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ABSTRACT 



 
Membrane flexoelectricity is an electromechanical coupling process that describes 

membrane electrical polarization due to bending and membrane bending under electric 

fields.  In this paper we propose, formulate and characterize a mechanical energy 

harvesting system consisting of a deformable soft flexoelectric thin membrane subjected 

to harmonic forcing from contacting bulk fluids.  The key elements of the energy 

harvester are formulated and characterized, including (i) mechanical-to-electrical energy 

conversion efficiency, (ii) the electromechanical shape equation connecting fluid forces-

membrane curvature-electric displacement, and (iii) the electric power generation and 

efficiency.  The energy conversion efficiency is cast as a ratio of flexoelectric coupling to 

the product of electric and bending elasticity. The device is described by a second order 

curvature dynamics coupled to the electric displacement equation and as such results in 

mechanical power absorption with a resonant peak whose amplitude decreases with 

bending viscosity.   The electric power generation is proportional to the conversion factor 

and the power efficiency decreases with frequency.  Under high bending viscosity, the 

power efficiency increases with the conversion factor and under low viscosities it 

decreases with the conversion factor.   The presented theoretical results contribute to the 

on-going experimental efforts to develop mechanical energy harvesting from fluid flow 

energy through solid-fluid interactions and electromechanical transduction.  

 

Keywords: Membrane flexoelectricity, Bending-induced polarization, Mechanical 

energy harvesting, Flexoelectric shape equation, Power conversion 

 

 

1.  INTRODUCTION 
 



Energy harvesting based on mechanical oscillations using active materials is a 

quickly evolving and promising interdisciplinary area of electric energy production [1-

9].  The sources of mechanical oscillations include solid mechanical vibrations, fluid 

flow instabilities, travelling and standing wave motion.  The active materials in energy 

harvesting must display sensor and actuator capabilities arising from specific molecular 

composition and architectures [2].   Commonly, sensor abilities rely on materials that 

respond to mechanical excitation with electrical response. On the other hand actuation 

relies of converting a non-mechanical electric stimulus into a displacement or shape 

change.   Energy harvesting using ambient mechanical vibrations, is based on materials 

with adequate electromechanical couplings, with piezoelectricity being the most actively 

pursued, based on ceramics (PZT: Piezoelectric Lead Zirconium Titanate), polymers 

(PVDF: Polyvinylidene difluoride) and piezocomposites macro-fiber composites) [2, 5-

9]. Other polymeric materials for mechanical energy harvesting include electrostrictive, 

dielectric, electroactive, conductive and ionic polymer metal composites, and are being 

investigated as alternatives  to electromagnetism, electrostatic or piezoelectricity, that 

perform at large frequencies [2].  In this paper we analyze and model another alternative 

based on membrane flexoelectricity that combines the polarization abilities of liquid 

crystals with the soft bending elasticity associated with thin membranes [10-15]. The 

motivation of this work stems the development of new materials with encouraging 

flexoelectric properties [16, 17].   

Next we very briefly describe the piezoelectric approach to fluid-based 

mechanical energy harvesting that serves as a significant guideline for the less 

established membrane flexolectric electrom-mechanical transduction method presented 

in this paper [8, 9].   Piezoelectrical materials generate electric displacement when a 

mechanical stress is applied, known as sensor mode or direct effect: ipiezo ijk jkP d T= . The 



d-tensor is the piezoelectric charge tensor and sets the charge separation produced by an 

applied stress.  Piezoelectrics also display an electrical-to-mechanical actuation effect, 

such that a strain deformation 
ijS  is generated when an electric field E is applied 

i j i j k kS d E= . In energy harvesting applications both the direct and inverse effects are 

involved; the direct effect is used for charge generation (sensor) and this is followed by 

feedback through the inverse effect that provides actuation (motor) through strain.  The 

integrated motor/generator model that couples strain S , displacement D , stress T  and 

electrical field E is given in the following different formats as: 

( ) ( )
D T D T
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where  c  is the stiffness tensor , ( ) 1−=s c is the compliance , ε  is the permittivity 

tensor, ( ) 1−ε  is the inverse electric permittivity , e, d, q, and g are the piezoelectric 

coupling coefficients; a superposed symbol denotes that the designated field is set equal 

to zero    (exs.: Ds  and Sε  mean compliance at zero displacement and permittivity tensor 

at zero stiffness respectively) ,  a superposed t denotes the transpose and ⊗  denotes the 

proper tensor product.  Relations such as ( ) 1D E T s −
= + ⋅ ⋅c c e ε e  and 

( ) 1D E T T −
= − ⋅ ⋅s s d ε d  between the property tensors at different conditions follow 

directly from cross-substitutions in Eqs. (1).  The piezoelectric conversion coefficient 

2
ijk ;ij 33,31= , is an index of merit that quantifies the fraction of the energy converted 

between the mechanical and electrical domains and is bounded as [8, 9]:  



( )2
ij2

ij T E
ij ij

dint eraction  transformed energy0 k 1
inco min g energy elastic dielectric s

< = = = <
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          (2) 

were we used the strain-charge (actuator) configuration; the other expressions can be 

read from Eqs.( 1). The higher the 2
ijk   the higher the electromechanically energy 

conversion.   Integrating the generator/motor equations with the Navier-Stokes 

equations for fluid flow gives a generic model for energy harvesting from fluid flow-

generated mechanical oscillations [4]: 

f

2

f2

f

d 0
ddt

d dtp
dt

         
          fluid  flow                    solid elasticity                                    Gauss law

          
⎛ ⎞=⎜ ⎟
⎝ ⎠

⇔ ⇔
ρ⎧ ⎫+ ρ∇ ⋅ =⎪ ⎪ ⎧ ⎫⎪ ⎪ ρ = ∇ ⋅ +⎨ ⎬ ⎨ ⎬

⎩ ⎭⎪ ⎪ρ = −∇ + ∇ ⋅
⎪ ⎪⎩ ⎭

f T
E

v
u T f

v T ( )

{ }D t

1S

fq     
−

⎛ ⎞− ⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠−⎝ ⎠

∇ ⋅ =
c q S

Dq ε

D

       (3) 

    
The text in the upper row defines the mechanism,  the corresponding equations are given 

in  brackets below and the symbols bellow the double arrows indicate the connecting 

terms between  two processes.  This system of equations (Eqs. (3)) shows the integrated 

coupling between a fluid’s linear momentum, the piezoelectric solid elasticity, and the 

Gauss law.  Fluid flow stresses fT  from unsteady fluid flows act  on the solid elastic 

material generating strains S                               

( t2 ; displacement=∇ +∇ =S u u u ) that couple  through piezoelectricity with the 

generator equation ( )D , resulting in the conversion of fluid flow into mechanical and 

electrical energy; ff  is the net force of the fluid into the solid, and qf is the free charge 

density.  Both air and water flows under laminar and turbulent are being investigated as 

mechanical energy sources.  The system of equations (3) will be used as guideline to 

build the corresponding flexoelectric energy harvester. The overall electromechanical 



efficiency of the process η is the product of the efficiency of conversion of flow power to 

the mechanical power ηfm times the efficiency of conversion of mechanical power to 

electric power meη  [4]: 

 mech elec
fm me

flow mech

P P
P P

η = η × η = ×                (4) 

As above-mentioned the basic components (eqns.(1,2,3) and performance 

(eqn.(4))  of the piezoelectric-based mechanical energy harvester model will be used in 

this paper as a framework to develop a model of the flexoelectric-based harvester.  The 

implementation of the modeling  procedure, based on a correspondence with the 

processes given in the system of equations (3),   requires a brief discussion of: (i)  liquid 

crystal and membrane flexoelectricity, (ii) sensor and actuator flexoelectric modes , and 

(iii) flexoelectric  energy harvesting , as follows.  

(i)  Liquid crystal and membrane flexoelectricity  

 Membrane flexoelectricity [10-15] is the property of synthetic and biological flat 

membranes to bend under the imposition of an external electric field (actuator), and the 

capacity to become polarized under bending (sensor) [10-15], which play a fundamental 

actuation/sensor role  in the functionality of the  Outer Hair Cells of the inner ear.   

Figure 1 shows a flexoelectric lipid bilayer which due to intrinsic polarization of the 

lipids, bending creates polarization P   along the membrane unit normal k  since the 

lower half surface is in compression and the top in tension.   

 



 
FIG 1.  Schematic of membrane flexoelectrity in biological membranes.  (a) Under planar conditions there 
is no polarization. (b) Under bending the lower surface is in compression and the upper one in dilation and 
electric polarization P  is generated.  
 

The basic science and applications of membrane flexoelectricity was developed by Petrov 

and co-workers and is described in detail in  [10]; 

(ii) Sensor and actuator flexoelectric modes.  

The flexoelectric actuator mode is given by a linear relation between input (electric 

displacement D [=]C/m  and out-put (flexoelectric bending moment tensor fM [=] J/m ): 

f = − ⋅M D h                                              (5) 

The third order membrane flexoelectric tensor is defined by the geometry of the 

membrane: 

= h= ⋅ = ⋅ s sh kk h h I kI                   (6) 

where h is the flexoelectric constant [10-15], k  is the unit normal to the membrane, 

s = −I I kk  is the surface unit tensor.  The symmetric elastic moment tensor f h D= − sM I   

scales with =D⋅D k  and vanishes under open circuit conditions. The flexoelectric sensor 

mode of synthetic and biological membranes is given by a linear relation between input 

(average curvature H [=]1/m ) ; see Appendix I) and out-put (electric field E [=]V/m ): 

( ) ( )h h 2= − = =sE h : b k I : b k H                                                                                   (7) 



where s= −∇b k  is the symmetric curvature tensor [18-20]; k is the membrane unit 

normal,  ( ) ( )s s∇ • = ⋅∇ •I  is the surface gradient operator [18-20],  and H = Is: b/2 is the 

average curvature; see Appendix I for membrane geometry fundamentals.   Membrane 

bending distortions hence create an electric polarization.  Hence we find the following 

correspondence (stress-voltage formulation in Eqs. 1) between 3D piezoelectric and 2D 

membrane mechanical quantities: ,→ →S b T M  and expect the following direct  

( ),E D b and converse ( )fe ,M D b  flexoelectric equations: 

fe D

b

= − ⋅ +
= ⋅ −

M D h c :b
E β D h :b

          (8a-b) 

where feM  is the flexoelastic moment tensor, Dc  is the membrane stiffness at =D 0 and 

b bβ=β kk  is the inverse permittivity at 0b = . Typical characteristic values of  b/h β  

for dipolar lipid membranes are 10-20C [10]. A unique features of membrane 

flexolectricity that may prove advantageous in future applications of mechanical energy 

harvesting based on fluid flow is that polarization-induced bending in thin soft 

membranes is  a natural response mode when immersing thin elastic membrane in a flow 

field that can be tuned to resonant  conditions.  Figure 2 provides an electrical-

mechanical coupling diagram based on the ,→ →S b T M  correspondence.  The thin 

lines denote direct flexoelectric effect and the dashed lines the converse one.  The 

equivalent four sets of Eqs. (1) are: (i) moment-voltage, (ii) curvature-voltage, (iii) 

moment-charge, and (iv) curvature-charge.  In this work devoted to voltage generation 

we use moment-charge as shown in Eq.(8). 



 

FIG. 2. Thermodynamic diagram showing the relations between electrical ( )E,D and mechanical 

( )M,b quantities. The full thin lines denote the direct flexoelectric effect and the dahed lines the converse.  
The membrane curvature elasticity  was given by Helfrich [10-15]. Biological membrane flexoelectricity 
wa sestablished by Petrov [10]. 
 
(iii) Flexoelectric  energy harvesting.  

This brief subsection present the key material properties and geometric features of the 

proposed device, its foundations on the flexoelectric shape equation previously derived 

[18-19], and the distinguishing  features of the device governing equation , which is 

derived in detail in section 2.  To harvest mechanical energy using flexoelectric 

membranes, we subject the deformable flexoelectric membrane to interfacial forces from 

a contacting bulk fluid. The basic energy conversion steps in the proposed device are 

shown in Fig. 3. 

 



FIG.  3. Schematic of the processes and mechanisms underlying the proposed energy harvester.  The fluid 

forces F(t)  distorts the membrane through momentum transfer. The membrane elastic mE  distortions are 

transferred to contacting electrodes and deliver electric power elecΠ .  The combination of flexoelectric 
sensor and mechanical actuation is flexoelectric mechanics. 

 

The transfer of the bulk fluid mechanical energy onto the deformable flexoelectric  

membrane is described by the membrane shape equation or stress balance along the 

membrane unit normal k.   From previous work [18-19] we find that the linear integral 

shape that describes the shape of constant curvature membranes (flat membranes that 

deform into spheres, cylinders) when subjected to tension, moments, and bulk fluid 

effects is: 

( ) ( )b(1) b(2) oolinearized
tension moments bulk  fluids

V + : - , 2γ
t

∂−ρ + ⋅ ⋅ = =
∂

T :b η M η kk T T T : bS H              (9a-b) 

where V   is the membrane normal velocity, oo2γ=T:b H is the linearized membrane 

Laplace pressure, T  is the membrane stress tensor, ooγ  is the tension, H   is the average 

curvature, fe v= +M M M  is the total moment tensor, vM  is the viscous moment, 

( )b(2) b(1): - kk T T  is the bulk stress jump between bulk fluid phases 1 and 2, S  is the 

shape area factor (units[=]1/area)  and η  is a unit vector tangent to the membrane and 

normal to its edge.  The shape area factor for a circular membrane whose edge is fixed in 

a capillary of radius “ a ” is  2
sphere 8 / a=S  , and for a rectangular membrane attached to 

two vertical plates of separation distance 2a , 2
cylinder 3 / a=S .  Figure 4a shows the 

capillary   geometry for mechanical energy harvesting based on membrane 

flexoelectricity, where the membrane is attached to the wall of the capillary and coated 

with thin electrodes. The tube is filled with a fluid and the oscillating pressure jump 



( ) ( )b(2) b(1): - p t= Δkk T T  across the membrane creates a periodic bending and 

concomitant electric response in the membrane; see Fig. 4b. 

 
FIG. 4. Schematic of a circular flexoelectric membrane coated with electrodes fixed on a capillary tube or 
radius “2a” driven by a periodic bulk fluid pressure jump ( )p tΔ across the membrane. (b) The pressure 

jump oscillations creates oscillations in curvature H which produce electric induction ( )D t .  (c) 

Geometry of the spherical membrane: h is the height of the spherical cap and R is the radius and the shape 
factor is 2

sphere 8 / a=S . 

 

The membrane periodically deforms into a spherical cusp of height ( )h t , and radius 

( )R t , shown in Fig. 4c.  In the spherical cusp geometry, and with a capillary of radius       

“ a ”, the volume of this spherical cusp is ( )2πa h t / 2  and the average curvature is 

( ) ( ) 2t 2h t / a= −H ; this curvature generates the electrical polarization.  Since the 

flexoelectric membrane subjected to contacting fluid stress is a driven viscoelastic-



inertial system, the curvature dynamics H  found from Eqs. (9) is a second order 

oscillator [21]: 

2
2
o2

d d+λ ω f(t, )
dt dt

+ = DH H H        (10) 

Adjusting the natural frequency 
oω  to the input f (t, )D  through the membrane bending 

resistance and minimizing the membrane bending viscosity λ   can lead to enhanced 

energy harvesting.   

The objective of this paper is to develop a model of a membrane flexoelectric 

mechanical  energy harvesting system based on the following sequence of steps: (i) 

develop the equivalent to the fluid-solid-piezoelectric coupled system (Eqs.8);  the solid 

in Eq.(3) now becomes a deformable membrane with bending resistance and the 

piezoelectric electromechanical  transduction mechanism is now flexoelectricity; (ii)  the 

solid force balance equation used in piezoelectricity now is the membrane shape equation 

which has to be formulated and coupled to the fluid and to the Gauss law; (iii) formulate 

the efficiency of the energy harvesting process, equivalent to the piezoelectric harvester 

Eqs.(8).  The significance of the formulated device model based on soft matter 

membranes is that it clearly identifies the specific geometric parameters, membrane 

viscoelastic moduli, and forcing frequency that control the power efficiency.  In 

particular, the model can quantify how does the membrane bending viscosity and bending 

modulus affect voltage generation and what frequency regimes are expected in the 

harvester.   The theoretical predictions presented here are inspired by biological 

flexoelectric membranes, whose role in mechanical power generation has been 

formulated previously to simulate the functioning of the outer hair cells of the inner ear 

[21].  More  quantitative prediction can be made in the future, as more experimental and 

molecular simulation data becomes available on flexoelectric membranes. 



 The organization of this paper is a follows. Section 2 develops the equations of 

flexoelasticity, starting with the Helmholtz flexoelectric membrane free energy density 

( )A ρ, ,b D ; Appendix I presents all the required differential geometry used in this paper 

and Appendix II presents the details of the derivation of the Helmholtz free energy 

density ( )A ρ, ,b D .  This energy is then used to derive the membrane tension γ   for 

curved polarized  membranes, the flexoelastic moment tensor feM , the stress tensor T , 

and the flexoelectric coupling constant 2k .  Section 3 develops the viscoelastic-inertial 

dynamics of a circular membrane fixed in a capillary tube and coated with electrodes and 

subjected to a harmonic pressure jump ( )Δp ω,t . Short and open circuit analysis of 

mechanical power, resonance, and short circuit current and open circuit voltage are 

presented.  The electric power is derived in terms of the product of the latter quantities 

and a fill factor.  In the last section 4, we summarize the findings and discuss their 

significance in terms of the effect of fluid forces, flexoelectric material properties, and 

imposed frequency on power generation and finally develop an index of merit for 

efficiency. 

 
2.  FLEXOELASTICITY 

 

In this section we first derive the Helmholtz membrane free energy density A  and 

then use it to formulate the membrane tension γ , flexoelastic moment tensor feM , and 

stress tensor T needed to formulate the flexoelectric coupling constant 2k . 

A.  Helmholtz flexoelectric membrane free energy density ( )A ρ, ,b D  

 Here we derive the free energy density per unit area ( )A ρ, ,b D  as a function of  

the surface density ρ , the 2x2 symmetric curvature tensor s= + ∗b I qH D  , and the surface 



displacement D  (charge/length); D is the deviatoric curvature and 2 2= - K H D is the 

Gaussian curvature.  The change of total internal energy U  due to entropy entS  change, 

deformation defWδ , shape 
s h a p eWδ  and electric elecWδ  work is: 

en t d e f sh ap e e lecd U d S W W W= Θ + δ + δ + δ                        (11) 

where Θ  is the temperature and where the tension γ , flexoelastic moment Mfe, and 

electric field E driven work on a membrane of area A are: 

( )fe
def shape elecW d ,  W : d , W dδ = γ δ = δ = ⋅M b E DA A A         (12) 

Introducing areal quantities ( U U /= A ) and the Helmholtz free energy density 

entA= U - T S  into Eq. (11) we find in the absence of thermal effects (see Appendix II): 

( ) fedρdA γ A : d d  
ρ

= − + − ⋅ + + ⋅E D M b E D                              (13) 

Introducing Eq. (8b) into (13) and integrating we find: 

( ) ( ) b
o

1A ρ, , A ρ,
2

= − ⋅ + ⋅ ⋅b D b h :b D β D D                             (14) 

where ( )0A ρ,b  is the purely elastic membrane component, given by the Helfrich  free 

energy density : 

( ) ( ) ( )D D 2 D 2
o oo c c cA ρ, =A ρ + 2k +k -kb H D              (15) 

and where ( )ooA ρ  is the density, ( )D D 2
c c2k +k H  the bending, and D 2

c-k D  the torsion 

contributions . ck  and 
ck  are the bending and torsion (also known as Gaussian rigidity or 

saddle-splay) elastic moduli ( see, for example,  Kralchevski and Nagayama  [20]).   

Experimental values for ck  have long been reported for many biological and synthetic 

membranes but direct measurements methods are complicated and very recent [22, 23]. 

Direct measurement methods of the saddle-splay modulus 
ck  are not available, since 



under constant Euler characteristic this term does not contribute to the bulk equations; on 

the other hand Eq. (15) of  Ljunggren et al. [24] shows the role 
ck  on the boundary 

conditions of freely hinged membranes.  Using b
f sh , =β=h kI β kk and D=D.k ,  dictated 

from the symmetry of the thin membrane, the Helmholtz free energy density becomes: 

( ) ( ) ( )D D 2 D 2 b 2
oo c c c f

1A ρ, ,D A ρ + 2k + k -k 2h D β D
2

= − +b H D H              (16) 

The free energy ( )A ρ, , Db   has mechanical, coupling and electrical contributions.  The 

flexoelastic coupling term f2h D− H only involves the average curvature.  For spheres 

=0D and for cylinders =H D.   

 

B. Tension, Flexoelastic Moment Tensor  and Electric Field 

Equation (13) gives the following tension γ , flexoelastic moment tensor feM  and electric 

field E  expressions: 

feA A Aγ + A ρ ,    ,       
ρ

∂ ∂ ∂− − ⋅ = = =
∂ ∂ ∂

E D M E
b D

                    (17a-c) 

whose detailed expressions are as follows. 

(i) Membrane Tension 

Equation (17a) is the surface Euler equation for polarizable membranes, which relates the 

free energy to the tension: A γ ρ A/ ρ+= + ∂ ∂ ⋅E D .  Assuming that all density effects are 

in ( )ooA ρ , and using Eqs.(16,17a) gives the membrane tension γ : 

( )D D 2 D 2 b
oo c c c

1γ = γ 2k +k -k β DD
2

+ −H D               (18) 



where ooγ  is the tension at zero curvature = 0=H D and zero displacement, D=0 .  The 

tension γ is a quadratic decreasing function of the displacement D and the bending and 

torsion contributions are given by the Helfrich expression (see Eq.15). 

(ii) Flexoelastic Membrane Moment Tensor 

Equation (13) gives the flexoelastic moment tensor as the change in energy with changes 

in curvature: fe A /= ∂ ∂M b . Using Eqs. (16,17b) we find three contributions: 

( )fe D D D
f s c c ch D ,    2 2k +k ,   - 2k

2 2
∗⎛ ⎞= − +⎜ ⎟

⎝ ⎠
M I q H DB T

B T ==         (19a-c) 

where ,B T  are the bending and torsion functions. This form for fe A /= ∂ ∂M b  is 

consistent with a diagonalized symmetric surface tensor; see last line on Appendix I.  

Flexoelectricity only affects the bending moments since polarization is generated by H  

and not by D . Using the definition fe D= − ⋅ +M D h c : b , the Helfrich fourth order stiffness 

tensor is: 

D Dfe
D D c c

c s s
k k  k  +
2 2

∗ ∗⎛ ⎞∂= = −⎜ ⎟∂ ⎝ ⎠

Mc I I q q
b

                (20) 

which consists of bending and torsion contributions.  Using this result the tension 

γ  (Eq.18) can be expressed in terms of curvature and displacement:  

D b
oo

1 1γ = γ + : : β DD
2 2

−b c b        (21)  

(iii) Flexoelastic Sress Tensor 

Using a variational calculation of the free energy with respect to density ρ, and curvature 

b , the 2D flexoelastic stress tensor T  is found to be [15,18]: 

fe
s

AA
⎛ ⎞∂= −ρ − ⋅⎜ ⎟∂ρ⎝ ⎠

T I M b               (22) 



where the first term is the 2D normal stress arising from changes in ρ, the second term is 

the 2D normal and shear stresses  arising from in-plane deformations.  Replacing Eqs. 

(16, 19) into (22), we separate extension and shear stresses, respectively: 

b
oo f s

1γ h D+ β DD
2 2

∗⎛ ⎞ ⎛ ⎞= − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

T I qDH T       (23) 

Hence the linearized Laplace pressure generated by the stress is oo2γ=T:b H, as 

indicated in Eq.(9b).   

(iv) Flexoelectric Coupling Constant 

Using  Eqs. (9, 19), the linear integral shape equation for spherical membranes under a 

pressure drop ( )b(2) b(1): - Δp=kk T T  from the contacting fluids is: 

( ) ( )( )D D
oo f c c sphereΔp t  = 2γ h D 2k  +k+ − +H HS                   (24) 

Under short circuit conditions (see Figure 5, E 0= ),  Eq.(8b) gives ( )b
fD 2h /β= H, and 

replacing into Eq.(24) gives the elastic energy elasticW  (energy/area): 

( )( )
2 2

sphere fD D
elas oo c c sphere b

sphere sphere

2 hΔpW = 2γ 2k  +k
β

⎧ ⎫⎪ ⎪= + −⎨ ⎬
⎪ ⎪⎩ ⎭

SH HS S S
      (25) 

According to Eq. (16) the electric energy (energy per area) is a quadratic function of 

curvature: 

( )2b 2
f 2

elec b

2 hβ DW = =
2 β

H               (26) 

The flexoelectric conversion constant k2 that describe the conversion of mechanical into 

electric energy is then: 

2
2 elec f

D
elas elec b Doo c

c
sphere

W hk 1
W W γ kβ k  +

2

= = <
+ ⎛ ⎞

+⎜ ⎟⎜ ⎟
⎝ ⎠S

          (27) 



Estimations of k2 by Petrov for biological membranes in the absence of tension and 

torsion gives values close to one (page 487, of [10]).  We note that to increase conversion 

one can decrease the stiffness and/or increase the flexoelectric coupling constant through 

chemistry.   Rewriting the total free energy using the surface Euler equation and Eq.(16) 

gives: 

( )
D 2

Doo oo c
sphere oo c f

sphere sphere sphere

A 2γ k1A=A/ ρ +A ρ + k + 2h D
ρ 2

⎧ ⎫⎛ ⎞⎛ ⎞⎛ ⎞∂ ⎪ ⎪= + −⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭
S S S S

H H     

 (28) 

we see that the conversion coefficient  k2 given in Eq.(27) is consistent with the standard 

formula (2) obtained from the free energy (28). A similar calculation can be done for 

cylinders. 

3. FLEXOELECTRIC ENERGY HARVESTER 

A. Flexoelectric Dynamic Shape Equation  

Using the generic linear integral shape time-dependent Eq. (9a) [14, 19] we find: 

v
oo f

v 2γ + h D p(t)
t 2

∂ ⎛ ⎞⎛ ⎞−ρ + − + ⋅ ⋅ = Δ⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎝ ⎠
η M ηH SB

     (29) 

where p ( t )Δ  is the time-dependent pressure drop; a more complicated mechanical 

energy transfer that includes viscosity or viscoelasticity in the linear and non-linear 

regime can be incorporated in the future [21,25-30].  The viscous moment tensor vM can 

be obtained from the viscous dissipation function due to the time rate of curvature db/dt.   

In the linear regime the viscous moment tensor for bending and torsion modes is [19]: 

v
s

d dλ λ
dt dt

∗= +M I qB TH D
               (30) 



where λ ,λB T  ( [=] energy x  time) are the viscosities for bending and torsion.  Using 

previous work on Newtonian sheets of thickness t, we find that the bending viscosity is 

[31]: 

3μHλ
3

=B      (31) 

where μ  is  a characteristic shear  viscosity. Again, for spherical rate of deformations 

d /dt = 0D and for cylindrical rate of deformations d /dt d /dt=H D . Next we focus on the 

spherical ( )d /dt=0D  case since polarization couples with bending and not torsion and 

hence this case leads to higher efficiency, but the analysis can be trivially extended to the 

cylindrical case.  As before, we consider a circular membrane attached and fixed on the 

inner sides of a capillary of radius “ a ”. Bulk fluids are placed on top and below the 

membrane located at z = 0 . As before, we only consider the mechanical effect from the 

fluids onto the membrane to be the time-dependent pressure drop ( )p t 0Δ = .  The 

normal velocity V  of the membrane is found by introducing the associated flow rate 

( )Q t  given by: ( ) ( ) 2Q t  =V t a / 2π . As the membrane oscillates due to oscillations in 

( )p tΔ , the membrane deformation corresponds to a spherical cap. Under the small 

deformation condition the ratio of height “ h ” of the cap to the capillary radius “a ” is 

small: h / a 1<< . The time-dependent volume of the spherical cap is: ( ) ( )2t a h t / 2Ω = π . 

To find the associated flow rate ( )Q t   in terms of the curvature dynamics we first 

consider  flow rate in terms of the time derivative of the volume, ( ) ( )2d t / dt Q tΩ = , 

which upon use of Eq.(19c) gives the relation between dh / dt  and the normal velocity V  

( ) ( )dh t V t
dt 2

=                               (32) 



Using the geometric relation for the spherical cusp 2a 2h /= − H and Eq. (32) the normal 

velocity V can be expressed in terms of  d H /dt: 

( ) ( )2d t
a V t

dt
= −

H
                (33) 

Replacing  Eq. (33) into (29) and considering  Eq.(8b) gives :  

( ) ( ) ( )( )( ) ( )
2

2 D D
oo c c sphere f2

b
f

 :

d dρa λ 2γ 2k  +k h D Δp(t)
dt dt

E β D 2h

flexoelectric harvester

⎧
+ + + − =⎪

⎨
⎪ = −⎩

H HS S H S

H

B     (34) 

Expressing the field as E /tv=  ( v : voltage) and the displacement as D / Ctv=  (C: 

capacitance) and putting into Eqs. (34) for a given Δp(t) , the curvature  the curvature 

(t)H and voltage (t)v  as a function of time.   The resonant frequency 
r,o cω  under open 

circuit conditions (D=0) is given by the ratio of membrane elasticity to inertia: 

( )( )D D 2
r,oc oo c c sphereω 2γ 2k  +k S / ρa= +        (35) 

which can be tuned through tension and bending properties to maximize power 

absorption. We note that tension, bending and torsion elasticity is involved. 

B. Open and Closed Circuit Conditions  

To calculate the produced electric power elecΠ   we use the standard 

formula elec f sc oc= η I vΠ , where f η  is the filled factor, scI the short circuit current and 

ocv the open circuit voltage.  Figure 5 shows an schematic of both conditions; in open 

circuit the electrodes are disconnected and D=0, and in the short circuit the connected 

electrode results in E=0.  



 

FIG. 5. Schematic diagram showing the open and close circuit states for a flexoelectric membrane under 
bending between  two flexible electrodes ; the bending is created by an externally imposed    pressure drop 
p1-p2 from the contacting fluid phases. The left hand side shows the open circuit when  the surface 
displacement is zero, whereas the right hand side shows the closed circuit when the electric field is zero.  
The charge separation in the membrane is due to the flexoelectric effect. 
 

(a) Open Circuit 

For periodic forcing due to fluid forces ( ) oΔp t =Δp cosωt , under open circuit (oc) 

conditions (D=0)  the harvester Eqs.(34) become a driven second order oscillator: 

( ) ( )( )
2

2 D D
sphere oo c c sphere o f2

d dρa λ 2γ 2k  +k =Δp cosωt; E 2h
dt dt

+ + + = −H HS S H HB           (35) 

The frequency response of the curvature H  is characterized by the amplitude A and 

phase angle φ : 

( ) ( ) ( ) ( ){ } ( )21/22 2 sphere2 2 2 20
r,oc sphere2 2 2

r,oc

λ /ρa ωΔpt A cos ωt+ , A ω ω + λ /ρa ω , tan
ρa ω - ω

φ φ
−

= = − = −
S

H S
B

B

(36a-c) 

The curvature peaks at resonance and the phase lag increases with bending dissipation. 

The electric field E is found from replacing this result into fE 2h= − H .   The open 

circuit mechanical power 
m e c h , o cΠ (energy/time) for this second order curvature oscillator 

is: 



( ) ( )
( ) ( )

( )
( ) ( )

22 22 2
sphere sphereoc o

mech,oc 2 3 2 22 2 2 2
sphere sphere r,oc sphere

λ λ /ρa ωd Δpω
dt 2λ ω - ω + λ S /ρa ω

⎛ ⎞Π = =⎜ ⎟
⎝ ⎠

B B

B B

S S H
S S

(37) 

( )( )2 D D 2
r,oc oo c c sphereω = 2γ 2k  +k / ρa+ S       (38) 

where we used Eqs. (36) for ocH . Again the dissipated mechanical power is typical of  

this 2nd order oscillator. At resonance 
r,ocω  =  ω  we find the usual scaling with the square 

of the forcing amplitude, with the reciprocal of the bending viscosity and a large 

geometric dependence: 

( )
( )

2 2 6
o o

mech,oc r,oc 3 10 3

sphere

Δp Δp a3ω = ω
2 μH2λ

Π = =
B S

    (39) 

The root mean open circuit voltage OC fEH 2Hhv = = − H  is  

( ) ( ) ( ){ } 1/22 22 2 2 20
OC f r,oc sphere2

Δpω 2h H ω - ω + λ /ρa ω
ρa

v
−

= BS             (40) 

At resonance the voltage decreases with increasing bending viscosityλB  and 

frequency
r,o cω : 

( )
2

0
OC r,oc f

r,oc

Δp aω 2h H
8λ ω

v = B                     (41) 

This equation also elucidates the role of flexoelectric coupling and membrane geometry. 

(b) Short  Circuit  

Under short circuit conditions (E=0), replacing b
fβ D 2 h= H  into Eqs. (34) gives  

( ) ( )( ) ( )22
f sphere2 D D

sphere oo c c sphere o2 b

hd dρa λ 2γ 2k  +k 2 Δp cosωt
dt dt β

⎛ ⎞
⎜ ⎟+ + + − =
⎜ ⎟
⎝ ⎠

SH HS S HB        

                    (42) 

Using the same procedure as above for oc, the mechanical power 
m e c h , s cΠ is: 



( ) ( )
( ) ( )

( )
( ) ( )

22 22 2
sphere spheresc o

mech,sc 2 3 2 22 2 2 2
sphere sphere r,sc sphere

λ λ /ρa ωd Δpω
dt 2λ ω -ω + λ /ρa ω

⎛ ⎞Π = =⎜ ⎟
⎝ ⎠

B B

B B

S S H
S S S 

    (43) 

( ) ( )2
f sphere2 D D 2

r,sc oo c c sphere b

h
ω = 2γ 2k  +k -2 /ρa

β

⎛ ⎞
⎜ ⎟+
⎜ ⎟
⎝ ⎠

S
S            (44) 

Since the stiffness under short circuit is reduced, the resonance frequency is smaller than 

for open circuit. On the other hand, at resonance the power remains equal for both cases. 

The root mean short circuit current Isc is found from 

( ) ( ){ } 1/22 22 2 2 20f f
sc r,sc sphereb b 2

Δp ω2Hh 2Hhd dI D ω - ω + λ /ρa ω
dt β dt β ρa

−⎧ ⎫
= = = ⎨ ⎬

⎩ ⎭

HH SB (45) 

At resonance, the short circuit current ( )sc r,scI ω  decreases with bending viscosity λB  and 

is proportional to the resonant open circuit voltage ( )OC r,ocωv : 

( ) ( )2
r,oc OC r,oc0f

sc r,sc b b

ω ωΔp a2HhI ω
β 8λ β

v
= =B           (46) 

This equation also elucidates the role of flexoelectric coupling , inverse permittivity and 

membrane geometry. 

 (c ) Electric Power elecΠ  

We define the electric power elecΠ  of the device using the standard formula involving the 

product  of the open circuit voltage ocv  times short circuit current scI : 

( ) ( )

( ) ( ){ } ( ) ( ){ }

2
2 D D0 oo

elec f sc oc f c c2
sphere

 power  

1/2 1/22 2 2 22 2 2 2 2 2 2 2
r,oc sphere r,sc sphere

HΔP γω = η I η k k  +k / 2
ρa

ω

ω -ω + λ /ρa ω ω - ω + λ /ρa ω

fluid flexoelectric transduction

v
⎛ ⎞⎛ ⎞

Π = × + ×⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛
⎜

⎝

S

S SB B

  frquency response function

⎞
⎟

⎜ ⎟
⎜ ⎟

⎠

 (47) 

The power expression  (47) is decomposed into three underlined  key  factors:  



(i) fluid mechanical input ( )22
0HΔP / ρa ;  

(ii) membrane electromechanical transduction properties; since the transduction term 

is ( )( )2 D D
oo sphere c ck γ / k  +k / 2+S  we see that the power is proportional to the 

coupling factor 2k  (Eq. 27), and that it is just 2 b
fh / β ; 

(iii)frequency response function; the power has two resonant peaks that reflect the 

effect of flexoelectricity on bending stiffness and a second order oscillator. 

 (d) Power Conversion Efficiency 

An estimate of the mechanical-to-electrical power conversion efficiency Σ can be 

defined using the geometric average of the open and short circuit powers 

mech,oc mech,scΠ Π  : 

elec

mech,oc mech,sc elec

ΠΣ =
Π Π + Π

        (48) 

Using  Eqs. (37, 38, 43, 47, 48) we find that the efficiency Σ  is given by the time scale 

ratio function: 

b
fe

fe 2 2 2 2 2 2
fe f r,oc f sphere f

τ /τ 1 λ λ β,   τ = ,   τ
1+τ /τ ω 2η H ω ρa k 2η H h

v
v

v

Σ = = =
B B

S
      (49) 

where τv  is the bulk fluid time scale and feτ  the flexoelectric time scale. Notice that in 

Eq. (49) was used the relationship 2 2 2 b
r,oc f spherek ω ρa h / β= S  trough Eqns. (27, 38) 

respectively.  The efficiency Σ  displays a typical algebraic decay with increasing time 

scale ratio feτ /τv . The two asymptotic limits of Σ are: 

fe fe fe

fe

τ /τ τ /τ τ /τ 0
fe

τ /τlim lim 1,        lim 0
1+τ /τv v v

v

v
→∞ →∞ →

Σ = = Σ =       (49) 

indicating that at very large forcing frequency there is insufficient time to effect 

mechano-electrical conversion. The role of the static conversion factor k2 in the power 



conversion efficiency is found from Eqs. (27, 48, 49) and as expected increases with 

decreasing frequency: 

2

2
2 2 2

r,oc

k
λ ω+k

2H ω ρa

Σ =
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

B
       (50) 

The cross-over frequency ω *  at which both times are equal emτ = τv  and the efficiency 

achieves 50%, is proportional to the conversion factor k2: 

2 2 2
r,oc 22H ω ρa

ω*= ×k
λ

⎡ ⎤
⎢ ⎥
⎣ ⎦

B
           (51) 

This efficiency threshold is theoretically achieved by calibrating resonance frequency, 

flexoelectric coupling and bending viscosity.  We can further define an index of merit of 

the device based on material properties by evaluating the efficiency at the resonant open 

circuit frequency
r,o cω : 

r,oc

r,oc

elec
ω

mech,oc mech,sc elec ω

ΠΣ =
Π Π + Π

      (52) 

The frequency-dependent membrane Reynolds number is the ratio of inertia to viscous 

effects: 

( ) 2

e

ρ ωa a H
R =

λB
            (53) 

which when introduced in the index of merit using Eq. (53)gives a relation between the 

power conversion efficiency and the energy conversion efficiency: 

r,oc

2
f r,oc

2ω
f r,oc

η Re k
1+η Re k

× ×
Σ =

× ×
     (54) 



For large viscosity and small Reynolds number (creeping mode), the small index of merit 

increases with 2
r,ocRe k : ( )

r,oc

22 2 4
f r,oc f r,ocω
η Re k η Re k ....Σ = − + . In the inviscid large 

Reynolds number mode, the larger index of merit decreases with 2
r,ocRe k : 

r,oc

2
f r,ocω

Σ =1-1/η Re k +..    (55) 

 
4. CONCLUSIONS 

 
A soft matter based energy mechanical energy harvesting system is formulated 

using flexoelectric membranes as electromechanical transduction mechanism. The 

proposed energy generator consists on the absorption of mechanical energy from 

contacting fluids by the membrane whose deformation generates through flexoelectricity 

a voltage. The key modeling building blocks of the fluid mechanical energy harvesting 

based on electro-elastic deformable solids  are the formulation of thermodynamic 

coupling coefficients (conversion of mechanical into electric energy), the integration  of 

the solid-fluid interaction with the electromechanical  conversion process, the electric 

power formula , and the efficiency and index of merit of the device.  This paper proposes 

the use of flexoelectric deformable membrane as the basic unit of transduction, where 

bending creates electric polarization and electric fields create bending deformations. 

These device formulation objectives were accomplished by first formulating the 

equations of membrane flexoelasticity which was then inputted into a viscoelastic 

dynamical model for curvature dynamics.  The device model is based on the formulation 

of the membrane Helmholtz free energy density in terms of Helfrich bending and torsion 

elasticity, and its coupling with the area electric induction.  The flexoelectric  conversion 

coefficient k2 that describes the fraction of the mechanical energy converted into 

electrical energy through flexoelectricity is formulated and found to follow the standard 



expression as the ratio of coupling energy to the product of electric and elastic energies; 

here the role of membrane tension, bending and torsion are identified.  Subsequent 

derivations of tension, flexoelastic moment tensor and stress tensor based on 

thermodynamics of polarizable membranes, are incorporated into the linear integral shape 

equation for spherical and cylindrical membranes to obtain the mechanical energy 

harvester model.  The tension of a curved polarized membrane is shown to contain 

Helfrich and displacement contributions.  The bending moment contains the flexoelectric 

term that support the energy conversion.  The energy harvester consists of the driven 

visco-elasto-inertial 2nd order dynamics of the membrane curvature coupled through 

flexoelectricity to the electric filed. A model geometry consisting of a circular membrane 

ficed in a capillary of radius “ a ” containing bulk fluid that produce a time-dependent 

pressure drop ( )p tΔ was investigated.   The frequency response of the system under open 

and short circuit conditions was characterized including the open circuit voltage, short 

circuit current, and mechanical power at resonance.  The resonant frequency is the ratio 

of the total deformation resistance to the inertia, and since in open circuit there is no 

electromechanical coupling , resonance is shifted to higher value than under short circuit. 

In both cases the mechanical resonant power is inversely proportional to the bending 

viscosity λB  and eight power the membrane radius.  The electric power was defined as 

the product of the fill factor times the open circuit volate times the short circuit current; 

the expression is cast as the product of the fluid pressure forces (input) , the flexoelectric 

transduction proportional to 2k  (conversion)  and the frequency response function 

(dynamical system) which is the geometric mean of the short and open circuit responses, 

revealing the role of the thermodynamic conversion factor into power production.  Lastly 

the power efficiency was estimated using the open circuit resonant condition, showing 



that with large bending viscosities the lower efficiency increases with 2k , while under low 

viscosity, the larger efficiency decreases with 2k . 

 The flexoelectric energy harvester proposed and simulated in this paper has 

already been experimentally realized  in two experimental prototypes based on bilayer 

lipid membranes and oscillating fluid flows. These experimental prototypes are discussed 

in detail  in Chapter 7 of reference [10], and consist of  a black lipid membrane 

suspended on a millimeter size Teflon orifice and a membrane patch sealed inside a 

micrometer size glass pipette ; both of which have been shown to generate flexoelectric 

power in both open and short circuit regimes, in a broad frequency range.  

The specific predictions obtained can form the design basis for soft-matter based 

mechanical energy harvester through flexoelectricity. It has been shown that both 

bending elasticity   in the energy conversion and together with bending viscosity play a 

significant role in electric power production and efficiency. These theoretical predictions 

support current efforts in developing flexoelectric energy harvesters.  More quantitative 

predictions will require experimental data as well as atomistic/MD simulations. 
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APPENDIX I 

 This Appendix summarizes the differential geometry used in the paper 

(Kralchevsky and Nagayama [20], Edwards et al. [32], Stumpf and Badur [33], Eliassen 

[34]).   Consider a 2D membrane whose points are locate in 3D space by a position vector 

R , given by: 

( )αu ,α=1,2=R R     (I.1) 

The two tangential base vectors αa  induced by the surface coordinates are defined by: 

α αa ,α=1,2
u

∂=
∂

R
    (I.2) 

The definition of the corresponding surface metric tensor 
α βa  is 

α β α βa a a ;    α ,β = 1 ,2= ⋅    (I.3) 

whose determinant is  

( )αβdet a 0>      (I.4) 

The corresponding reciprocal base vectors αa  and metric tensor are: 

αβ βα

α
α ua ;    a =a a ;     α,β=1,2

R
∂= ⋅
∂

   (I.5a,b) 

The base and reciprocal base vectors define the surface unit tensor β
αδ , and the dyadic 

surface idem factor sΙ : 

β β α β β α β αβ
α α S β α α β αβ α α β= δ ,  δ δ a a⋅ = = = =a a I a a a a a a a a  (I.6a,b) 



where αβ α
γ γa a δ= .  The counterclockwise rotation of a vector around the unit normal k is 

given by the dyadic surface unit alternator sε : 

α β αβ
s s s αβ α β=- × =- × =- × =- × = ε = εε k I I k k I I k a a a a   (I.7) 

where αβ
γδ αγ βδε =a a ε  .

  
The surface unit normal k is given by: 

( )αβ
s α β 1 2 2 1

1 1 1 1:
2 2 2 a

= = × = × − ×k ε ε ε a a a a a a   (I.8)
 

where ε  is the triadic spatial unit alternator.  Other useful relations involving the surface 

unit normal k  are: 

β αβ
α β αβ α α βα s s α β s sε ,  = ε , ε  +× = × = − × × = = − +a a k a k k a a I I a ka ε ε k kε   

(I.9a,b,c)   

The symmetric curvature dyadic b is a measure of the change of k  with changes of R : 

( ) ( ) ( ) ( )
s s s α α, 

u

∗ ∗
∗ ∗

∂ ∂∂= − = −∇ ∇ = ⋅∇ = =
∂ ∂ ∂

kb k I a
R R          

(I.10a,b) 

where ( )s
∗∇  is the surface gradient. The components of b  obey 

γδ δβ γ γ γα
β β αβb =a b ,  b =a b

             
(I.13a,b) 

The spectral representation of b  in the principal frame defines by the main curvatures is: 

1 1 1 2 2 2=ν +νb e e e e                     (I.14) 
where the eigenvector of b  are ( )1 2,e e

 
and the eigenvalues c1 and c2 are the radius of 

curvature.   The surface idem factor s 1 1 2 2= +I e e e e .  The two invariants of b  are the 

trace and the determinant: 

1 2 1 2tr ;    det=ν +ν =ν νb b          (I.15)       
 
The Cayley-Hamilton theorem gives: 

( ) ( ) str det⋅ − + =b b b b b I 0                   (I.16) 



 
The  invariants of b  are used to define the average curvature H   and the Gaussian or 

total curvature K :  

( )α α
s s α 1 2α2H= : b c +c

u
∂= −∇ ⋅ = − ⋅ = =
∂

kI b k a
   

(I.17) 

( ) αβ γδ
s s αγ βδ 1 2

1 1K=- ε : b ε b = ε ε b b =c c
2 2

⋅ ⋅   (I.18) 

The relation between K  and H  obtained from the trace of Eq. (I.16) is: 

2 1K=2H :
2

− b b
     

(I.19)
 

The curvature tensor b  can be decomposed into a trace ( sIH ) and a deviatoric curvature                               

( qD ; Ljunggren et al 1997):  

s s s s= ,   : : 2,    : 0∗ ∗ ∗ ∗+ = = =b I q I I q q I qH D    (I.20) 

where D  is the deviatoric curvature is:  

( ) 2 2 2
1 2

1 1D = c c ,  D  = H K= : H
2 2

− − −b b       
     

(I.21a,b) 

According to differential geometry, the four  2x2 basis tensors are: 

( ){ }s s s,  ,  ,  ∗ ∗⋅I q ε ε q and in the principal frame these tensors read (Ljunggren et al. 

1997):    

s s s

1 0 1 0 0 1 0 1
; ; ;

0 1 0 1 1 0 1 0
∗ ∗⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = ⋅ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
I q ε ε q           (I.22a-d) 

and hence any 2x2 tensor can be expanded as follows: 

( ) ( ) ( ) ( )( )( )s s s s s s

trace diagonal traceless antisymmetric symmetric off-diagonal

1 1 1 1= : : : :
2 2 2 2

∗ ∗ ∗ ∗+ + + ⋅ ⋅Z Z I I Z q q Z ε ε Z ε q ε q

  

(I.23) 

Therefore a symmetric diagonal tensor reads:  



( ) ( )s s
1 1= : :
2 2

∗ ∗+Z Z I I Z q q                   (I.24) 

APPENDIX II 

 The purpose of this appendix is to derive Eq.(13).  Rewriting Eqs.(11,12) in terms 

of densities (overbar) using the areaA : 

( ) ( ) ( )entd U d S d d : d= Θ + γ + ⋅ + ⋅ +E D E D M bA A A A A   (II-1) 

Performing the differentiation: 

( )e n t e n tU d d U S d d S d d : d  + = Θ + Θ + γ + ⋅ + ⋅ −E D E D M bA A A A A A A  II-2) 

Collecting terms: 

( )ent ent
ddU dS U S d :d= Θ + γ − + Θ+ ⋅ + ⋅ +E D E D M bA
A   (II-3) 

Introducing the mass balance: 

d dρ= −
ρ

A
A       (II-4) 

Eq. (II-3) read: 

( )ent ent
ddU dS U S d : dρ= Θ + −γ + − Θ − ⋅ + ⋅ +
ρ

E D E D M b   II-5) 

Introducing the Helmholtz free energy density A we find: 

e n t e n t e n t e n t e n tA = U - S ,   d A = d U - d S -S d ,  d U = d A + d S + S dΘ Θ Θ Θ Θ  II-6-8) 

Combining Eqs. (II-5, II-8), we have:  

( )ent
ddA S d A d : d  ρ= − Θ + −γ + − ⋅ + ⋅ +
ρ

E D E D M b    (II-9) 

Neglecting changes in Θ  we find Eq.(13).       

( ) ddA A d : d  ρ= −γ + − ⋅ + ⋅ +
ρ

E D E D M b     (II-10) 

 
FIGURE CAPTIONS 



FIG 1. Schematic of membrane flexoelectrity in biological membranes.  (a) Under planar 
conditions there is no polarization. (b) Under bending the lower surface is in compression 
and the upper one in dilation and electric polarization is generated.  
 
FIG. 2. Thermodynamic diagram showing the relations between electrical (E,D) and 
mechanical (M, b) quantities.  The full thin lines denote the direct flexoelectric effect and 
the dahed lines the converse.  The curvature elasticity  was given by Helfrich. Biological 
membrane flexoelectricity was sestablished by Petrov [10]. 
 
FIG.  3. Schematic of the processes and mechanisms underlying the proposed energy 
harvester.  The fluid forces F(t) distorts the membrane through momentum transfer. The 
membrane elastic Em distortions are transferred to contacting electrodes and deliver 
electric power Πelec.  The combination of flexoelectric sensor and mechanical actuation is 
flexoelectric mechanics. 
 
FIG. 4. Schematic of a circular flexoelectric membrane coated with electrodes fixed on a 
capillary tube or radius “2a” driven by bulk fluid pressure jump ( )p tΔ across the 
membrane. (b) The pressure jump oscillations creates oscillations in curvature H which 
produce electric induction ( )D t .  (c) Geometry of the spherical membrane: h is the height 

of the spherical cap and R is the radius and the shape factor is 2
sphere 8 / a=S . 

 
 
FIG. 5. Schematic diagram showing the open and close circuit states for a flexoelectric 
membrane under bending between  two flexible electrodes ; the bending is created by an 
externally imposed    pressure drop p1-p2 from the contacting fluid phases. The left hand 
side shows the open circuit when  the surface displacement is zero, whereas the right 
hand side shows the closed circuit when the electric field is zero.  The charge separation 
in the membrane is due to the flexoelectric effect. 
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FIG 1.  Schematic of membrane flexoelectrity in biological membranes.  (a) Under 
planar conditions there is no polarization. (b) Under bending the lower surface is in 
compression and the upper one in dilation and electric polarization P  is generated.  
 

 

 

 

 



 

 

 

 

 

 
 
 
 
 
 
 
 
FIG. 2. Thermodynamic diagram showing the relations between electrical ( )E,D and 

mechanical ( )M,b quantities. The full thin lines denote the direct flexoelectric effect and 
the dahed lines the converse.  The membrane curvature elasticity  was given by Helfrich 
[10-15]. Biological membrane flexoelectricity wa sestablished by Petrov [10]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 
 
FIG.  3. Schematic of the processes and mechanisms underlying the proposed energy 
harvester.  The fluid forces F(t)  distorts the membrane through momentum transfer. The 
membrane elastic mE  distortions are transferred to contacting electrodes and deliver 

electric power elecΠ .  The combination of flexoelectric sensor and mechanical actuation is 
flexoelectric mechanics. 

 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

FIG. 4. Schematic of a circular flexoelectric membrane coated with electrodes fixed on a 
capillary tube or radius “2a” driven by a periodic bulk fluid pressure jump ( )p tΔ across 
the membrane. (b) The pressure jump oscillations creates oscillations in curvature H 
which produce electric induction ( )D t .  (c) Geometry of the spherical membrane: h is the 

height of the spherical cap and R is the radius and the shape factor is 2
sphere 8 / a=S . 

 



 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIG. 5. Schematic diagram showing the open and close circuit states for a flexoelectric 
membrane under bending between  two flexible electrodes ; the bending is created by an 
externally imposed    pressure drop p1-p2 from the contacting fluid phases. The left hand 
side shows the open circuit when  the surface displacement is zero, whereas the right 
hand side shows the closed circuit when the electric field is zero.  The charge separation 
in the membrane is due to the flexoelectric effect. 
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