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Vaccination is an important measure available for preventing or reducing the spread of infectious diseases.
In this paper, an epidemic model including susceptible, infected and imperfectly vaccinated compartments is
studied on Watts-Strogatz small-world, Barabási-Albertscale-free, and random scale-free networks. The epi-
demic threshold and prevalence are analyzed. For small-world networks, the effective vaccination intervention
is suggested and its influence on the threshold and prevalence is analyzed. For scale-free networks, the thresh-
old is found to be strongly dependent both on the effective vaccination rate and on the connectivity distribution.
Moreover, so long as vaccination is effective, it can linearly decrease the epidemic prevalence in small-world
networks, whereas for scale-free networks, it acts exponentially. These results can help adopting pragmatic
treatment upon diseases in structured populations.

PACS numbers: 89.75.Hc, 87.23.Ge, 87.19.X-

I. INTRODUCTION

Mathematical characterization of infectious diseases has
contributed greatly to getting insight on transmission pat-
terns of a disease in host populations, as well as on pub-
lic health policies to prevent, reduce, and possibly erad-
icate the disease [1–3]. Classical epidemic models usu-
ally assume that either individuals do not have immu-
nity to infection (the susceptible-infected-susceptible(SIS)
model) or experiencing infection with permanent or tem-
porary protection against it (susceptible-infected-recovered
(SIR) and susceptible-infected-recovered-susceptible (SIRS)
models). However, there is increasing evidence that most in-
fections, such as pertussis and tuberculosis, can provide only
partial immunity and spread among seropositive individuals,
regardless of a reduced transmission rate. In view of this fact,
vaccination was introduced into mathematical compartmental
models which is often represented by a transfer between the
susceptible and removed classes [4–9]. Whether vaccination
is inoculation or education, typically it reaches only a fraction
of the susceptible populations and is not perfectly effective.
Thus, a backward transfer must be considered because vacci-
nated individuals may return to be susceptible or become di-
rectly infected. When these aspects are included in the model,
rich dynamical behaviors may arise, such as backward bifur-
cation and bistability [5, 6].

Previous studies of mathematical models incorporating vac-
cination either ignore the population structure or treat popula-
tions as distributed in a regular medium, that is, all the in-
dividuals have the same probability of contacting the others.
Recently, classical epidemic models have been extended in
many ways (e.g., to study the disease spreading in a popula-
tion divided into subgroups which may influence each other
[10]). Especially, a great source of inspiration to mathemat-
ical epidemiology has been provided by the network theory
whose nodes represent individuals and links stand for inter-
actions among them [11–14]. The structure of the underlying
network (e.g., the degree distribution) may strongly influence
spreading dynamics [15–27]. For instance, in scale-free (SF)
networks, characterized by degree distributions with power-

law behaviorP (k) ∼ k−γ , the statistical relevance of hubs
makes the network highly permeable to disease propagating
[16]. This radical change in the behavior of the processes sug-
gests that the standard epidemiological frameworks shouldbe
carefully revisited.

The mathematical compartmental theory focuses on epi-
demic equilibria and their stability. The network-based mod-
eling, however, pays much attention to the underlying contact
structure among individuals. The goal of this paper is to in-
vestigate the influence of vaccination on disease spreading.
Different from the classic study of the SIS model with vacci-
nation by the compartmental theory which focuses on the sta-
bility of equilibria [5], the present work revisits the model on
Watts-Strogatz (WS), Barabási-Albert (BA), and random SF
networks concentrating on the epidemic threshold and preva-
lence. The choice of this model is based on three factors as
follows. (i) The SIS epidemic framework has been widely
used in modeling disease spreading within a population. Each
individual is simply assumed to have only one of the two
states: susceptible (S) and infected (I). Each susceptiblein-
dividual gets infection with a transmission rateα once it con-
tacts an infected one. Meanwhile, infected individuals recover
and become susceptible again with a recovery rateβ. Then
the process of disease transmission flows as S→I→S. (ii) Im-
munization of population through vaccination strategy is an
important and feasible practice with obvious implicationsfor
the public health. At the population level, it is interesting to
determine the critical vaccination rate necessary for eradicat-
ing diseases or preventing infection, and to investigate how
vaccination affects the epidemic prevalence in the steady state
on different networks. In this paper, to study possible effects
of vaccination on epidemic dynamics in different networked
populations, a vaccinated (V) state is introduced into the SIS
model by vaccinating the susceptible individuals with a vac-
cination rateϕ, corresponding to the transition S→V. (iii) In
the real world, there are various types of vaccines: some may
offer temporary immunity; vaccines may not possess 100%
efficacy (leaky vaccines) [28], and finally, on most occasions,
vaccination may cover only a fraction of susceptible individu-
als. Therefore, the vaccinated individuals return to the suscep-
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FIG. 1: Flowchart of the SIS model with vaccination. Susceptible
nodes are infected by their infected neighbors at a per capita rate
α and are vaccinated at a per capita rateϕ. Infected nodes recover
to be susceptible at a per capita rateβ. Vaccinated nodes become
susceptible at a per capita rateφ and are infected at a per capita rate
δα due to imperfect vaccination.

tible class with a resusceptibility rateφ as the vaccine wears
off, or directly get infected with a reduced transmission rate
δα, whereδ denotes the degree to which the vaccine-induced
protection against infection is inefficient. Thus, the vaccinated
class flows in two directions S←V→I.

To study the SIS model with vaccination on networks, both
analytical calculations and numerical simulations are carried
out. Depending on network structures, two types of epi-
demic thresholds and corresponding prevalence behavior are
obtained. For WS networks, there is a nonzero threshold
similar to that obtained in the classic compartmental model.
Whereas for SF networks, the threshold is quite different
which is strongly related both to the vaccination rate and to
the node-degree distribution. While the disease is endemic
in the network, it is found that vaccination intervention con-
tributes to linearly reducing the prevalence in WS networks,
whereas in SF networks it functions exponentially.

The rest of the paper is arranged as follows. In Sec. II the
SIS model with vaccination is introduced. Then the model is
studied on WS, BA, and random SF networks in Secs. III, IV,
and V, respectively. Finally, conclusions are given in Sec.VI.

II. THE SIS MODEL WITH VACCINATION

Vaccination scheme has always been a very important and
effective way for preventing or controlling infectious diseases.
In reality, vaccines hardly cover the whole population, and
only remain effective for a finite period of time, and are diffi-
cult to guarantee a perfect protection from infection. Taking
all these points into consideration, Kribs-Zaleta and Velasco-
Hernández introduced a vaccinated state into the SIS model
to theoretically study the possible effects of vaccinationon
epidemics [5]. The mathematical compartmental model in
Ref. [5] neglects the population structure and assumes all indi-
viduals have the same contact rate. Therefore, it is intriguing

to inspect the vaccination program for different network struc-
tures.

In this paper the SIS model with vaccination is formulated
on the static network framework, where nodes represent in-
dividuals and links stand for the contacts among individuals
along which a disease can spread. At each time step, each
node exists in only one of the three states: susceptible, in-
fected and vaccinated. A disease spreads in the network fol-
lowing mechanisms below (as shown in Fig.1): a susceptible
node will be infected with the transmission rateα once it is
connected to an infected one; an infected node is cured and
become susceptible again with the recovery rateβ; according
to the random vaccination strategy, each susceptible node gets
vaccinated with the vaccination rateϕ and each vaccinated
node returns to the susceptible class at the resusceptibility rate
φ as the vaccine wears off; due to the imperfect immunity,
a vaccinated node will be infected with a reduced infection
rateδα, where the parameterδ measures the inefficacy of the
vaccine-induced protection against infection (δ = 0 and1 re-
spectively represent completely effective and utterly invalid,
but 0 < δ ≪ 1 holds for most cases [28]). In present work it
is always assumed thatδ is sufficiently small. The epidemic
dynamics is determined by five parameters,α, β, ϕ, φ, andδ.
For convenience, two ratiosλ, η are particularly denoted as
λ = α/β andη = ϕ/φ [29].

In the theoretical study of epidemiology, there are two
paramount indicators. One is to formulate the epidemic
threshold, which determines whether the infection breaks out
in the population and results in an EE or dies out eventually
corresponding to a DFE [30]. The other is to predict the epi-
demic prevalence. The present work make a comprehensive
study of the SIS model with vaccination on WS, BA, and ran-
dom SF networks, employing the mean-field (MF) approach
and computational simulations. As will be seen below, vacci-
nation indeed has a great influence on the epidemic dynamics
over such networks.

III. THE MODEL ON WS NETWORKS

The WS network [31], as a reference of homogeneous net-
works, can be constructed as follows. Start from a ring of
N nodes, where each node is connected symmetrically with
its 2K nearest neighbors. Then, every link connected to a
clockwise neighbor is rewired to a randomly chosen node with
probabilityp. After the whole sweep, a WS network with the
average connectivity〈k〉 = 2K is generated.

The WS network is a typical example of networks charac-
terized by a narrow degree distribution, in which each node’s
degree closes to〈k〉. Let s(t), ρ(t), andv(t) be the densities
of susceptible, infected and vaccinated individuals at time t,
respectively. Obviously, they satisfy the normalization con-
dition s(t) + ρ(t) + v(t) = 1. Therefore, a set of coupled
differential equations can be established following the MFap-
proach [17]:
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d

dt
ρ(t) = −βρ(t) + α〈k〉s(t)ρ(t) + δα〈k〉

[

1− ρ(t)− s(t)
]

ρ(t), (1a)

d

dt
s(t) = βρ(t)− α〈k〉s(t)ρ(t) + φ

[

1− ρ(t)− s(t)
]

− ϕs(t). (1b)

The first term on the right-hand side (rhs) in Eq. (1a) accounts
for the recovery process from the infected class, which is pro-
portional to the recovery rateβ, the average densityρ(t) of in-
fected nodes. The second term on the rhs in Eq. (1a) denotes
the newly infected nodes transferred from susceptible ones.
It is proportional to the densitys(t) of susceptible nodes, the
transmission rateα, the average number of neighbors〈k〉, and
the probabilityρ(t) that a randomly chosen neighbor is in-
fected. Similarly, the third term on the rhs in Eq. (1a) consid-
ers the probability that a node is vaccinated[1− ρ(t)− s(t)],
and gets infection. The probability of this last process is pro-
portional to the vaccine-reduced transmission rateδα, the av-
erage number of neighbors〈k〉, and the probabilityρ(t) that a
randomly chosen neighbor is infected. On the rhs in Eq. (1b),
the third term accounts for the increment in the susceptible
class result from the transition V→S, which is proportional to
the resusceptibility rateφ; and the fourth term accounts for
the probability of the vaccination process S→V, which is pro-
portional to the vaccination rateϕ.

It should be stressed that the MF approach (Eqs. (1a) and

(1b)) is equivalent to the mass-action law (system (1) in
Ref. [5]) with the adaptation of the reaction rates to include
the average connectivity〈k〉. Thus, one can obtain similar re-
sults for the epidemic threshold and equilibrium stability. It
is due to the homogeneity of the WS network, which is also
the case for the SIS model in Ref. [17]. In accordance with
the results in Ref. [5], there is either a forward bifurcation or
a backward one, depending on the epidemiological parame-
ters: (1) in case of the model exhibiting the forward bifurca-
tion, there is only one globally stable EE as the transmission
rate is above the epidemic threshold, below which the DFE
is the only attractor; (2) in case of the presence of the back-
ward bifurcation, there are multiple endemic equilibria (MEE)
- meaning that there are two or more EEs in the steady state -
existing between a sub-threshold and the epidemic threshold,
meanwhile both the DFE and the lower EE are locally stable.

In the following much attention will be paid on the epi-
demic prevalence in the steady state. Imposing the stationary
conditions d

dts(t) = 0 and d
dtρ(t) = 0 yields

ρ = (1− β)ρ+ δα〈k〉(1 − ρ)ρ+ α〈k〉(1 − δ)
(β − φ)ρ2 + φρ

α〈k〉ρ+ ϕ+ φ
= f(ρ) (2)

for density of infected nodes in steady states. Notice that
f(0) = 0 andf(1) < 1, Eq. (2) has a nonzero solution on

the interval(0, 1) only if f ′(ρ)
∣

∣

∣

ρ=0
> 1, which defines the

epidemic threshold

λc =
ϕ+ φ

δϕ+ φ

1

〈k〉 =
η + 1

δη + 1

1

〈k〉 . (3)

On the other hand, Eq. (2) can be rewritten as

F (ρ) = Aρ2 +Bρ+ C = 0, (4)

with coefficients

A = δα〈k〉,
B = δϕ+ φ+ δβ − δα〈k〉,

C = −[(δϕ+ φ)− 1

λ〈k〉 (ϕ+ φ)].

The solutions to Eq. (4) correspond to equilibria of system (1)
for givenλ.

(i) λ > λc. In this case,C < 0 always holds. SinceF (0) =
C < 0 andF (1) = A+B+C = δβ + (ϕ+φ)/(λ〈k〉) > 0,
system (1) has a unique EE,

ρ =

√
B2 − 4AC −B

2A
(5)

In contrast to special solutions obtained in Ref. [5], this ex-
pression is general. Asλ → λc, C closes to0. From Eq. (5),
it follows thatρ → 0. Ignoring the second order term ofρ in
Eq. (4), one has

ρ ≈ δϕ+ φ

δϕ+ φ+ δβ − δα〈k〉 ·
λ− λc

λc
∼ (λ− λc). (6)

In fact, as given in Appendix A, applying Taylor series ex-
pansion to the square root part of the first term atδ = 0 and
omitting the higher order correction inδ, Eq. (5) can be sim-
plified to

ρ ≈ 1− 1

〈k〉
η + 1

λ
. (7)
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FIG. 2: (Color online) Bifurcation diagrams ofρ as a function ofλ in
the WS network with the average connectivity〈k〉 = 10 for various
δ: 0.001 (a), 0.01 (b), and 0.1 (c). In each chart, black and redcurves
respectively represent stable and unstable branches of system (1).
Parameter values:β = 0.002, ϕ = 0.001, andφ = 0.0002.
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FIG. 3: (Color online) Illustration of the dynamic behavioron the
δ-η plane with parametersβ = 0.002 andφ = 0.0002, showing
the necessary condition for bistability in the WS network with 〈k〉 =
10. The white (grey) region corresponds to the single stable state
(bistable states). The blue (red) line is upper (lower) bound of η for
given δ. Only if η is inside the range between the upper and lower
bounds can the MEE occur. Otherwise, there is only one attractor
(either the DFE or the EE).

(ii) λ < λc. In this case, it is impossible to obtain the
general solution of the epidemic prevalence. Following the
parametric analysis in Ref. [5], one finds that there are two
different EEs in the regimeλb < λ < λc on the premise of
λa < λb, whereλa = δ(β+ϕ)+φ

〈k〉δβ corresponds to the condition

B = 0, andλb = 1
〈k〉

(

1 − δϕ+φ
δβ + 2

δβ

√

βδ(1 − δ)ϕ

)

cor-

responds toB2 − 4AC = 0. This finding suggests that under
the conditionλa < λb, which is equivalent to

(δϕ+ φ)2 < βδ(1− δ)ϕ, (8)

there emerges a sub-thresholdλb (the persistence threshold,
above which an already established epidemic can persist [32])
and an epidemic thresholdλc (the invasion threshold, which
still denotes the critical parameter value for invasion of new
diseases). In the bifurcation diagram, this sub-thresholdcorre-
sponds to a saddle-node bifurcation, and the epidemic thresh-
old corresponds to a forward bifurcation, and consequently
these two thresholds together exhibit first order transitions be-
tween the healthy phase (without disease) and the endemic
phase (with disease) (see Fig.2(c)). This reveals the hys-
teresis effect caused by the introduction of vaccination into
the infectious disease. However, in other cases, there is only
the invasion threshold, and hence only the forward bifurcation
(see Figs.2(a) and2(b)).

Clearly, whether the interval(λb, λc) is a bistable region or
not in the bifurcation diagram ofρ as a function ofλ is com-
pletely determined by the condition (8) which can be rewritten
as

δ2η2 + [2− β

φ
(1− δ)]δη + 1 < 0. (9)

Only if β
φ (1 − δ) > 4 can the inequality has solutions on

the interval(η1, η2) ⊂ (0,∞), which indicates thatδmax =

1 − 4φ
β . On the contrary, there is only one single stable

state ifβ/φ ≤ 4. Figure3 gives an illustration. In case of
β = 0.002 andφ = 0.0002, the ratio isβ/φ = 10. To en-
sure β

φ (1 − δ) > 4, it demandsδ < 0.6. In particular, at
δ = 0.001, the upper and lower bounds ofη are127.18(1) and
7892.81(6), respectively. On the other side, givenη = 5.0,
only if 0.02(7) < δ < 0.51(1) can system (1) experience the
bistable states. From calculation in Appendix B,η reaches the
minimum 2/3 at δ = 3/8. The presence of such a bistable
region highlights an important but unexpected influence of
vaccination on disease spreading. The bifurcation diagrams
in Fig. 2 correspond to three different values ofδ (= 0.001,
0.01, and0.1) for η = 5.0. At δ = 0.1 the system exhibits
the bistable phenomenon, and in order to wipe out the disease,
one must ensure thatλ < 0.37(4) rather thanλ < 0.4.

The emergence of MEE gives rise to complexity in the vac-
cination intervention. In the real world, it is interestingto
study the effective vaccination and its influence on the epi-
demic prevalence. To do that, one can consider system (1)
with proper choice ofβ, φ, η, andδ, respectively, ensuring
that only the forward bifurcation occurs. In the following,δ
is fixed at a relatively small valueδ = 0.001 with β/φ = 10
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D0 D1

simulation analytical simulation analytical

〈k〉 = 8 1.07(2) 1 0.14(5) 0.125

Fig. 4(b) 〈k〉 = 10 1.06(1) 1 0.11(4) 0.1
〈k〉 = 12 1.06(7) 1 0.09(6) 1/12

λ = 0.6 1.01(3) 1 0.11(0) 0.1

Fig. 4(c) λ = 0.7 1.00(7) 1 0.10(8) 0.1
λ = 0.8 1.00(3) 1 0.10(4) 0.1

TABLE I: Simulation values ofD0, D1 calculated by applying the Levenberg-Marquardt algorithm[33] to the least squares curve fitting on
the simulation data plotted in Figs.4(b) and4(c), with the general function in the form ofρ = D0 −D1

η+1

λ
. The quantitative comparison is

also demonstrated, which shows a good agreement between thenumerical simulation and the analytical prediction by Eq. (7).
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FIG. 4: (Color online) Infected densitiesρ in the WS networks as
functions ofλ (a), 1/λ (b), andη (c), respectively. Solid lines are
analytical solutions to Eq. (5). Dash lines are theoretical prediction
by Eq. (7). Parameters values:β = 0.002, φ = 0.0002, andδ =
0.001.

andη < 127.18(1), where only a globally stable EE exists if
λ > λc or a globally stable DFE arises ifλ ≤ λc. Accord-
ing to the model definition,λ andη are comparably important
parameters which affect the global spread of the infection.In
Fig. 4 both analytical and numerical results ofρ as a func-
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FIG. 5: (Color online)1/λc vs1/(η+1) in the WS networks for dif-
ferent connectivities. Solid lines correspond to solutions of Eq. (3).
Parameter values:β = 0.002, φ = 0.0002, andδ = 0.001.

tion of λ andη in the WS network are present, respectively.
Simulation of the SIS model with vaccination on the WS net-
work is carried out with parametersN = 105 andp = 0.1.
The fraction of initial infectious seeds is0.1% and the preva-
lenceρ in the steady state is averaged over10 different real-
izations of the model on each of10 different initial network
configurations. Each realization goes through2 × 104 time
steps. The thresholdsλc in Fig. 4(a) are0.77(4), 0.62(5),
and0.52(3), corresponding to the average degrees〈k〉 = 8,
10, and12, respectively, which agrees with the prediction of
Eq. (3). Moreover, linear behaviors are shown from both the
simulation results and the theoretical predictions in Figs. 4(b)
and4(c).

To examine the accuracy of analytical prediction by Eq. (7),
a quantitative comparison is made in TableI, where the
Levenberg-Marquardt algorithm is applied to the least squares
curve fitting on the simulation data, with the general function
in the form ofρ = D0 −D1(η + 1)/λ, whereD0 andD1 are
positive constants. In TableI, the numerical valueD0 ranges
from 1.00(3) to 1.07(2), matching the theoretical prediction
D0 = 1; and the numericalD1 is also in good agreement with
the predictionD1 = 1/〈k〉. Thus, given all the epidemiolog-
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ical parameters, the larger the average node-degree〈k〉, the
harder for disease to break out, and if it prevails, the higher the
level of infectionρ forms (as shown in Fig.4). On the other
hand, in a fixed WS network, as the ratio(η+1)/λ increases,
ρ linearly diminishes. This implies that the competition be-
tween the transmission process and the vaccination campaign
leads to a linear decrease of the prevalence in networks witha
narrow degree distribution, as shown in Fig.4(c). Notice that
for sufficiently smallδ, as assumed in present work, Eq. (7)
turns intoρ ≈ 1 − λc/λ. In form, this scaling behavior of
ρ resembles that in the SIS model without vaccination [17],
where the threshold isλc = 1/〈k〉 . This similarity, how-
ever, reveals that the linear effect of vaccination on the preva-
lence is in essence due to the fact that vaccination program
increases the epidemic threshold byη times. To get further
information, the inverse ofλc as a function of the inverse of
η + 1 is depicted in Fig.5. Since Eq. (3) can be rewritten
as1/λc = 〈k〉[(1 − δ)/(η + 1) + δ], simulation results ver-
ify this linearity. Hence, the more effectively the vaccination
intervenes on the disease, the more difficultly it outbreaks.

IV. THE MODEL ON BA NETWORKS

The BA network [34], as a prototype of heterogeneous net-
works, can be built as follows. Start from a a set ofm0 nodes,
which are completely connected. At each time step, a new
node is added to the existing network, bringingm(≤ m0)
new links connecting to old nodes with degree preference. Af-
ter iterating this procedure a sufficient number of times, a BA
network is obtained, consisting ofN nodes with the node-
degree distributionP (k) = 2m2k−3 and the mean node-
degree〈k〉 = 2m.

The heterogeneity of the connectivity distribution inherent
to BA networks induces strong fluctuations, so systems (1)
should be modified accordingly. Denoting bysk(t), ρk(t),
and vk(t) the relative densities of susceptible, infected and
vaccinated nodes with degreek at timet, respectively, which
satisfy the normalization conditionsk(t)+ρk(t)+vk(t) = 1,
the MF equations now read as:

∂

∂t
ρk(t) = −βρk(t) + αksk(t)Θ(ρ(t)) + δαk

[

1− ρk(t)− sk(t)
]

Θ(ρ(t)), (10a)

∂

∂t
sk(t) = βρk(t)− αksk(t)Θ(ρ(t)) + φ

[

1− ρk(t)− sk(t)
]

− ϕsk(t). (10b)

The first term on the rhs in Eq. (10a) considers that a node
of degreek is in the infected state with probabilityρk(t) and
recovers from infection at the recovery rateβ. The second
term on the rhs in Eq. (10a) considers the probability that a
node withk links is in the susceptible statesk(t) and gets in-
fection via a neighbor. The probability of this last event is
proportional to the transmission rateα, the number of neigh-
borsk, and the probabilityΘ(ρ(t)) that any given link points
to an infected node. Similarly, the third term on the rhs in
Eq. (10a) considers that a node with k neighbors is in the vac-
cinated state with probability[1 − ρk(t) − sk(t)] and gets
infection via a neighbor at the vaccine-reduced transmission
rateδα. On the rhs in Eq. (10b), the third term considers that
a node with degreek is in the vaccinated state with probability
[1−ρk(t)−sk(t)] and returns to the susceptible class at the re-
susceptibility rateφ; and the fourth term considers that a node
of degreek is susceptible with probabilitysk(t) and gets vac-
cinated at the vaccination rateϕ. For uncorrelated networks,
the probabilityΘ is [17]

Θ =
∑

k

kP (k)
∑

s sP (s)
ρk. (11)

Since SF networks have no correlations under the constraint
that the maximum possible degree has a cutoff scaling at most
askc(N) ∼ N1/2 [35]. In order to ensure an uncorrelated BA
network, this restriction on the maximum degree is imposed in
present work. Imposing the stationary conditions∂

∂tρk(t) = 0

and ∂
∂tsk(t) = 0 yields

ρk =
αkΘ

(

δϕ+ φ+ δαkΘ
)

αkΘ
(

δϕ+ φ+ δαkΘ
)

+ β
(

ϕ+ φ+ δαkΘ
) . (12)

Combining Eqs. (11) and (12), one obtains a self-consistency
equation,

Θ =
1

〈k〉
∑

k

kP (k)αkΘ
(

δϕ+ φ+ δαkΘ
)

αkΘ
(

δϕ+ φ+ δαkΘ
)

+ β
(

ϕ+ φ+ δαkΘ
)

= g(Θ). (13)

Obviously, there is a trivial solutionΘ = 0 which leads to
ρ = 0. Notice that not onlyg(0) = 0 andg(1) < 1, but
alsog′(Θ) > 0, andg′′(Θ) < 0 in the limit δ → 0, only if

g′(Θ)
∣

∣

∣

Θ=0
> 1 can Eq. (13) have a nontrivial solution on the

interval(0, 1), which yields

λc =
ϕ+ φ

δϕ+ φ

〈k〉
〈k2〉 =

η + 1

δη + 1

〈k〉
〈k2〉 . (14)

In infinite-sized BA networks, the second moment of the con-
nectivity distribution is unbounded, i.e.,〈k2〉 → ∞, which
inducesλc = 0. So the infection can always prevail among
the population, no matter what the effective transmission rate
is. Whereas for finite-sized BA networks, there exists a maxi-
mum degreekc, which controls the bound of the connectivity
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fluctuations, inducing a nonzero threshold [15, 18]. From now
on, the size of the BA networks is assumed to be finite, and all
the possible values of node degrees arek = m,m+1, . . . , kc.

By computing the Jacobian matrix of the DFE{(ρk =

0, sk = φ
ϕ+φ )}

kc

k=m of system (10), one finds that the basic

reproductive number [1] is R0 = λ δη+1
η+1

〈k2〉
〈k〉 = λ/λc, which

denotes the expected number of secondary infections caused
by a single infected individual in a completely susceptible
population. Accordingly, the DFE is locally asymptotically
stable ifλ < λc, while unstable ifλ > λc meaning invasion
is always possible. As long asλ > λc there exists a positive
solutionρ ∈ (0, 1) corresponding to the EE which is locally
asymptotically stable.

SinceΘ approaches 0 asλ closes toλc, and by neglecting
all higher order corrections inΘ, Eq. (12) is in form analo-
gous to Eq. (8) in Ref. [17], and hence one expects the similar
critical behavior given by Eq. (14). Compared with the SIS
model on BA networks [16, 17], the presence of vaccination
has the effect of multiplying the epidemic threshold by a factor
(η+1)/(δη+1), i.e., enlarging by nearlyη times (asδ → 0).
This suggests that vaccination might play a significant rolein
preventing or reducing the infectious disease. The greaterthe
vaccination rate is, the bigger the epidemic threshold is, and
hence the harder the disease erupts.

Neglecting the second order term inΘ, Eq. (12) can be sim-
plified as

ρk ≈
λΘk

λΘk + η + 1
. (15)

Given the epidemiological parameters, a nodes with higher
degree is more likely to get infected. Substituting this ex-
pression into Eq. (13) and treatingk as a continuous variable
yields

Θ ≈ mλΘ

∫ kc

m

1

k

dk

λΘk + η + 1
, (16)

which gives rise to the solution

Θ ≈ (η + 1)e−(η+1)/λm

λm

[

1− e−(η+1)/λm
]−1

. (17)

Finally, at lowest order inλ, the epidemic prevalence related
to the EE is

ρ =
∑

k

P (k)ρk ≈ 2e−(η+1)/λm. (18)

Computational simulations for the epidemic model are per-
formed on the BA networks with the network sizeN = 105.
Each of the simulation data is obtained by averaging over10
different realizations of the model on each of10 different net-
work configurations. Each realization goes through2 × 104

time steps. As shown in Fig.6, there is a deviation between the
simulation results and the analytical calculations, especially in
the large prevalence regime. It is due to the fact that Eq. (12)
is simplified by neglecting the highest order inΘ. As ρ is
relatively large,Θ2 is actually not negligible. Despite this,

0 2 4 6 8 10
10-3

10-2

10-1

1

 m = 5
 m = 7
 m = 9

 

 

(a) = 5

0 2 4 6 8 10

10-2

10-1

1
= 0.4 (b)

 m = 5
 m = 7
 m = 9

 

 

FIG. 6: (Color online) Densities of infectious nodesρ in the BA
networks: (a) as a function of1/λ for η = 5.0 and various〈k〉;
(b) as a function ofη for λ = 0.4 and variousm. Solid lines are
theoretical prediction by Eq. (18). The other parameters areβ =
0.002, φ = 0.0002, andδ = 0.001.

E0

simulation analytical
m = 5 0.18(4) 0.2

Fig. 6(a) m = 7 0.12(7) 1/7
m = 9 0.09(8) 1/9
m = 5 0.17(7) 0.2

Fig. 6(b) m = 7 0.11(9) 1/7
m = 9 0.09(3) 1/9

TABLE II: Simulation value of E0 calculated by applying the
Levenberg-Marquardt algorithm to the least squares curve fitting on
the simulation data plotted in Figs.6(a) and6(b). The quantitative
comparison is also demonstrated, between the fitting valueE0 and
the analytical prediction1/m by Eq. (7).

the simulation support the calculation by the same exponen-
tial decaying in the scaling behavior, i.e.,ρ ∼ e−E0(η+1)/λ,
whereE0 is a constant. The numerical comparison is also
made between the fitting valueE0 and the analytical estima-
tion 1/m in TableII , showing a relatively small variance. For
BA networks, both in simulation and in theory, the prevalence
decays exponentially, i.e.,ρ ∼ e−(η+1)/λm. Vaccination has
an effect of accelerating byη times the exponential decreasing
of the prevalence. This finding suggests that the vaccination
intervention on a disease can efficiently reduce an endemic to
a lower level, though the heterogeneity in degree distribution
causes a vulnerability to disease outbreak in BA networks.
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V. THE MODEL ON RANDOM SF NETWORKS

In this section, the analysis for the SIS model with vac-
cination on BA networks will be generalized to random SF
networks with arbitrary exponentγ > 2. Following the idea
proposed by Newman et al. [36], the random SF networks
can be generated as below. First, a priori random integers se-
quence, each of which represents the degree of a node, drawn
from a normalized distribution

P (k) =

{

(γ − 1)mγ−1k−γ if k ≤ kc,
0 otherwise,

(19)

wherem andkc are respectively assumed to be the minimum
and the maximum values of the degree among all the nodes,
andkc ≫ m. Notice that in order to get uncorrelated ran-
dom SF networks, the restriction on the maximum degree [35]
kc(N) ∼ N1/2 is imposed. Then, nodei with degreeki is
picked out randomly from the sequence and connected to oth-
ers until its degree quotaki is realized. Duplicate connections
are avoided. This process is repeated throughout all the ele-
ments of the sequence, and finally a network is chosen uni-
formly at random from the set of all graphs with that degree
sequence. Assumingk changes continuously and the average
connectivity is thus

〈k〉 =
∫ kc

m

kP (k)dk ≈ γ − 1

γ − 2
m. (20)

For any connectivity distribution in random SF networks,
one can employ directly the analytical treatment in BA net-
works. That is to say, the MF results in the BA network are
applicable to the random SF network. According to Eq. (14),
the epidemic threshold is zero ifγ ≤ 3 in the thermodynamic
limit for random SF networks. Whereas forγ > 3, substitut-
ing Eq. (20) into Eq. (14) yields a non-zero threshold

λc ≈
(η + 1)(γ − 3)

m(δη + 1)(γ − 2)
. (21)

Since ∂
∂ηλc = (1−δ)(γ−3)

(δη+1)2(γ−2)m < 0 for any δ ∈ (0, 1), en-
hancing the effective vaccination rate can prevent epidemics
from spreading through the population. For any exponentγ in
random SF networks, combining Eqs. (13) and (20), one has

Θ =
λ′Θ(γ − 1)mγ−1

〈k〉

∫ kc

m

k2−γ

λ′Θk + 1
dk, (22)

with

λ′ =
λ

η + 1
. (23)

Due to the existence of the parameterγ, it is difficult to obtain
the explicit solution of Eq. (22). However, one can roughly
estimatesΘ andρ using the first mean value theorem. In this
way, one has

Θ =
λ′Θ(γ − 2)mγ−2

1 + λ′ΘΩ1

∫ kc

m

k2−γdk, (24)

whereΩ1 is a finite constant,m < Ω1 < kc. Thus, the solu-
tion is

Θ ≈







1
λ′Ω1

[

λ′(γ−2)mγ−2k3−γ

c

3−γ − 1
]

if 2 < γ ≤ 3,

1
λ′Ω1

[

λ′(γ−2)m
γ−3 − 1

]

if γ > 3.
(25)

The prevalenceρ can also be written as

ρ =

∫ kc

m

P (k)ρkdk ≈
m(γ − 1)

Ω2(γ − 2)
(1− 1

1 + λ′ΘΩ2
), (26)

whereΩ2 is a finite constant,m < Ω2 < kc. According to
Eq. (25), the behavior ofρ depends onγ.

(i) 2 < γ ≤ 3. In this case, for anyλ ≫ 0, λ′ΘΩ2 ≫ 1.
Implementing logarithm operation on Eq. (26) yields

ln ρ ≈ ln
m(γ − 1)

Ω2(γ − 2)
− 1

1 + λ′ΘΩ2
. (27)

Combining this with Eq. (23), one has

ρ ∼ e−v1(η+1)/λ, (28)

wherev1 is a constant, defined by

v1 =
Ω1(3− γ)

Ω2mγ−2k3−γ
c (γ − 2)

. (29)

(ii) γ > 3 while γ 6≫ 3. According to Eqs. (21) and (25),
for anyλ ≫ λc, λ′ΘΩ2 ≫ 0. One can obtain the prevalence
similar to case (i)

ρ ∼ e−v2(η+1)/λ, (30)

where the coefficientv2 reads as

v2 =
Ω1(γ − 3)

Ω2m(γ − 2)
. (31)

(iii) γ ≫ 3. In this case, the connectivity distribution de-
cays so fast that it tends to a homogeneous networks. One
would expect to obtain the similar qualitative behavior as in
Sec.III .

Simulations of the SIS model with vaccination on random
SF networks are performed to compare with the theoretical
analysis. The simulated networks range fromN = 105 to
N = 106 and the minimal degree of nodes ism = 5. Figure7
shows the epidemic thresholdλc as a function of the alge-
braic expression(γ − 3)/(γ − 2). Closed squares represent
numerical data and the solid line corresponds to the predic-
tion of Eq. (21). One notices the good agreement between the
computer simulation and the analytical calculation. Figure 8
depicts the behaviors ofρ as a function of1/λ (Fig. 8(a)) and
as a function ofη (Fig. 8(b)), respectively. It is clear that ei-
ther forλ ≫ 0 (the case of2 < γ ≤ 3) or for λ ≫ λc (the
case ofγ > 3 andγ 6≫ 3), the stationary densityρ of infected
nodes in the random SF networks decays exponentially, i.e.,
ρ ∼ e−v(η+1)/λ, wherev is a positive constant, which is de-
termined by Eq. (29) or Eq. (31). On the contrary, atγ = 40,
as shown in the inset of Fig.8, ρ decreases linearly similar to
the behavior observed from WS networks.
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FIG. 7: (Color online) Effective transmission thresholdλc as a func-
tion of (γ − 3)/(γ − 2) in the random SF network. The full line
corresponds to the analytical calculation of Eq. (21). Parameter val-
ues:η = 5.0, β = 0.002, φ = 0.0002, andδ = 0.001.
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FIG. 8: (Color online) Semi-log plots of the persistenceρ in random
SF networks as a function of1/λ (with η = 5.0) (a) andη (with
λ = 0.5) (b) for various values ofγ: 2.5, 3.5, and4.5 (from top
to bottom). The insets of (a) and (b) respectively display the linear
dependence ofρ as a function of1/λ andη for γ = 40. Parameter
values:β = 0.002, φ = 0.0002, andδ = 0.001.

VI. CONCLUSION

The study of vaccination in populations has to take into con-
sideration not only vaccine-related parameters, but also social
risk behaviors that may alter the expected predictions. To our
knowledge, however, very few work addressed this problem.
The present research integrated the both factors and studied

a networked SIS model with vaccination, where vaccines that
attempt to reduce susceptibility to infection is characterized
by three parameters in the model: coverage (represented by
ϕ), waning period (represented byφ), and efficacy (repre-
sented byδ). Sinceδ is intrinsically related to the quality
of the vaccine, much attention has been paid to the parame-
ter η (the ratio ofϕ to φ) in the vaccination intervention on
infectious diseases, as well as the role of the ratioλ (the ra-
tion ofα toβ) in epidemic spreading. With the frameworks of
the MF approach and elementary means, the model has been
studied on WS, BA, and random SF networks. The analysis
of thresholds and prevalence demonstrated the significant ef-
fects of the vaccination on the epidemic dynamics as well as
the structures of the underlying networks.

In the WS networks, since the MF model is equivalent to
the classic compartmental model in Ref. [5] with the adapta-
tion of reaction rates by the average connectivity, the threshold
behavior and equilibrium stability are similar to the literature.
The thresholdλc is defined by Eq. (3), above which there is
only one globally stable EE and below which the model may
exhibit MEE for certain epidemiological parameters. As to
the prevalence, rather than special solutions obtained in the
compartmental model, this paper gives the general one for
the steady endemic state, which scales asρ ∼ −(η + 1)/λ.
Thus, the effective vaccination can linearly decrease the en-
demic level in homogeneous networks, although vaccination
intervention may give rise to the backward bifurcation in these
networks.

In the SF networks, however, the system shows very differ-
ent behavior. The thresholdλc is defined by Eq. (14). Only
for the SF network with the power-law distribution exponent
2 < γ ≤ 3 in the thermodynamic limit canλc be zero. Oth-
erwise, the system has a non-zero threshold for the SF net-
works with anyγ > 3. In comparison with the WS network
at the same average connectivity〈k〉, λc in the SF network is
smaller than that in the WS network. For anyλ > λc, the
prevalence in the SF network scales asρ ∼ e−v(η+1)/λ. Thus,
the vaccination can exponentially decrease the endemic level
in heterogeneous networks.

All these results are on the presumption that the underly-
ing networks are static. For some diseases which spread too
fast in comparison with change of the population structure,
the present work may provide a preliminary theory for vac-
cine control of infection. For other diseases, however, indi-
vidual responses to infection plays an important role in either
reducing the transmission rate or changing the contact struc-
ture [37–39]. Hence, it is interesting to study vaccination in
adaptive networks, which is left for future research.
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Appendix A: Simplification of Eq. (5) to Eq. (7)

Since the inefficacy rate of vaccineδ is assumed to be suf-
ficiently small, it is possible to simplify the complex square
root part in Eq. (5) via Taylor series expansion at the point
δ = 0. First of all, rewrite Eq. (5) as

ρ = ρ1 + ρ2, (A1)

where

ρ1 =
〈k〉αδ − (ϕδ + βδ + φ)

2〈k〉αδ , (A2)

and

ρ2 =
h(δ)

2〈k〉αδ (A3)

accompanied with

h(δ) =
[

h1(δ)
]1/2

, (A4)

h1(δ) =
(

δϕ+φ+δβ−δα〈k〉
)2
+4δα〈k〉(δϕ+φ)−4δβ(ϕ+φ).

(A5)
So, rearranging each term, one has

h1(δ) = aδ2 + bδ + φ2, (A6)

where
{

a =
(

ϕ+ β − 〈k〉α
)2

+ 4〈k〉αϕ,
b = 2〈k〉αφ+ 2ϕφ− 2βφ− 4βϕ.

(A7)

Since the first order derivative ofh(δ) can be calculated as

h′(δ) =
1

2

[

h1(δ)
]−1/2

(2aδ + b), (A8)

one has

h′(0) =
〈k〉αφ + ϕφ− βφ− 2βϕ

φ
. (A9)

Therefore, by employing Taylor series expansion atδ = 0 for
h(δ) with regard toδ, one gets

h(δ) = h(0) + h′(0)δ + ◦(δ2)

≈ φ+
〈k〉αφ + ϕφ− βφ− 2βϕ

φ
δ. (A10)

Combining Eq. (A10) with Eqs. (A1, A2, A3) gives rise to

ρ ≈
2〈k〉αδ − 2βδ − 2β ϕ

φ δ

2〈k〉αδ , (A11)

which implies the simple relationship

ρ ≈ 1− 1

〈k〉
η + 1

λ
. (A12)

Appendix B: Calculation of the minimum lower bound of η

Let x = β/φ and substitute it into inequality (9), one ob-
tains

δ2η2 + [2− x(1− δ)]δη + 1 < 0, (B1)

which has positive solutions if and only if

{[x(1− δ)− 2]2 − 4}δ2 > 0, ⇐⇒ x(1− δ) > 4. (B2)

The solutions of inequality (B1) read

η1(δ) < η < η2(δ), (B3)

where

η1(δ) =
[x(1− δ)− 2]−

√

[x(1 − δ)− 2]2 − 4

2δ
, (B4)

η2(δ) =
[x(1− δ)− 2] +

√

[x(1 − δ)− 2]2 − 4

2δ
. (B5)

The derivative of the lower boundη1(δ) is

dη1
dδ

=
1

2δ2

{x(x− 4)− x(x− 2)δ
√

[x(1 − δ)− 2]2 − 4
− (x− 2)

}

. (B6)

Let dη1

dδ = 0, it follows that

x[x− 4− (x− 2)δ] = (x− 2)
√

[x(1 − δ)− 2]2 − 4, (B7)

which gives the extreme point

δ∗ =
x− 4

2(x− 2)
=

β
φ − 4

2(βφ − 2)
. (B8)

Substitutingδ∗ into Eq. (B4) yields the minimal lower bound

η1min =
4

x− 4
=

4
β
φ − 4

. (B9)
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[39] S. Funk, M. Salathé, and V. A. A. Jansen, J. R. Soc. Interface7,

1247 (2010).


