveals that the linear effect of vaccination on tlewar

lence is in essence due to the fact that vaccination program The heterogeneity of the connectivity distribution intrere
increases the epidemic threshold hyimes. To get further to BA networks induces strong fluctuations, so systet)s (
information, the inverse ok, as a function of the inverse of should be modified accordingly. Denoting by(¢), px(t),

n + 1 is depicted in Fig5. Since Eq. 8) can be rewritten anduy(t) the relative densities of susceptible, infected and
asl/Ac = (k)[(1 —0)/(n+ 1) + J], simulation results ver- vaccinated nodes with degréeat timet, respectively, which
ify this linearity. Hence, the more effectively the vacdioa  satisfy the normalization condition, (¢) + px (t) + v (t) = 1,
intervenes on the disease, the more difficultly it outbreaks the MF equations now read as:

£ k(1) = ~Bpu(t) + ks (1O (p(1)) + dak[1 — pit) — (1)) O(p(1). (10a)
£ 54(t) = Borlt) — ks (DO((D) + 0[1 — pi(t) — s(1)] — P (1) (10b)

The first term on the rhs in Eq1Qg considers that a node andmsk( ) = 0yields

of degreek is in the infected state with probabilipy (¢) and

recovers from infection at the recovery rate The second ak@(&p + o+ 6ak®)

term on the rhs in Eq.109 considers the probability thata ¥ = akO (8¢ + ¢ + 3akO) + B(p + ¢ + 6akO)
node withk links is in the susceptible statg(¢) and gets in-

fection via a neighbor. The probability of this last event is Combining Egs.11) and (L2), one obtains a self-consistency
proportional to the transmission rate the number of neigh-  equation,

borsk, and the probabilitp (p(t)) that any given link points

(12)

to an infected node. Similarly, the third term on the rhs in 1 kP(k)ak®© (3¢ + ¢ + 6akO)
Eq. (109 considers that a node with k neighborsiis in the vac-= = %y Z akO (¢ + ¢ + 06akO) + B(p + ¢ + 5akO)
cinated state with probabilitjl — px(t) — si(¢)] and gets k

infection via a neighbor at the vaccine-reduced transionissi = 9(©). (13)
ratedc. On the rhs in Eq.X0b), the third term considers that
a node with degrek s in the vaccinated state with probability .
[1—pr(t)— sk (t)] and returns to the susceptible class at the re?, — (,) Notice that r,‘,Ot onlyy(0) = 0 andg(1) < 1, but
susceptibility rates; and the fourth term considers that a node alsog’(®) > 0, andg”(®) < 0in the limit§ — 0, only if
of degreek is susceptible with probability, (¢) and gets vac- ¢'(©) > 1 can Eq. L3) have a nontrivial solution on the
cinated at the vaccination rage For uncorrelated networks, mtervaﬁ(?) 1), which yields

the probability® is [17]

Obviously, there is a trivial solutio® = 0 which leads to

_et+o k) n+l (k)
O = ZZ sp (11) T o+ (k) a1k

In infinite-sized BA networks, the second moment of the con-
Since SF networks have no correlations under the constraimectivity distribution is unbounded, i.€(k?) — oo, which
that the maximum possible degree has a cutoff scaling at mostducesA. = 0. So the infection can always prevail among
ask.(N) ~ N'/2[35]. In order to ensure an uncorrelated BA the population, no matter what the effective transmissite r
network, this restriction on the maximum degree is impored i is. Whereas for finite-sized BA networks, there exists a maxi
present work. Imposing the stationary condititggsgC (t)y=0 mum degred:., which controls the bound of the connectivity

(14)



fluctuations, inducing a nonzero threshdl&,[18]. From now
on, the size of the BA networks is assumed to be finite, and all
the possible values of node degreestare m, m+1, ... k..

By computing the Jacobian matrix of the DREp, =
0,sr, = ﬁ)}ﬁ;m of system 10), one finds that the basic
reproductive number] is Ry = )\%% = A/Ac, Which
denotes the expected number of secondary infections caused
by a single infected individual in a completely susceptible
population. Accordingly, the DFE is locally asymptotigall
stable if A\ < A., while unstable ifA\ > \. meaning invasion
is always possible. As long as> ). there exists a positive
solutionp € (0,1) corresponding to the EE which is locally
asymptotically stable.

Since® approaches 0 ak closes to)\., and by neglecting
all higher order corrections i®, Eq. (L2) is in form analo-
gous to Eq. (8) in Ref.J7], and hence one expects the similar
critical behavior given by Eq.14). Compared with the SIS
model on BA networks16, 17], the presence of vaccination
has the effect of multiplying the epidemic threshold by ddac FIG. 6: (Color online) Densities of infectious nodpgsin the BA
(n+1)/(én+1), i.e., enlarging by nearly times (as) — 0). networks: (a) as a function df/\ for n = 5.0 and various(k);
This suggests that vaccination might play a significantimle () as a function of; for A = 0.4 and variousm. Solid lines are
preventing or reducing the infectious disease. The grélager theoretical prediction by Eq16). The other parameters are =
vaccination rate is, the bigger the epidemic thresholdns, a 0.002, ¢ = 0.0002, andj = 0.001.
hence the harder the disease erupts.

Neglecting the second order termdn Eq. (L2) can be sim-

plified as
AOk
I VYRR (15) ____ o :
AOk+n+1 simulation | analytical
. . . . . . 5 0.18(4 0.2
Given the epidemiological parameters, a nodes with higher Fig. 6(a) Z: 7 0 128 17
degree is more likely to get infected. Substituting this ex- ' m—9 0.09(8) 1/9
pression into Eq.13) and treating: as a continuous variable p— 0'17(7) 02
yields Fig.6(b) | m=7 | 0.12(9) 17
K m=9 | 0.09(3) 1/9
°1 dk
@zm/\@/ VS Tr— (16)
m kAOE+n+1 TABLE II: Simulation value of E, calculated by applying the
. ) . . Levenberg-Marquardt algorithm to the least squares cuttiegfion
which gives rise to the solution the simulation data plotted in Figé(a) and6(b). The quantitative

1)/ comparison is also demonstrated, between the fitting vAtuand
(n+1)e= - 67(77“)/,\,”] -1 (17) the analytical prediction /m by Eq. (7).

O~
Am

Finally, at lowest order in\, the epidemic prevalence related
tothe EE is

the simulation support the calculation by the same exponen-
tial decaying in the scaling behavior, i.@.,~ e~ Fo(1t1)/A,
Computational simulations for the epidemic model are perwhere E, is a constant. The numerical comparison is also
formed on the BA networks with the network si2é = 10°. made between the fitting valug, and the analytical estima-
Each of the simulation data is obtained by averaging @der tion 1/m in Tablell, showing a relatively small variance. For
different realizations of the model on eachlofdifferentnet-  BA networks, both in simulation and in theory, the prevakenc
work configurations. Each realization goes thro2gh 10* decays exponentially, i.ep, ~ e~ ("t1/>™ Vaccination has
time steps. As shownin Fi§, there is a deviation between the an effect of accelerating bytimes the exponential decreasing
simulation results and the analytical calculations, eislgdn of the prevalence. This finding suggests that the vaccinatio
the large prevalence regime. It is due to the fact that E2). ( intervention on a disease can efficiently reduce an endemic t
is simplified by neglecting the highest order@ As pis  alower level, though the heterogeneity in degree distigbut
relatively large,©? is actually not negligible. Despite this, causes a vulnerability to disease outbreak in BA networks.

p=">_ Plk)p = 2e~(1HD/Am, (18)
k
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V. THE MODEL ON RANDOM SF NETWORKS where); is a finite constanty, < Q1 < k.. Thus, the solu-
tion is
In this section, the analysis for the SIS model with vac- 1 [N (—2)m7 23 O it o <3
cination on BA networks will be generalized to random SF 0~ Py 3= N } ! <ST=9 (25)
networks with arbitrary exponent > 2. Following the idea /\,19 {W%g)m _ 1} if v > 3.
proposed by Newman et al.3§|, the random SF networks ! 7
can be generated as below. First, a priori random integers s&he prevalence can also be written as
guence, each of which represents the degree of a node, drawn i
from a normalized distribution © m(y—1) 1
= P(k)prdk ~ — , (26
p= [ Pk~ FT—00 - e, (@6

P(k) = { (v —1)mY k= if k <k, (19)
0 otherwise, where(); is a finite constantyn < Q, < k.. According to
i . Eq. 25), the behavior op depends on.
wherem andk. are respectively assumed to be the minimum (i) 2 < v < 3. In this case, for any > 0, VOO, > 1.
and the maximum values of the degree among all the ”Odeﬁnplementin_g logarithm operation on EQ§] yields
andk. > m. Notice that in order to get uncorrelated ran-

dom SF networks, the restriction on the maximum ded38&k [ m(y—1) 1

k.(N) ~ N'2is imposed. Then, nodewith degreek; is Inp~In Q7 —2) 1+NOQ, (27)
picked out randomly from the sequence and connected to oth- o o
ers until its degree quota is realized. Duplicate connections Combining this with Eq.23), one has
are avoided. This process is repeated throughout all the ele (1)) A
_ _ . ~eY (28)
ments of the sequence, and finally a network is chosen uni- P ’
formly at random f_rom the set of aI.I graphs with that degreewhereU1 is a constant, defined by
sequence. Assumingchanges continuously and the average
connectivity is thus v = 91(3; v) . (29)
" L Qum1-2kE (v - 2)
(k) = /m RP(k)dR ~ ——gm. (20) (i) v > 3 whiley % 3. According to Eqs.Z1) and @5),

S forany A > A, 'O, > 0. One can obtain the prevalence
For any connectivity distribution in random SF networks, similar to case (i)

one can employ directly the analytical treatment in BA net-
works. That is to say, the MF results in the BA network are p o~ eI/, (30)
applicable to the random SF network. According to Bdf)(

the epidemic threshold is zero4f< 3 in the thermodynamic WWhere the coefficient, reads as

limit for random SF networks. Whereas for> 3, substitut- Qi(v—3)
ing Eq. 0) into Eq. (L4) yields a non-zero threshold = (=2 (31)
oA (n+ 1y =3) _ (21) (iii) v > 3. In this case, the connectivity distribution de-
m(én+1)(y —2) cays so fast that it tends to a homogeneous networks. One
)3 would expect to obtain the similar qualitative behaviormas i
Since £\ = Gopi—g— < 0foranys € (0,1), en-  Sec.lll.

hancing the effective vaccination rate can prevent epidemi  Simulations of the SIS model with vaccination on random
from spreading through the population. For any exponént  SF networks are performed to compare with the theoretical
random SF networks, combining Eq&3(and @0), one has  analysis. The simulated networks range frdm= 10° to
N N = 10° and the minimal degree of nodesis= 5. Figure7
o— NO(y —1)m ! / <k dk (22) shows the epidemic threshold as a function of the alge-
(k) m NOk+1 7 braic expressiorfy — 3)/(y — 2). Closed squares represent
. numerical data and the solid line corresponds to the predic-
with tion of Eq. 21). One notices the good agreement between the
) A computer simulation and the analytical calculation. Fegfir
EESE (23)  depicts the behaviors afas a function ofl /  (Fig. 8(a)) and
as a function of) (Fig. 8(b)), respectively. It is clear that ei-
Due to the existence of the parameteit is difficult to obtain ~ ther for A >> 0 (the case o < v < 3) or for A > A. (the
the explicit solution of Eq.42). However, one can roughly case ofy > 3 andvy ¥ 3), the stationary density of infected
estimates®® andp using the first mean value theorem. In this nodes in the random SF networks decays exponentially, i.e.,

way, one has p ~ e (/X ‘wherev is a positive constant, which is de-
termined by Eq.Z9) or Eq. 81). On the contrary, ay = 40,
o_ NO(y —2)mr~2 /kC B2k (24) as shown in the inset of Fi§, p decreases linearly similar to
1+ Ne . ’ the behavior observed from WS networks.
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FIG. 7: (Color online) Effective transmission threshaldas a func-
tion of (v — 3)/(y — 2) in the random SF network. The full line
corresponds to the analytical calculation of E2{l)( Parameter val-
ues:n = 5.0, 8 = 0.002, ¢ = 0.0002, ands = 0.001.
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FIG. 8: (Color online) Semi-log plots of the persistenda random
SF networks as a function df/ X (with n = 5.0) (a) andn (with
A = 0.5) (b) for various values ofy: 2.5, 3.5, and4.5 (from top
to bottom). The insets of (a) and (b) respectively display lthear
dependence gf as a function ofl /A andn for v = 40. Parameter
values: 5 = 0.002, ¢ = 0.0002, andé = 0.001.
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a networked SIS model with vaccination, where vaccines that
attempt to reduce susceptibility to infection is chardeeat

by three parameters in the model: coverage (represented by
), waning period (represented k), and efficacy (repre-
sented byd). Sinced is intrinsically related to the quality

of the vaccine, much attention has been paid to the parame-
ter n (the ratio ofy to ¢) in the vaccination intervention on
infectious diseases, as well as the role of the ratighe ra-

tion of « to 3) in epidemic spreading. With the frameworks of
the MF approach and elementary means, the model has been
studied on WS, BA, and random SF networks. The analysis
of thresholds and prevalence demonstrated the signifiéant e
fects of the vaccination on the epidemic dynamics as well as
the structures of the underlying networks.

In the WS networks, since the MF model is equivalent to
the classic compartmental model in R} With the adapta-
tion of reaction rates by the average connectivity, thesthoél
behavior and equilibrium stability are similar to the laésre.

The threshold\. is defined by Eq.3), above which there is
only one globally stable EE and below which the model may
exhibit MEE for certain epidemiological parameters. As to
the prevalence, rather than special solutions obtaineten t
compartmental model, this paper gives the general one for
the steady endemic state, which scalepas —(n + 1)/\.
Thus, the effective vaccination can linearly decrease the e
demic level in homogeneous networks, although vaccination
intervention may give rise to the backward bifurcation iesé
networks.

In the SF networks, however, the system shows very differ-
ent behavior. The threshold. is defined by Eq.X4). Only
for the SF network with the power-law distribution exponent
2 < v < 3 in the thermodynamic limit can. be zero. Oth-
erwise, the system has a non-zero threshold for the SF net-
works with anyy > 3. In comparison with the WS network
at the same average connectivity, \. in the SF network is
smaller than that in the WS network. For any> A, the
prevalence in the SF network scalegas e~ *("+1)/A Thus,
the vaccination can exponentially decrease the endenst lev
in heterogeneous networks.

All these results are on the presumption that the underly-
ing networks are static. For some diseases which spread too
fast in comparison with change of the population structure,
the present work may provide a preliminary theory for vac-
cine control of infection. For other diseases, howeveri-ind
vidual responses to infection plays an important role ihegit
reducing the transmission rate or changing the contaat-stru
ture [37-39. Hence, it is interesting to study vaccination in
adaptive networks, which is left for future research.
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Appendix A: Simplification of Eq. (5) to Eq. (7)

Since the inefficacy rate of vaccinds assumed to be suf-
ficiently small, it is possible to simplify the complex sqear
root part in Eqg. $) via Taylor series expansion at the point

0 = 0. First of all, rewrite Eq.5%) as

p=p1+p2, (A1)
where
oy = (k)ad _2(27:; c;; B3 + ¢)7 (A2)
and
P2 = 2?15525 (A3)
accompanied with
h(o) = [m(6)]", (A4)

h1(6) = (Sp+p+08—ba k)’ +45a (k) (5p+¢)—45B8(p+).

(A5)
So, rearranging each term, one has
hi(8) = ad® + bs + ¢2, (AB)
where
{ a = (p+8= (ko) +4(kog,  (ag)
b = 2(k)agp + 2pp — 280 — 4Bp.

Since the first order derivative &f¢) can be calculated as

—1/2

W) = g [m@) @i +n),  (a8)

one has

Therefore, by employing Taylor series expansiofi at 0 for
h(6) with regard toJ, one gets

(A9)

h(5) = h(0) + h'(0)d + o(6?)
~ b+ (k)ag + <p¢¢— By — 2By

Combining Eq. A10) with Egs. @1, A2, A3) gives rise to

5. (A10)

2(k)ad — 2636 — 2526
2(k)ad ’

o (A11)
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which implies the simple relationship

1 n+1

~1-—
PRI A
Appendix B: Calculation of the minimum lower bound of n

(A12)

Letz = /¢ and substitute it into inequality), one ob-
tains

P+ 2—2(1-0)]n+1<0, (B1)
which has positive solutions if and only if
{[x(1 =0) — 2> —4}6% > 0,

— z(1-9)>4. (B2)

The solutions of inequalityg1) read

m(0) <n <n2(d), (B3)
where
771(5):[:v(l—é)—2]—\é([;v(l—é)—2]2—47 (B4)
l(6) = [x(1—5)—2]+\é([;7(1—5)—2]2—4. (85)
The derivative of the lower boung (9) is
%:%{x(x—él)—x(x—md_($_2)}. (B6)

ViIz(—0) -2 -4

Let &4 =, it follows that

zlz —4 — (. —2)0] = (z — 2)/[z(1 — §) — 2|2 — 4, (B7)
which gives the extreme point

S 20w-2) 2(f-2)

(B8)

Substitutingy* into Eq. B4) yields the minimal lower bound

Mmin = — 1 B (Bg)
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