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Competition between line tension and curvature stabilizes modulated phase patterns
on the surface of giant unilamellar vesicles. A simulation study.

Jonathan J. Amazon,∗ Shih Lin Goh,† and Gerald W. Feigenson‡

Department of Molecular Biology and Genetics, CornellUniversity, Ithaca,NewY ork

When prepared in the liquid-liquid coexistence region, the four component lipid system
distearoyl-phosphatidylcholine (DSPC)/dioleoyl-phosphatidylcholine (DOPC)/palmitoyl,oleoyl-
phosphatidylcholine (POPC)/Cholesterol with certain ratios of DOPC and POPC shows striking
modulated phase patterns on the surface of giant unilamellar vesicles (GUVs). In this simulation
study we show that the morphology of these patterns can be explained by the competition of line
tension (which tends to favor large round domains) and curvature, as specified by the Helfrich
energy functional. In this study we use a Monte-Carlo simulation on the surface of a GUV to
determine the equilibrium shape and phase morphology. We find that the patterns arising from
these competing interactions very closely approximate those observed, the patterned morphologies
represent thermodynamically stable configurations, and that the geometric nature of these patterns
is closely tied to the relative and absolute values of the model parameters.

I. INTRODUCTION

Model systems provide an important way to study
and understand the behavior of multicomponent lipid
bilayer membranes. The three component lipid sys-
tem, distearoyl-phosphatidylcholine (DSPC)/dioleoyl-
phosphatidylcholine (DOPC)/cholesterol (CHOL) has a
well characterized phase diagram, with a region of liquid-
liquid (Lo + Ld) coexistence that is readily observable in
giant unilamellar vesicle (GUV) studies as large round
domains [1, 2]. This mixture is a useful model for under-
standing the general nature of bilayers containing a high
melting lipid (DSPC), a low melting lipid (DOPC), and
cholesterol.

If we replace the low melting lipid, DOPC, with POPC
(palmitoyl, oleoyl-phosphatidylcholine), we find a stark
difference in the phase morphology. Performing GUV
imaging studies on the POPC-containing system reveals
that the liquid-liquid coexistence region appears uniform,
unlike the macroscopic phase domains seen with DOPC-
containing mixtures. However, FRET, ESR [3], and neu-
tron scattering studies [4] show that liquid-liquid coexis-
tence is present with POPC. This observation implies
that phase separation occurs in the POPC-containing
system on the nanometer scale, thus not resolvable by
ordinary light microscopy. Given the large body of data
from studies of animal cell plasma membranes that sup-
ports the occurrence of Lo + Ld phase domains [5–7],
and given that the size scale, shapes, and connectivities
of phase-separated domains might be involved in the fun-
damental behaviors of animal cells, understanding the
membrane in terms of a nonrandom physical mixture
might be important.

A four-component mixture containing DSPC, DOPC,
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POPC, and cholesterol enables study of the full range of
phase mophologies, from domain size scale of nanometers
to microns, that could occur in cell membranes. On the
DOPC-heavy side of this phase diagram we expect large
macroscopic domains, whereas on the POPC-heavy side
we expect GUVs to appear uniform (nanodomains). The
relative amounts of DOPC and POPC can be controlled
precisely in order to study the macro-to-nano transi-
tion [8]. The relative amount of DOPC and POPC can
be described by ρ, given as,

ρ ≡ χDOPC
χDOPC + χPOPC

, (1)

where χDOPC and χPOPC are the mole fractions of
DOPC and POPC respectively. In this way, ρ = 1.00
corresponds to a three-component mixture with DOPC
as the only low-melting component and ρ = 0.00 cor-
responds to a three-component mixture with POPC as
the only low-melting component. The trajectory defined
by varying ρ from 0.00 to 1.00 pierces the tetrahedral
composition space, with endpoints located on the POPC
and DOPC faces. For both experimental and simulation
studies, the mole fractions of DSPC and CHOL are held
fixed unless otherwise stated.

When DSPC and CHOL are held at particular mole
fractions within the liquid-liquid coexistence region, for
example χDSPC = 0.45 and χCHOL = 0.25, and the
value of ρ is varied, a patterning of the phases is ob-
served in the composition range, 0.15 < ρ < 0.25 [8].
This range can be termed the “modulated phase win-
dow” and for these particular compositions is character-
ized by thin stripes of Ld phase within a more abundant
Lo phase, as shown in figure 1. The overall pattern can
resemble striped or honeycomb-like structures, each with
a characteristic periodicity. For this particular compo-
sition (χDSPC = 0.45, χCHOL = 0.25), macroscopic do-
mains are observed when ρ > 0.25 and uniform GUVs
are observed when ρ < 0.15 [8].

The underlying mechanism of the formation of modu-
lated phases in this system has not previously been un-
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FIG. 1: Four examples of modulated phase patterns
observed using wide field fluorescence microscopy. Im-
ages are cropped and contrast adjusted. (A) and (B),
composite images of focused slices of the GUV, the
white ring marking the boundary of the composite im-
age. GUV compositions DSPC/DOPC/POPC/Chol: (A)
0.487/0.0625/0.188/0.263, (B) 0.45/0.075/0.225/0.25, (C)
and (D) 0.395/0.12/0.18/0.305. Dye C12:0 DiI (0.02 mol%)
partitions into Ld. Scale bars, 10µm, temperature 23oC.

derstood. Our aim is to model and simulate the for-
mation of these modulated phases to better understand
the transition taking place as mixture composition moves
through this ρ window. We can then use this model
to make predictions about the nature of nanodomains
present in the pure POPC system and eventually the na-
ture of phase separation on the plasma membrane.

II. MATERIALS AND METHODS

A. GUV preparation and microscopy

GUV samples were prepared as described in [8] with
the following modifications: GUVs were swelled at 55oC
in either 100mM sucrose or 100mM glucose, then cooled
to room temperature (23oC) over 12 hours. Samples were
harvested into microcentrifuge tubes (Fisher Scientific)
using large orifice pipet tips (Fisher Scientific), and let
settle for about 2 hours before observation.

Widefield microscopy was performed on a Nikon
Diaphot-TMD inverted microscope at 23oC using a 60X
1.4NA oil immersion objective. To minimize light-
induced artifacts, GUVs were first located in bright field
mode before illumination for fluorescence. Samples con-

tained 0.02 mol% C12:0 DiI, imaged with 535-550 nm
excitation and 565-610 nm emission. Images were col-
lected with a Photometrics charge-coupled device camera
CoolSNAPHQ2 (Tucson, Arizona).

Phospholipids were purchased from Avanti Polar
Lipids (Alabaster, AL), cholesterol from Nu Chek
Prep (Elysian, MN) and the fluorescent dye C12:0-DiI
(1,1’-didodecyl-3,3,3’,3’-tetramethylindocarbocyanine
perchlorate) from Invitrogen (Carlsbad, CA). Con-
centrations of phospholipid stocks were determined
to < 1% error with inorganic phosphate assay [9],
and purity checked with thin layer chromatography
in chloroform/methanol/water solvent. Cholesterol
at defined concentration was prepared by standard
gravimetric procedures. Fluorescent dye concentrations
were determined using absorption spectroscopy on an
HP 8452A spectrophotometer (Hewlett-Packard, Palo
Alto, CA).

B. Simulation model

To approach the problem of explaining the appearance
of modulated phases, we constrain our model of the ob-
served patterns in two ways:

1. Modulated phases are at a state of thermodynamic
equilibrium. This is supported by the observation that
the patterns do not change over the observation times,
persisting for hours and even days.

2. Bilayers are phase-separated, the two coexisting
phases are fluid, and the value of ρ changes only the ma-
terial parameters describing the energetics of that phase.
These assumptions are reasonable because the composi-
tions under consideration are squarely within the liquid-
liquid coexistence region of both of the ρ = 0.00 and
ρ = 1.00 faces of the phase diagram tetrahedron [3]. This
simplifies the mathematical model, as we can drop terms
in the energy functional that are not related to morphol-
ogy (such as any term that depends only on the local
composition).

Our approach uses a competing interactions
model [10], which has been shown to produce modulated
phases in many systems. The formalism states that
multiple fields (order parameters) that couple in a way
that opposes the formation of a single domain with
minimal boundary can form equilibrium honeycomb and
striped patterns.

The fields we consider are the local composition and
the local curvature of the membrane [11–13]. These cou-
ple through the composition-dependent material proper-
ties [14–18], which dictate the energetics of bending and
stretching the membrane. We implement this model in
simulation to find the thermodynamic equilibrium state.
To do so we use a Monte-Carlo simulation to sample the
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configuration space of fields, then we use the Metropo-
lis Algorithm [12] to ensure that energy is minimized to
within thermal noise.

Similar simulations have been performed, including the
work of Lipowsky et al. that showed how curvature and
line tension were able to stabilize as many as seven do-
mains and give rise to a variety of GUV shapes [12]. Sim-
ulation studies of Fan et al. showed that more compli-
cated models, such as lipid recycling, can stabilize non-
equilibrium patterns on a flat membrane [19]. Other
models for the stabilization of multiple/patterned do-
mains have also been studied including a general com-
peting interaction model [20] and the effects of dipolar
repulsion between lipids [21–23]. It has been shown that
electrostatics are too short-range to account for the many
micron length scale we observe in modulated phases [8]

To begin modeling the modulated phases we first for-
mulate an energy functional. The three fields that our
energy functional depends on are the local phase, φ, the
mean curvature, H, and the Gaussian curvature G.

C. Local phase field

The local phase at a point, r, on the membrane surface
is given by the φ(r) field,

φ(r) =

{
0 r ∈ Ld
1 r ∈ Lo

(2)

This binary field allows us to define the phase morphol-
ogy on the surface. We also assume that the total amount
of each phase is fixed (that is, we choose where we are
along a given thermodynamic tieline). If we specify the
fraction of surface in the Lo phase by P , then this con-
straint can be written,

1

Atot

∫∫
φ(r)dA = P, (3)

where Atot is the total area of the membrane surface.
The value of Atot is also considered fixed because of the
large elastic modulus of lipid bilayers [12, 17, 24].

D. Mean curvature field

The mean curvature can be defined as the divergence
of the surface normals,

H(r) = ∇ · ~n(r), (4)

which means that mean curvature can roughly be inter-
preted as the degree to which the normal vectors point
towards (H < 0) or away from (H > 0) each other. For
computational purposes we use an alternative definition

of the mean curvature relating to the change in area un-
der normal projection:

If each point in a small patch of area A is projected
outwards a distance ∆R along the surface normals, then
the change in area ∆A is related to the mean curvature
by,

∆A = AH(r)∆R. (5)

Which can be rearranged to give an explicit expression
for H(r),

H(r) =
∆A

A∆R
. (6)

This is known as the First Variation of Area formula,
which lends itself easily to a general method for calculat-
ing curvature fields on a discrete surface. A diagram of
this process is shown in Figure 4.

E. Gaussian curvature field

The Gaussian curvature can be locally defined by the
Gauss-Bonnet theorem. Consider a small N -sided poly-
gon with area A, centered on a point r, that is delim-
ited by surface geodesics that meet at exterior angles θ1,
θ2,...,θN . The Gaussian curvature at r is,

G(r) =
1

A

[
2π −

N∑
i=1

θi

]
. (7)

Gaussian curvature is roughly a measure of the extent to
which parallel lines drawn on the surface are bent towards
each other (G > 0) or away from each other (G < 0).

F. Energy functional

Since we assume that the membrane is already phase
separated, our Hamiltonian has three major contribu-
tions [12, 24]: the line tension term, HP , the mean cur-
vature term, HH , and the Gaussian curvature term, HG.
Thus the Hamiltonian is expressed as,

H[φ,H,G] = HP +HH +HG. (8)

1. Line tension term (HP )

The line tension is an expression of the unfavorable
energy required to make an interface between the two
membrane phases [8, 16, 25]. It is defined by multiply-
ing the total perimeter of the phase boundary, L, by a
constant energy per unit length, γ,
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HP = γL. (9)

It can be shown that for a fixed amount of Ld and
Lo phases, the minimal boundary is achieved when one
large round domain is formed, maximizing the area-to-
perimeter ratio. This drives the system towards macro-
scopic phase separation.

To determine the value of L strictly from the function
φ(r) is the product of a complicated limiting process. In
practice L is computed discretely and takes on the form
of a simple sum.

2. Mean curvature term (HH)

The mean curvature and Gaussian curvature terms are
both from the Helfrich formulation [12, 24]. This defines
the energy of bending the membrane up to quadratic or-
der in the mean and Gaussian curvatures. The mean
curvature expression is given by,

HH =

∫∫
κ(φ(r))[H(r)]2dA, (10)

where κ(φ) is the local bending modulus. This is defined
as,

κ(φ) =

{
κd φ = 0
κo φ = 1

(11)

where κd and κo are the bending modulus in the Ld and
Lo phases respectively.

3. Gaussian curvature term (HG)

The Gaussian curvature term is also from the Helfrich
functional and is defined as,

HG =

∫∫
κ̄(φ(r))G(r)dA, (12)

where κ̄(φ) is defined similarly as,

κ̄(φ) =

{
κ̄d φ = 0
κ̄o φ = 1

(13)

where κ̄d and κ̄o are the Gaussian bending modulus in
the Ld and Lo phases respectively.

4. Constraints

In addition to the three terms outlined above we also
include two harmonic constraint terms to keep the area

and volume of the GUV close to a fixed value (defined at
the outset of the simulation).

HA = Al(Atot −A)2 (14)

HV = Vl(Vtot − V )2 (15)

where Atot and Vtot are the fixed values of the area and
volume respectively. The harmonic strengths Al and Vl
are in practice kept very large to allow very little fluctu-
ation [12].

III. DISCRETE MODEL

The formalism outlined above is the continuum de-
scription of a phase separated membrane’s energetics. In
order to simulate this system it is necessary to find a
suitable discretization scheme that will allow us to faith-
fully mimic the conformations of a continuum membrane.
To do this we use a triangulated lattice with an overall
spherical topology [12].

This lattice can be described by a set of vertices, edges,
and faces ({vi},{ei}, and {fi}) with Nv,Ne, and Nf
elements respectively. The number of vertices, edges,
and faces also must satisfy the Euler characteristic of
a sphere, Nv −Ne +Nf = 2. To define the topology we
must define the connectivity of the lattice. With ni the
number of neighbors that vi [30] has (between 3 and 10),
we define the three sets,

{vij} {eij} {fij}

where vij is the jth neighbor of vertex i. It is important
to note that the sequence of vertices defined by,

vi0 → vi1 → ...→ vi(ni−1) → vi0,

forms a counter clockwise loop around the parent vertex,
vi. The elements of {eij} define the edges connecting
the vertices vi and vij . The elements of {fij} define the
faces containing the vertices vi, vij , and vi(j+1). These
elements are only defined for 0 ≤ i < Nv and 0 ≤ j < ni.
The second index, j, is assumed to be modulo ni unless
stated otherwise. This geometric construction is shown
in figure 2.

A. Geometric properties

It is also useful to have the geometric parameters of the
lattice at our disposal. Let fi be a face delimited by the
three vertices {~w1, ~w2, ~w3}. The midpoint, normal, area,
and volume associated with this face can all be defined
from the geometry as,



5

FIG. 2: Geometric layout of a vertex and its neighboring
vertices, edges, and faces. The sequence of neighbors form a
counter clockwise loop allowing us to orient the surface nor-
mals outward.

~m(fi) =
1

3
(~w1 + ~w2 + ~w3) (16)

~n(fi) =
(~w2 − ~w1)× (~w3 − ~w1)

‖(~w2 − ~w1)× (~w3 − ~w1)‖
(17)

A(fi) =
‖(~w2 − ~w1)× (~w3 − ~w1)‖

2
(18)

V (fi) =
A(fi) [~w1 · ~n(fi)]

3
. (19)

The volume, V (fi), is the volume of the pyramid formed
by connecting its three vertices to the origin. Similarly let
ei be an edge delimited by the vertices ~w1, ~w2 and shared
between the two faces g1, g2. The midpoint, normal, and
length associated with this edge are defined as,

~m(ei) =
~w1 + ~w2

2
(20)

~n(ei) =
A(g1)~n(g1) +A(g2)~n(g2)

‖A(g1)~n(g1) +A(g2)~n(g2)‖
. (21)

L(ei) = ‖~w2 − ~w1‖ . (22)

The normal, ~n(ei), is the area weighted sum of the nor-
mals of the two adjacent faces. We may then define the
normal, area, and volume associated with the vertex vi
as weighted sums over the adjacent faces,

FIG. 3: Close up of the boundary between the two phases.
grey, Ld phase, black, Lo phase. The discrete interpolated
boundary is shown dashed. The interpolated boundary be-
tween two adjacent vertices (vi and vij) is shown in thick
white, Pij .

~n(vi) =

ni−1∑
j=0

A(fij)~n(fij)∥∥∥∥∥∥
ni−1∑
j=0

A(fij)~n(fij)

∥∥∥∥∥∥
(23)

A(vi) =
1

3

ni−1∑
j=0

A(fij) (24)

V (vi) =
1

3

ni−1∑
j=0

V (fij). (25)

Lastly, we define the perimeter to be interpolated be-
tween two adjacent vertices, vi and vij ,

Pij =
∥∥~m(eij)− ~m(fi(j−1))

∥∥+ ‖~m(fij)− ~m(eij)‖ (26)

The fields are defined only on the vertices of the lattice.
For brevity we refer to the values of φ,H,G on the vertex
vi as φi, Hi, Gi. To implement the energy functional out-
lined in the previous section we could compute the values
of each term on a discrete lattice. For the simulation it
is more useful to compute the local contributions to the
energy from each vertex. The global energy can then be
computed as a sum over all vertices.

B. Discrete line tension

To compute the line tension contribution at the vertex
vi we sum up the contributions to the boundary from
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each vertex and its neighbors,

Li =

ni−1∑
j=0

(1− δφiφij )Pij . (27)

where the Kronecker delta ensures that only portions of
boundary for which the adjacent vertices have opposite
phase are counted. The contour used to interpolate the
phase interface is shown in figure 3. The line tension
contribution of vertex vi is then,

HP (vi) = γLi. (28)

C. Discrete mean curvature

The mean curvature, Hi, is calculated on each vertex
using a discrete approximation to the first variation of
area formula. The disc-shaped region around the vertex
with initial area A(vi) is projected out a distance ∆R
along the normals of the edges, as shown in figure 4. Let

the two faces g
(1)
ij and g

(2)
ij be defined by the three points,

g
(1)
ij ≡ {~vi, ~m(fi(j−1)), ~m(eij)} (29)

g
(2)
ij ≡ {~vi, ~m(eij), ~m(fij)}. (30)

The projected faces G
(1)
ij and G

(2)
ij are given by,

(31)G
(1)
ij ≡ {~vi + ∆R~n(vi), ~m(fi(j−1))

+ ∆R~n(fi(j−1)), ~m(eij) + ∆R~n(eij)}

(32)G
(2)
ij ≡ {~vi + ∆R~n(vi), ~m(eij) + ∆R~n(eij), ~m(fij)

+ ∆R~n(fij)}.

The change in area under projection can then be defined
as a sum of the change in area of each face,

∆A =

ni−1∑
j=0

[
A(g

(1)
ij )−A(G

(1)
ij ) +A(g

(2)
ij )−A(G

(2)
ij )
]
.

(33)
Now the mean curvature can be defined as,

Hi =
∆A

A(vi)∆R
. (34)

The mean curvature term of the energy functional can
now be defined on this vertex as,

HH(vi) = κ(φi)H
2
i A(vi). (35)

FIG. 4: The process of mean curvature computation. The
initial star-shaped region around a vertex is projected along
the surface normals a distance ∆R to produce the shaded grey
umbrella region with a difference in area ∆A.

D. Discrete Gaussian curvature

The Gaussian curvature field is calculated by taking
the angle deficit of the star shaped region around a given
vertex [12], vi, as shown in figure 5. With the angle
between two edges given by ei 6 ej , the angle deficit and
Gaussian curvature can be written as,

θij =
[
eij 6 ei(j+1)

]
(36)

Gi =

2π −
ni−1∑
j=0

θij

A(vi)
. (37)

The Gaussian curvature term of the energy functional is
now given by,

HG(vi) = κ̄(φi)GiA(vi). (38)

E. Additional constraints

In addition to the three terms of our Hamiltonian, we
must also include constraint terms that keep the discrete
model from taking on impossible configurations. There
are five additional constraints we must impose on the
lattice:

The areas of individual triangles on the surface are
constrained to vary not too far from their initial value.
Let A0(fi) be the initial area of the face fi. The local
area constraint is,
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FIG. 5: Process of Gaussian curvature computation. The an-
gle between adjacent edges is summed around a given vertex
to compute the angle deficit.

CA(fi) =

{
0 |∆A(fi)| ≤ alA0(fi)
∞ |∆A(fi)| > alA0(fi)

, (39)

where ∆A(fi) = A(fi)−A0(fi). The parameter al gives
the maximal wiggle room of the triangles as a fraction of
its initial area; al = 0 implies a rigid lattice.

The length of the edges is also constrained in a similar
manner [12]. Let L0(ei) be the initial length of a given
edge, ei. The local edge length constraint is,

Ce(ei) =

{
0 |∆L(ei)| ≤ elL0(ei)
∞ |∆L(ei)| > elL0(ei)

(40)

where ∆L(ei) = L(ei)−L0(ei). Again, the parameter el
gives a wiggle room as a fraction of the initial length of
that edge.

The next constraint is a convexity constraint on the
shape of the closed surface. This constrains the normal
vector of any face to lie within the 45o cone about the
vector connecting the midpoint to the origin,

Cn(fi) =

{
0 [~m(fi) 6 ~n(fi)] ≤ π/4
∞ [~m(fi) 6 ~n(fi)] > π/4

(41)

This keeps the faces from flipping over and contributing
negative volume to the calculations. Notice that each
of these constraints are defined on the faces and edges.
They can be redefined on the vertices of the lattice as
sums over the neighboring faces/edges of that vertex,

CA(vi) =

ni−1∑
j=0

CA(fij) (42)

Ce(vi) =

ni−1∑
j=0

Ce(eij) (43)

Cn(vi) =

ni−1∑
j=0

Cn(fij) (44)

Next we have the two global constraints,

GA = Al

(
Atot −

Nv−1∑
i=0

A(vi)

)2

(45)

GV = Vl

(
Vtot −

Nv−1∑
i=0

V (vi)

)2

. (46)

Both of these constraints serve to keep the total area and
volume of the surface close to the fixed values Atot and
Vtot.

Another hidden constraint is that the total amount of
each phase be fixed,

1

Atot

Nv−1∑
i=0

φi = P, (47)

but this constraint is already imposed in the Monte-Carlo
algorithm we use in the simulation. The total energy of
the system is summarized as,

(48)

H = GA + GV +

Nv−1∑
i=0

[
1

2
HP (vi) +HH(vi) +HG(vi)

]

+

Nv−1∑
i=0

[CA(vi) + Ce(vi) + Cn(vi)] .

The factor of 1/2 is included in front of HP to take into
account that each piece of boundary is double counted.

F. Monte Carlo simulation

The Monte Carlo simulation works in two stages, one
corresponding to phase exchanges, and one correspond-
ing to vertex movements [12].

Stage 1: For the phase exchanges we choose two ver-
tices at random, vi and vj . If they have different phases
(φi 6= φj) then we swap the two phases and calculate the
change in energy using the discrete Hamiltonian defined
above, ∆E. This procedure is then accepted with the
probability e−∆E/kT . If the move is rejected then the
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Parameter Value Unit

γ 0.01 pN

κd 10× 10−19 J

κo 100× 10−19 J

κ̄d −10× 10−19 J

κ̄o −100× 10−19 J

R 25 µm

P 0.5 N/A

TABLE I: Canonical parameter set that is found to produce
modulated phases.

system is returned to the previous configuration. Since
phases are only exchanged between vertices, the conser-
vation of total phase is trivially imposed so long as the
initial configuration has a specified phase fraction P .

Stage 2: Similarly, for the vertex movements we choose
a random vertex vi and a random unit direction in space
~r. We then move the vertex a small distance (about
0.1% of the radius of the GUV) in that direction. All
of the curvature and constraint fields are updated and
the change in energy, ∆E, due to this perturbation is
calculated. It is accepted with probability e−∆E/kT . If it
is rejected then the vertex is moved back to its original
position.

This procedure is iterated a large number of times
(roughly 10,000×Nv with phase exchanges and vertex
movements performed in a 2:1 ratio) and annealed at
a linear rate from high temperature until the system has
achieved a minimal energy state to within thermal fluctu-
ations. This minimal energy state defines the equilibrium
morphology that we would expect to observe in experi-
ments where GUVs have had adequate time to anneal.

IV. RESULTS AND DISCUSSION

A. Curvature and line tension can produce
modulated phases.

Implementing the discrete model outlined above
yielded the appearance of modulated phases similar to
those observed experimentally on GUVs in this four-
component system. The simulation shows a strong pe-
riodic pattern arising from the competition between the
line tension and curvature terms. Shown in Table I is
the canonical parameter set that gives rise to a strong
modulated phase pattern.

The parameters shown here were found by trial and
error search of the parameter space. The bending moduli
here are about one order of magnitude higher than the
experimental values reported for some (different) lipid
mixtures. The reported values put the typical bending

FIG. 6: Modulated phases can be simulated. Comparison
of the pattern on a low resolution (10,000 vertex) lattice (A)
to the pattern on a high resolution (40,000 vertex) lattice (B)
shows that the patterning is not an artifact of the triangula-
tion.

moduli at values of around κd = 2 × 10−19 J and κo =
8× 10−19 J [14, 15, 18]. Notice that we have set κ ≈ −κ̄
for both the Ld and Lo phases in accordance with the
observation that κ̄/κ ≈ −0.9 [26].

The line tension reported here is two orders of magni-
tude below typical experimentally reported values, γ ≈
1.2 pN [14, 18]. Line tension values in our simulation
of modulated phases should be smaller than those mea-
sured experimentally because the values of line tension
reported in the literature correspond to large macroscopic
domains (the shape and stability of macroscopic domains
being the principle method of extracting this parameter).

We identify two reasons for this seeming discrepancy:
First, line tension cannot be measured by any method yet
reported in the regime of modulated phases. With near-
certainty we can say that it must be much lower for such
mixtures; Second, given that we used only the bending
energies as the interactions that oppose line tension, then
if additional interactions are in play besides these bend-
ing energies, the line tension to produce modulated phase
morphology would be larger. We are considering other
potential long range interactions (such as dipolar repul-
sion arising from the molecular structure of the lipids) to
include in future simulations to test this hypothesis.

In order to ensure that the modulated phases are not
an artifact in the simulation we ran the simulation on
much higher resolution lattices to see if the patterns per-
sist. Figure 6 shows a side-by-side view of the patterns
on a lattice containing 10, 000 vertices and one containing
40, 000 with the same parameter set. The poor scaling of
the simulation with vertex number makes examination of
much higher resolution problematic.

Figure 7 shows that with the same parameters as
above, but with P = 0.75, simulated patterns very closely
match experimental patterns observed on GUVs.
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FIG. 7: Direct comparison of modulated phases observed
experimentally on the surface of GUVs to patterns produced
in simulation. (A) Simulation with P = 0.75 (A2) showing
stripe-like patterns similar to those on an actual GUV (A1).
(B) Simulation with P = 0.75 and κo = −κ̄o = 300× 10−19J
showing honeycomb patterns (B2). GUV in (A1) was taken
from figure 1(C) for comparison with simulated GUV (A2).
GUV composition (DSPC/DOPC/POPC/CHOL) in (B1) is
0.45/0.09/0.21/0.25. C12:0 DiI (0.02 mol%) was used in both
(A1) and (B1). Scale bars 10 µm, temperature 23C

B. Modulated phases are thermodynamically
stable

One important issue about modulated phases is
whether or not the patterns are thermodynamically sta-
ble or instead are a kinetically trapped state. The min-
imal energy morphology of a phase-separated GUV in
the absence of curvature is known to be a single round
macroscopic domain [27], minimizing the perimeter-to-
area ratio of the domain.

To determine the thermodynamic stability of the mod-
ulated phases we compared the energy of a single round
domain morphology to that of a modulated phase mor-
phology. We first artificially generated a GUV with a
single round domain by turning off the shape exchange
portion of our Monte Carlo simulation, then allowing the
GUV to equilibrate. This gave a single round domain,
but did not contain the energetic contributions of the
thermal fluctuations. To capture the thermal fluctua-
tions we performed a second stage equilibration where
phase exchanges were turned off and the shape exchanges
were allowed to equilibrate.

As figure 8 shows, the energy of the single round do-

FIG. 8: With the parameters given in Table I, the modu-
lated phase morphology (A) is the lowest energy state. The
single round domain mophology (B) has higher energy, and
the melted lattice (C) has the highest energy and most phase
boundary.

main morphology exceeds that of the modulated phase
morphology indicating that the modulated phase mor-
phology is more thermodynamically stable.

All of the simulations shown here were started from
a melted state (vertex phases randomly dispersed). A
second test of the stability of the modulated phases was
to start the system off in a single large domain state and
then allow the system to relax to see if it still transitions
to a modulated phase morphology. This process is shown
in figure 9.

Starting from a macroscopically phase-separated GUV,
a transition to modulated phases appears, again indicat-
ing that the modulated phases are thermodynamically
more stable than the single round domain. Notice that
the energy increases at the beginning of the simulation,
seemingly in contradiction of the second law of thermo-
dynamics. This is because we have plotted only the en-
thalpic part of the free energy, neglecting the increase in
entropy as the domain begins to break apart.

C. The physical parameters of the phases and the
GUV dictate the phase morphology.

The simulation model shown here has seven tunable
parameters, each affecting the energy landscape in some
complex way. It is useful to do some exploration of how
these parameters change the nature of the morphology.
Moving along a tie-line at a fixed value of ρ will only
change the amount of each phase (P ) on the surface with-
out affecting any of the other parameters. This process
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FIG. 9: Macroscopic domains transition to modulated
phases. Energy as function of Monte-Carlo steps starting from
a single macroscopic domain, which breaks up and eventually
stabilizes to the modulated phase pattern. The simulation can
take a long time to equilibrate as shown by the continually
decreasing energy, but the pattern does not change apprecia-
bly in the tail end of the curve. The slight increase in energy
at the beginning is probably compensated by the increase in
entropy as the domain boundary begins to disintegrate.

FIG. 10: (Color) Phase morphologies change as the phase
fraction (P ) is varied. (A1) P = 0.75; (A2) Mean curvature
map showing how the modulated phases and the geometry of
the membrane couple. Curvature units in the color scale are
µm−1; (B) P = 0.5; (C) P = 0.25. The single pixel domains
are not static structures, but transiently flicker in and out of
existence due to thermal fluctuations of the membrane shape
in the Lo regions.

is shown in figure 10 for three different values of P .

The line tension, γ, has a large effect on the phase

FIG. 11: Phase morphologies change as line tension is varied.
(A) γ = 0.005 pN. (B) γ = 0.02 pN. (C) γ = 0.03 pN. (D)
γ = 1.5 pN.

morphology. The curvature and the line tension terms
work in tandem to produce the modulated phases. If this
balance is perturbed the system abruptly transitions to a
melted or macroscopically phase-separated morphology,
figure 11.

At high line tension we noticed a large degree of ki-
netic trapping caused by the very large energy barrier
to a single phase exchange. This caused non-equilibrium
stabilization of multiple small domains. Kinetic trapping
of domains by curvature is an experimentally observed
phenomenon [28], but we are interested in studying equi-
librium configurations.

The difference in bending rigidity between the Lo and
Ld controls the width of the Ld lines and the size of the Lo
domains. Figure 12 shows a series of increasing bending
rigidity of the Lo phase while keeping moduli of the Ld
phase fixed.

All of the simulations shown here are performed on
R = 25 µm GUVs. What affect, if any, does the size
of the GUV have on the nature of the patterns? We
find that scaling the radius of the GUV is energetically
equivalent to scaling the line tension,

H[R, γ] = γL+

∫
S

κ(φ)H2 + κ̄(φ)GdA. (49)

Scaling R by a factor a will scale all linear quantities by
the same factor and all area quantities by a2. Note that
under this scaling the area fraction of each phase, P , is
held fixed, so the actual area of each phase must change
accordingly (by a factor of a2).
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FIG. 12: Phase morphologies change as the bending moduli
(κo and κ̄o) of the Lo phase are varied. (A) κo = −κ̄o =
200× 10−19J. (B) κo = −κ̄o = 300× 10−19J. (C) κo = −κ̄o =
500× 10−19J. (D) κo = −κ̄o = 1000× 10−19J.

H[aR, γ] = γ(aL) +

∫
S

κ(φ)(H/a)2 + κ̄(φ)(G/a2)(a2dA)

(50)

= γ(aL) +

∫
S

κ(φ)H2 + κ̄(φ)GdA (51)

= H[R, aγ]. (52)

Thus scaling the GUV size is equivalent to scaling the
line tension, as in figure 11. See Supplemental Material
for a detailed proof of these scaling relations [29].

V. CONCLUSION AND FUTURE DIRECTIONS

We have shown that the Helfrich model can explain the
existence of modulated phase patterning: Patterns ob-
tained through simulation closely match those experi-
mentally observed on the surfaces of GUVs in the four-
component system DSPC/DOPC/POPC/CHOL and
represent thermodynamically stable configurations. The
parameters of line tension and bending energies yield
a range of different patterns (including striped, honey-
comb, and macroscopic) depending on their relative and

absolute values. This successful modeling provides a
foundation for systematic study of the control of domain
size in phase-separated biological membranes.

A. Future Studies

1. Spherical topology, can break the symmetry of the
curvature fields. By performing simulations on flat pla-
nar lattices, we will examine if patterning persists.

2. Accurate measurements of the various model parame-
ters are central to relating our simulations to the exper-
imental system. We plan to use the microscopy-based
method used by Semrau et al. [14] to measure elastic
parameters as a function of ρ in our four-component sys-
tem. These experimentally-determined parameters will
enable us to test the validity and accuracy of the sim-
ulation in faithfully representing the energetics of phase
separation in our four-component bilayer mixture.

3. Membrane tension might have a strong influence on
modulated phases. In all of the simulations shown here
the global volume constraint, GV , is omitted to allow
water to equilibrate across the membrane. Including a
global volume constraint and setting the equilibrium vol-
ume, Vtot, lower or higher than that of a uniform sphere,
enables simulation of the changes in membrane tension
caused by osmotic stress. We plan to compare such sim-
ulations with an experimental system where GUVs are
subjected to a change in osmotic pressure across the
membrane.

4. Our model makes the strong prediction that the ratio
of vesicle diameter to line tension is the key parameter,
along with bending energies, that control domain mor-
phology. Studies are underway to verify the size and line
tension scaling relation by correlating phase morphology
with vesicle size, both experimentally and in simulations.

5. The phase coexistence itself, as well as line tension and
bending moduli, are sensitive to temperature. As a fur-
ther study of modulated phase equilibrium, we will com-
pare the temperature dependence found in the simula-
tions with experimental observations of the temperature-
controlled GUVs on the microscope stage.
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