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In this paper, we analyze the charge dynamics of ionic polymer metal composites (IPMCs) in
response to voltage inputs composed of a large DC bias and a small superimposed time-varying
voltage. The IPMC chemoelectrical behavior is described through the modified Poisson-Nernst-
Planck framework, in which steric effects are taken into consideration. The physics of charge build
up and mass transfer in the proximity of the high surface electrodes is modeled by schematizing the
IPMC as the stacked sequence of five layers, in which the ionomeric membrane is separated from
the metal electrodes by two composite layers. The method of matched asymptotic expansions is
used to derive a semianalytical solution for the concentration of mobile counterions and the electric
potential in the IPMC, which is, in turn, used to establish an equivalent circuit model for the IPMC
electrical response. The circuit model consists of the series connection of a resistor and two complex
elements, each constituted by the parallel connection of a capacitor and a Warburg impedance. The
resistor is associated with ion transport in the ionomeric membrane and is independent of the DC
bias. The capacitors and the Warburg impedance idealize charge build up and mass transfer in
the vicinity of the electrodes and their value is controlled by the DC bias. The proposed approach
is validated against experimental results on in-house fabricated IPMCs and the accuracy of the
equivalent circuit is assessed through comparison with finite element results.

PACS numbers: 46.15.Ff, 68.35.Fx 82.45.Wx, 82.47.Gh,

I. INTRODUCTION

Ionic polymer metal composites (IPMCs) are a novel
class of electroactive materials which find application as
sensors [1–5], actuators [6–11], and energy harvesters [12–
18]. In their fundamental incarnation, IPMCs consist of
an electrically charged polymer (ionomeric) membrane
that is infused with a solvent, neutralized by mobile coun-
terions, and plated by noble metal electrodes [19].
IPMC fabrication is generally based on an electroless

chemical reduction process [20, 21] consisting of the dif-
fusion and adsorption of a metal salt in the ionomer and
its consecutive deposition at the ionomer surface through
a reducing agent. Electrode deposition seldom results
in the formation of a highly heterogeneous layer, whose
conductive and dielectric properties differ from both the
polymer and the metal salt [22–26]. Charge redistribu-
tion in the vicinity of such regions is considered to be
a primary factor in both IPMC actuation [27–30] and
sensing [31–34]. In [24], we have presented the notion
of “composite layer” to describe IPMC charge transport
at the ionomer-electrode interface, building on physical
insight offered by the concepts of inner electrode [25],
intermediate layer [26], and active area model [22, 23].
Specifically, we have proposed a new physics-based

model for IPMC chemoelectrical behavior based on the
integration of the composite layer concept within the
Poisson-Nernst-Planck (PNP) framework [28, 35–43]. In
this model, the IPMC is described as a stacked sequence
of five homogeneous layers, wherein the ionomeric mem-
brane is separated from the metal electrodes by two com-
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posite layers. From the analysis of the linearized PNP
system, we have demonstrated that IPMC response can
be described through a classical Randles circuit model,
see for example [44], consisting of a resistor, a capaci-
tor, and a Warburg impedance as suggested in [19, 45].
The capacitor idealizes the phenomena of charge build
up in the double layer region, the Warburg impedance is
related to mass transfer at the interfaces, and the re-
sistor is associated with ion transport in the ionomer
bulk. In agreement with the majority of experimental
observations in the literature, see for example [42, 46–
48], the model predicts that the impedance magnitude
decreases with a slope of approximately −10 dB/decade
at low frequency and reaches an almost constant value
for high frequency. The accuracy of the model has
been validated through experimental results on Nafion-
based IPMCs and comparison with alternative models for
IPMC impedance [49–51].

In this paper, we extend this framework to study IPMC
impedance in response to an applied DC voltage bias. We
use a modified PNP formulation to account for the pres-
ence of steric effects [52–54], which are shown to play a
prominent role in shaping the charge distribution in the
composite layers at moderately large voltages, see also
the comprehensive review in [55]. Following [37, 40, 52–
54, 56–60], we use the method of matched asymptotic ex-
pansions, see for example [61], to derive a semi-analytical
solution for the electric potential and the charge concen-
tration in the IPMC along with a new circuit model for
IPMCs in presence of a DC voltage bias. The equiv-
alent circuit model consists of the series connection of
two impedances of the form presented in [24] to account
for differences in charge build up at the anode and cath-
ode regions for large voltages. We demonstrate that the
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relative thickness of the composite layer with respect to
the ionomer thickness has a major influence on IPMC
impedance. Specifically, we find that increasing the DC
bias dramatically reduces double-layer phenomena and
mass transport for thin composite layers, whereas, the
DC bias has a secondary effect on IPMC chemoelectrical
behavior for thick composite layers. The asymptotic so-
lution is verified through comparison with finite element
results and the overall modeling approach is validated
against experimental results on Nafion-based IPMC sam-
ples for DC voltages in the range 0 − 0.5V. Notably,
the effect of DC bias on IPMC impedance has been re-
cently investigated in [42] by using an approximate so-
lution of the classical PNP system in absence of steric
effects and mass transfer at the ionomer-electrode inter-
face. A power series expansion is therein used to describe
experimental results for DC bias in the range 0− 1.5V.
We organize the paper as follows. In Section II, we

present the governing equations for the chemoelectrical
response of the IPMC. In Section III, we study IPMC
response to a small voltage applied across the electrodes.
In Section IV, we analyze IPMC response to a DC bias
and a superimposed small AC voltage. In Section V, we
verify the semianalytical solution through finite element
results and offer some validation of the model through
comparison with experimental result. Conclusions are
reported in Section VI.

II. GOVERNING EQUATIONS

We model the IPMC as a stacked sequence of five lay-
ers, comprising an ionomer core, two metal electrodes,
and two composite layers, see Figure 1. We assume that
the metal electrodes are perfect conductor. The com-
posite layers are treated as identical ionomers of length
d with highly dissimilar electrical properties than the
ionomer core, due to the presence of scattered metal
particles. To account for the high surface of the elec-
trodes, we assume that the permittivity of the ionomer
core varies along its thickness 2h. Specifically, we hy-
pothesize that the permittivity attains larger values in
the vicinity of the composite layers.
In this framework, IPMC chemoelectrical behavior can

be modeled by focusing on the time evolution of the coun-
terion concentration and the electrical potential along
the x direction, see for example [36, 37, 40]. The cen-
ter of the ionomer is set as the origin of the abscissa x
so that −h ≤ x ≤ h identifies the polymer region and
h < x ≤ h+ d and −(h+ d) ≤ x < −h refer to the right
and left composite layers, respectively.

A. Ionomeric membrane

We use the modified PNP formulation to describe the
evolution of the counterion concentration per unit hy-
drated polymer c(x, t) and the electrical potential ψ(x, t)
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FIG. 1. Schematics of the IPMC.

in the ionomer core, see for example [52–54]. The mo-
bile counterion has positive charge and unitary valency
and anions with same valency are fixed to the backbone
polymer.
In this framework, the distribution of ψ(x, t) is de-

scribed by the Gauss law

∂D(x, t)

∂x
= F [c(x, t)− c0] (1)

where D(x, t) is the component of the electric displace-
ment along the x direction, c0 is the concentration of fixed
anion per unit IPMC volume (assumed to be constant),
and F is the Faraday constant. The electric displacement
is related to the electric potential through its constitutive
behavior, that is,

D(x, t) = −ǫ(x)∂ψ(x, t)
∂x

(2)

where ǫ(x) is the permittivity of the polymer. In this
study, we assume the following dependence for ǫ(x)

ǫ(x) = (ǫi − ǫb)e
−µh+x

h + (ǫi − ǫb)e
−µh−x

h + ǫb (3)

where ǫi and ǫb quantify the permittivity of the ionomer
at the interface with the composite layer and in the bulk,
respectively, and µ measures the rate of decay of the per-
mittivity, see for example Figure 2. By combining (1)
and (2), we obtain the Poisson equation connecting the
electric potential with the counterion concentration in
the ionomer

− ∂

∂x

(

ǫ(x)
∂ψ(x, t)

∂x

)

= F [c(x, t)− c0] (4)

The mass balance for the mobile counterions is

∂c(x, t)

∂t
= −∂J(x, t)

∂x
(5)

where J(x, t) is the counterion flux. Such flux is affected
by the counterion diffusion and electromigration accord-
ing to the modified Nernst-Planck constitutive equation
that accounts for steric effects [52–54], namely,

J(x, t) = −D
[

c0
c0 − νc(x, t)

∂c(x, t)

∂x
+
Fc(x, t)

RT
∂ψ(x, t)

∂x

]

(6)
where D is the diffusivity of the mobile counterions in
the polymer (assumed to be constant), R is the universal
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FIG. 2. (Color online) Permittivity on the ionomer core scaled
by the permittivity at the interface x = ±h for the represen-
tative parameters ǫi/ǫb = 100 and µ = 100.

gas constant, and T is the absolute IPMC temperature.
Here, ν = c0a

3N is a dimensionless positive parameter
measuring the concentration packing limit and varying
between 0 and 1 [52–54], with N being the Avogadro’s
number (6.0221×1023mol−1) and a the spacing between
the ions. The steric effect imposes that the concentra-
tion of mobile counterions in the polymer cannot exceed
c0/ν [52–54]. By substituting (6) into (5), we obtain the
modified Nernst-Planck equation, that is,

∂c(x, t)

∂t
= D

∂

∂x

[

c0
c0 − νc(x, t)

∂c(x, t)

∂x

+
Fc(x, t)

RT
∂ψ(x, t)

∂x

]

(7)

Equations (4) and (7) are referred to as the modified
PNP system for the ionomer core. Further insight on the
modified PNP framework can be found in [62] including
the influence of steric phenomena on the ion diffusivity,
that is not accounted for in our analysis.

B. Composite layers

The modified PNP system for the composite layers is
derived following an analogous procedure. For conve-
nience, we refer to all the pertinent variables therein us-
ing the subscript “cl”. Specifically, we use ǫcl and Dcl to
identify the dielectric constant and the diffusivity, which
are both assumed to be constant and different than the
ionomer properties. Moreover, we use a subscript ± to
identify the field variables in the two composite layers.

In the composite layers, the Poisson equation reads

−ǫcl
∂2ψcl±(x, t)

∂x2
= F [ccl±(x, t)− c0φ] (8)

where φ is the volume fraction of the ionomer mate-
rial in the composite layer [24] and Dcl±(x, t) equals
−ǫcl∂ψcl±(x, t)/∂x. The modified Nernst-Planck equa-

tion in the composite layer is

∂ccl±(x, t)

∂t
= Dcl

∂

∂x

[

c0φ

c0φ− νccl±(x, t)

∂ccl±(x, t)

∂x

+
Fccl±(x, t)

RT
∂ψcl±(x, t)

∂x

]

(9)

We comment that the steric effect is not varied with re-
spect to the ionomer core, since it is related to the counte-
rion size. Moreover, we note that the electron flux in the
composite layers is neglected based on the experimental
results reported in [24], which show that electron trans-
port is a secondary phenomenon in the charge dynamics
in the composite layers.

C. Boundary, interface, and initial conditions

At the interface between the ionomer core and the com-
posite layers, x = ±h, we enforce the continuity of coun-
terion concentration, electric potential, counterion flux,
and electric displacement, that is, we set

c(±h, t) = ccl±(±h, t)/φ (10a)

ψ(±h, t) = ψcl±(±h, t) (10b)

J(±h, t) = Jcl±(±h, t) (10c)

D(±h, t) = Dcl±(±h, t) (10d)

In this study, we focus on the chemoelectrical response
of IPMCs under a voltage difference applied across the
electrodes, which are assumed to be ion-blocking, see for
example [37]. Therefore, we impose the following bound-
ary conditions at x = ±(h+ d)

ψcl±(±(h+ d), t) = ±V (t)

2
(11a)

Jcl±(±(h+ d), t) = 0 (11b)

We further assume that the whole IPMC is initially
electroneutral, that is,

c(x, 0) = c0 (12a)

ccl±(x, 0)/φ = c0 (12b)

We note that ion-blocking conditions impose that the
total net charge in the IPMC is always zero and that

Dcl+(h+ d, t) = Dcl−(−h− d, t) (13)

Further important properties of the PNP system can be
found in [63].

D. Current

As the voltage V (t) is applied across the IPMC elec-
trodes, a current is generated through the IPMC. Such
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current is composed of a displacement current and a con-
duction current due to counterion flux [64] and its value
is independent of x. By denoting this current as I(t), we
have

I(t) = −
[

∂D(x, t)

∂t
+ FJ(x, t)

]

(14a)

I(t) = −
[

∂Dcl±(x, t)

∂t
+ FJcl±(x, t)

]

(14b)

in the ionomer and the composite layers, respectively.
Note that if x is taken to be at the electrode-composite
layer interface, the jump in the electric displacement
should be considered in place of the first summand in (14)
and the second summand is zero due to the ion-blocking
electrodes.

E. Nondimensional equations

We nondimensionalize the governing equations in the
ionomer core by scaling ψ(x, t) and c(x, t) with respect
to the thermal voltage RT/F and the fixed anion con-
centration with respect to c0, respectively. Furthermore,
the spatial abscissa and the time variable are nondimen-
sionlized using the ionomer semithickness h and the time
constant

τ =
h

FD

√

ǫiRT
c0

(15)

The dimensionless form of the modified PNP system
in (4) and (7) is

−δ2 ∂
∂x̃

(

ǫ(x̃)

ǫi

∂ψ̃(x̃, t̃)

∂x̃

)

= c̃(x̃, t̃)− 1 (16a)

∂c̃(x̃, t̃)

∂t̃
= δ

∂

∂x̃

[

1

1− νc̃(x̃, t̃)

∂c̃(x̃, t̃)

∂x̃
+ c̃(x̃, t̃)

∂ψ̃(x̃, t̃)

∂x̃

]

(16b)
where nondimensional variables are indicated with super-
imposed tilde and

δ =
1

Fh

√

ǫiRT
c0

(17)

The parameter δ measures the ratio between the so-
called Debye screening length λ =

√

(ǫiRT )/(F 2c0),
that quantifies the thickness of the diffuse charge lay-
ers at the ionomer-electrode interface, and the ionomer
core semithickness, see also [37]. Such parameter is
much smaller than one for typical IPMCs, see for ex-
ample [36, 37, 40].
In the composite layer, we use a similar nondimension-

alization. Specifically, we scale again the electric poten-
tial by the thermal voltage and the counterion concen-
tration by c0φ. Moreover, the spatial domain is nondi-
mensionalized using r± = (h+ d∓ x)/(h

√
δ) to magnify

the composite layer thickness, where we assume that d2

is on the order of λh. This implies that the compos-
ite layer is simultaneously wider than the Debye screen-
ing length and narrower than the ionomer core, so that
the chemolectrical behavior is therein affected by both
faradaic and mass transport effects. The dimensionless
forms of the PNP system in (8) and (9) are

−ǫ∗∂
2ψ̃cl±(r±, t̃)

∂(r±)2
= c̃cl±(r±, t̃)− 1 (18a)

∂c̃cl±(r±, t̃)

∂t̃
= D∗δ

∂

∂r±

[

1

1− νc̃cl±(r±, t̃)

∂c̃cl±(r±, t̃)

∂r±

+c̃cl±(r±, t̃)
∂ψ̃cl±(r±, t̃)

∂r±

]

(18b)

where ǫ∗ = ǫclδ/(ǫiφ) and D∗ = Dcl/(Dδ). We assume
that ǫ∗ and D∗ are on the order of the unity based on the
assumptions of higher permittivity and lower diffusivity
in the composite layer than the ionomer core [24]. More-
over, we hypothesize that µ ≪ 1/δ, so that the charge
boundary layer is considerably thinner than the decay
length of the permittivity of the ionomer core.
Additionally, the nondimensional boundary and initial

conditions are

c̃(±1, t̃) = c̃cl±(d
∗, t̃) (19a)

ψ̃(±1, t̃) = ψ̃cl±(d
∗, t̃) (19b)

J̃(±1, t̃) = J̃cl±(d
∗, t̃) (19c)

D̃(±1, t̃) = D̃cl±(d
∗, t̃) (19d)

ψ̃cl±(0, t̃) = ±α(t̃)/2 (19e)

J̃cl±(0, t̃) = 0 (19f)

c̃(x̃, 0) = 1 (19g)

c̃cl±(r±, 0) = 1 (19h)

where the thickness of the composite layer d and the ap-
plied voltage V (t) across the electrodes are nondimen-

sionlized as d∗ = d/(h
√
δ) and α(t̃) = FV (t)/(RT ), re-

spectively.
When comparing the modified PNP systems for the

ionomer core and for the composite layers in (16) and
(18), we note that both systems are singularly perturbed.
Specifically, both the Poisson and the modified Nernst-
Planck equations are singularly perturbed in the polymer
core and only the modified Nernst-Planck equation is sin-
gularly perturbed in the composite layers. The power of
δ differs in the two modified PNP sets, with a power 2 for
the ionomer core and a power 1 for the composite layers.

III. ANALYSIS FOR SMALL VOLTAGE INPUTS

A. Linearized equations

We consider the IPMC response to an applied volt-
age that is considerably smaller than the thermal volt-
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age, so that, α(t̃) ≪ 1. In this case, the nondimensional
modified Nernst-Planck equation in (16b) and (18b) can
be linearized following [24]. Specifically, we linearize
in the neighborhood of the equilibrium configuration de-
fined by ψ̃(x̃, t̃) = 0, ψ̃cl±(r±, t̃) = 0, c̃(x̃, t̃) = 1, and
c̃cl±(r±, t̃) = 1, so that (16b) and (18b) become

∂c̃(x̃, t̃)

∂t̃
= δ

[

1

1− ν

∂2c̃(x̃, t̃)

∂x̃2
+
∂2ψ̃(x̃, t̃)

∂x̃2

]

(20a)

∂c̃cl±(r±, t̃)

∂t̃
= D∗δ

[

1

1− ν

∂2c̃cl±(r±, t̃)

∂(r±)2
+
∂2ψ̃cl±(r±, t̃)

∂(r±)2

]

(20b)

B. Outer expansion in the ionomer

In the ionomer core, we seek regular asymptotic ex-
pansions for both the concentration and the electric po-
tential, that is,

c̃◦(x̃, t̃) = c̃◦0(x̃, t̃) + δc̃◦1(x̃, t̃) + . . . (21a)

ψ̃◦(x̃, t̃) = ψ̃◦
0(x̃, t̃) + δψ̃◦

1(x̃, t̃) + . . . (21b)

where superscript ◦ refers to the outer solution.
By substituting (21) into the nondimensional modi-

fied PNP system in (16a) and (20a), adapting the initial
condition (19g), and equating summands with the same
power of δ, we obtain a hierarchy of partial differential
equations. At the leading order, we find the following
general solution

c̃◦0(x̃, t̃) = 1 (22a)

ψ̃◦
0(x̃, t̃) = A1(t̃)x̃+A2(t̃) (22b)

where A1(t̃) and A2(t̃) are unknown functions of time.
Due to the linearity of the problem, the concentration
and electric potential profiles are odd functions of x, see
also [24], thus, we let A2(t̃) = 0.

C. Inner expansion in the ionomer

The outer expansion is close to the exact solution ev-
erywhere in the ionomer core except of the ionomer-
composite layer interfaces, where boundary layers are ex-
pected to develop, see for example [28, 36, 37]. In these
regions, we perform the following change of variable

ξ± =
1∓ x̃

δ
(23)

where superscripts + and − identify interfaces proximal
to x̃ = +1 and x̃ = −1, respectively. By substituting the
local variable ξ± into the modified PNP system in (16a)

and (20a) and taking the limit of ǫ(x̃) for small δ, we find

−δµǫi − ǫb
ǫi

∂ψ̃±(ξ±, t̃)

∂(ξ±)
− ∂2ψ̃±(ξ±, t̃)

∂(ξ±)2
= c̃±(ξ±, t̃)− 1

(24a)

δ
∂c̃±(ξ±, t̃)

∂t̃
=

1

1− ν

∂2c̃±(ξ±, t̃)

∂(ξ±)2
+
∂2ψ̃±(ξ±, t̃)

∂(ξ±)2
(24b)

We note that varying the profile of the permittivity does
not influence the governing equations, provided that the
Debye screening length is sufficiently smaller than the
scale of variation of the dielectric permittivity.
In the inner regions, we seek regular asymptotic ex-

pansions of the form

c̃±(ξ±, t̃) = c̃±0 (ξ
±, t̃) + δc̃±1 (ξ

±, t̃) + . . . (25a)

ψ̃±(ξ±, t̃) = ψ̃±
0 (ξ

±, t̃) + δψ̃±
1 (ξ

±, t̃) + . . . (25b)

By substituting the expansion in (25) in the PNP sys-
tem (24), we obtain the following leading order equations

−∂
2ψ̃±

0 (ξ
±, t̃)

∂(ξ±)2
= c̃±0 (ξ

±, t̃)− 1 (26a)

1

1− ν

∂2c̃±0 (ξ
±, t̃)

∂(ξ±)2
+
∂2ψ̃±

0 (ξ
±, t̃)

∂(ξ±)2
= 0 (26b)

The general solution of such system is

c̃±0 (ξ
±, t̃) = 1∓A3(t̃)e

−ξ±
√
1−ν ∓A4(t̃)e

ξ±
√
1−ν (27a)

ψ̃±
0 (ξ

±, t̃) = ±A3(t̃)
1

1− ν
e−ξ

±√
1−ν

±A4(t̃)
1

1− ν
eξ

±√
1−ν ±A5(t̃)ξ

± ±A6(t̃) (27b)

where A3(t̃), A4(t̃), A5(t̃), and A6(t̃) are unknown func-
tions of time and symmetry is used to obtain a single form
for the inner expansions in proximity of the left and right
interfaces, similarly to (22b).

D. Outer expansion in the composite layers

In the composite layers, we follow a similar approach to
the one presented for the ionomer core. Yet, the asymp-
totic expansions are modified to account for the difference
in the highest power of δ in the modified PNP systems.
Specifically, we use the following regular asymptotic ex-
pansions for the counterion concentration and electric po-
tential

c̃◦cl±(r±, t̃) = c̃◦cl0±(r±, t̃) +
√
δc̃◦cl1±(r±, t̃) + . . . (28a)

ψ̃◦
cl±(r±, t̃) = ψ̃◦

cl0±(r±, t̃) +
√
δψ̃◦

cl1±(r±, t̃) + . . . (28b)
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By replacing (28) into the modified PNP system defined
by (18a) and (20b), using the initial conditions (19h),
and equating summands with the same power of δ, we
find the following general solution for the leading order

c̃◦cl0±(r±, t̃) = 1 (29a)

ψ̃◦
cl0±(r±, t̃) = ±B1(t̃)r± ±B2(t̃) (29b)

where B1(t̃) and B2(t̃) are unknown functions of time
and symmetry is used to obtain a single form for the left
and right composite layers.

E. Inner expansions in the composite layers

The inner expansions in the composite layers differ
from the expansions in the ionomer core for the follow-
ing arguments: i) in each composite layer, two boundary
layers could develop in the vicinity of the ionomeric mem-
brane and the metal electrode and ii) the largest power
of δ in the PNP system for the composite layer is 1.
We start the analysis by studying the ionomer-

composite layers interfaces. To this aim, we introduce
the local variables

η± =
d∗ − r±√

δ
(30)

By substituting the local variables η± into the modified
PNP system defined by (18a) and (20b), we find

−ǫ∗
∂2ψ̃±

cl±(η
±, t̃)

∂(η±)2
= δ(c̃±cl±(η

±, t̃)− 1) (31a)

∂c̃±cl±(η
±, t̃)

∂t̃
= D∗

[

1

1− ν

∂2c̃±cl±(η
±, t̃)

∂(η±)2
+
∂2ψ̃±

cl±(η
±, t̃)

∂(η±)2

]

(31b)
where superscripts + and − identify interfaces proximal
to r+ = d∗ and r− = d∗, that is, on the right and left of
the IPMC, respectively.
We use regular asymptotic expansions for such fields,

that is,

c̃±cl±(η
±, t̃) = c̃±cl0±(η

±, t̃) +
√
δc̃±cl1±(η

±, t̃) + . . . (32a)

ψ̃±
cl±(η

±, t̃) = ψ̃±
cl0±(η

±, t̃) +
√
δψ̃±

cl1±(η
±, t̃) + . . . (32b)

By substituting the expansions given by (32) into (31),
we find the governing equations for the leading order in-
ner solutions

∂2ψ̃±
cl0±(η

±, t̃)

∂(η±)2
= 0 (33a)

∂c̃±cl0±(η
±, t̃)

∂t̃
= D∗

[

1

1− ν

∂2c̃±cl0±(η
±, t̃)

∂(η±)2

+
∂2ψ̃±

cl0±(η
±, t̃)

∂(η±)2

]

(33b)

The general solution of (33a) is

ψ̃±
cl0±(η

±, t̃) = ±B3(t̃)η
± ±B4(t̃) (34)

where B3(t̃) and B4(t̃) are unknown functions of time
and symmetry is used to express the solutions in the
two composite layers in a compact form. By replacing
the Poisson equation (33a) into the linearized modified
Nernst-Planck equation (33b), we obtain Fick’s second
law for the counterion diffusion in the composite layers,
see for example [44].
At the interfaces between the composite layers and the

electrodes, we use a similar approach by selecting the
local variables

ζ± = r±/
√
δ (35)

The governing equations are identical to (33) upon re-
placing η± with ζ±, that is,

∂2ψ̃∓
cl0±(ζ

±, t̃)

∂(ζ±)2
= 0 (36a)

∂c̃∓cl0±(ζ
±, t̃)

∂t̃
= D∗

[

1

1− ν

∂2c̃∓cl0±(ζ
±, t̃)

∂(ζ±)2

+
∂2ψ̃∓

cl0±(ζ
±, t̃)

∂(ζ∓)2

]

(36b)

In this case, superscripts − and + indicate interfaces
proximal to r+ = 0 and r− = 0, that is, on the right
and left of the IPMC, respectively. Thus, the electric
potential can be analogously written as

ψ̃∓
cl0±(ζ

±, t̃) = ±B5(t̃)η
± ±B6(t̃) (37)

where B5(t̃) and B6(t̃) are unknown functions of time.
Computing the counterion concentration requires solving
a diffusion problem.

F. Matching and boundary conditions

Matching between the leading order outer solutions
and the leading order inner solutions within the ionomer
core and the two composite layers require satisfying the
following conditions

lim
ξ±→∞

c̃±0 (ξ
±, t̃) = lim

x→±1
c̃◦0(x̃, t̃) (38a)

lim
ξ±→∞

ψ̃±
0 (ξ

±, t̃) = lim
x→±1

ψ̃◦
0(x̃, t̃) (38b)

lim
η±→∞

c̃±cl0±(η
±, t̃) = lim

r±→d∗
c̃◦cl0±(r±, t̃) (38c)
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lim
η±→∞

ψ̃±
cl0±(η

±, t̃) = lim
r±→d∗

ψ̃◦
cl0±(r±, t̃) (38d)

lim
ζ±→∞

c̃∓cl0±(ζ
±, t̃) = lim

r±→0
c̃◦cl0±(r±, t̃) (38e)

lim
ζ±→∞

ψ̃∓
cl0±(ζ

±, t̃) = lim
r±→0

ψ̃◦
cl0±(r±, t̃) (38f)

By imposing (38a) and (38b) on the concentration and
potential profiles given by (22a), (22b), (27a), and (27b),
we find the following constraints on the integration con-
stants: A4(t̃) = 0, A5(t̃) = 0 and A6(t̃) = A1(t̃). We
note that these conditions imply that the ion flux corre-
sponding to the inner solution of the ionomer is zero at
the leading order, see (27). Similarly, by enforcing (38d)
and (38f) on the potential profiles in the composite layers
in (29b), (34), and (37), we find that B3(t) = B5(t) = 0,
B4(t̃) = B1(t̃)d

∗ +B2(t̃), and B6(t) = B2(t).

The solution of the diffusion equation for c̃∓cl0±(ζ
±, t̃)

in (36) is identically 1 because of the ion blocking condi-
tion (19f), the matching condition (38e), the initial con-
dition (19h), and the form of the outer solution in the
composite layer in (29a). The solutions for the leading
order inner expansions at the electrode-composite layer
interfaces are completed by imposing the boundary con-
ditions (19e) to find B6(t̃) = α(t̃)/2.

Differently from the leading order solution in the vicin-
ity of the electrode-composite layer interfaces, the coun-
terion concentration in the proximity of the ionomer-
composite layers interface is nontrivial. Specifically,
c̃±cl0±(η

±, t̃) is computed from the diffusion equation in
(36) with boundary condition (19a), matching condi-
tion (38c), and initial condition (19h). By substituting
the outer solution in the composite layer given by (29a)
and the inner solution in the ionomer core in (27a) and
by using the general solution given by [65], we obtain

c̃±cl0±(η
±, t̃) = 1∓

∫ t̃

0

dA3(k)

dk
Erfc





η±
√

4D∗ 1
1−ν (t̃− k)



dk

(39)
where Erfc(•) is the complementary Error function. Be-
yond the counterion concentration, the electrical poten-
tial at the ionomer-composite layers interface should be
continuous, that is, (19b) should be satisfied. By using
the expression for the inner solutions for the electric po-
tential at such interfaces in (27b) and (34), we obtain
A1(t̃) +

1
1−νA3(t̃) = B4(t̃).

Imposing the boundary conditions (19c) and (19d) re-
quires a different approach due to the variation in the
electrical properties at the interface. To this aim, we
adapt the procedure presented in [37] for the analysis of
ion flux continuity in IPMCs without composite layers.
Specifically, we compute the rate of change of the charge
stored in the ionomer in the vicinity of composite layers

by using (20a), that is,

∂

∂t̃

∫ x̃

±1

c̃(x̃′, t̃)dx̃′ = δ

[

1

1− ν

∂c̃(x̃, t̃)

∂x̃
+
∂ψ̃(x̃, t̃)

∂x̃

]

− δ

[

1

1− ν

∂c̃(±1, t̃)

∂x̃
+
∂ψ̃(±1, t̃)

∂x̃

]

(40)

To obtain the sought condition, we move the second term
on the right hand side of (40) to the left hand side. Then,
we use the inner solution to evaluate the left hand side
of the equation and the outer solution for the right hand
side. Finally, we take the limit as δ goes to zero while
holding x̃ fixed for the inner solutions and ξ± fixed for the
outer solution. By following this procedure, we obtain
the following matching conditions

∓δ
∫ ∞

0

∂c̃±(ξ′±, t̃)

∂t̃
dξ̃′±+

[

1

1− ν

∂c̃±(0, t̃)

∂ξ±
+
∂ψ̃±(0, t̃)

∂ξ±

]

= lim
x̃→±1

δ

[

1

1− ν

∂c̃◦(x̃, t̃)

∂x̃
+
∂ψ̃◦(x̃, t̃)

∂x̃

]

(41)

We specialize (41) to the leading order and we simplify
each summand as follows. The integral in the left hand
side is evaluated by using Poisson’s equation (26a) and
considering the matching condition for the electric poten-
tial (38b) with the outer solution of the electric potential
given by (22b). The first summand in the right hand side
is written by using the continuity of the ion flux in (19c).
The second summand in the right hand side is computed
by substituting the expression for the outer solution in
(22). Thus, we find the following auxiliary condition

∂2ψ̃±
0 (0, t̃)

∂ξ±∂t̃
+D∗φ

[

1

1− ν

∂c̃±cl0±(0, t̃)

∂η±
+
∂ψ̃±

cl0±(0, t̃)

∂η±

]

= ∓A1(t̃) (42)

Note that the left hand side of (42) corresponds to the
current density flowing through to the IPMC defined
in (14). A similar result is found in [37], in the absence of
composite layers. By replacing (27b), (34), and (39) into
(42), we find the following integrodifferential equation for
A3(t̃) and B1(t̃)

α(t̃)

2
+B1(t̃)d

∗ − 1

1− ν
A3(t̃)− θ

1√
1− ν

dA3(t̃)

dt̃
=

√

D∗φ2 1
1−ν

π

∫ t̃

0

1
√

t̃− k

dA3(k)

dk
dk (43)

The initial condition for A3(t̃) is A3(0) = 0 from (19g)
and (27a).
To enforce the continuity of the electric displacement

at the ionomer-composite layer interfaces, we follow a
similar approach. Specifically, we compute the net charge
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density in the composite layers in the vicinity of the in-
terfaces by using (18a) to obtain

ǫ∗

[

∂ψ̃cl±(r±, t̃)

∂r±
− ∂ψ̃cl±(d

∗, t̃)

∂r±

]

=

∫ d∗

r±

(c̃cl±(r
′
±, t̃)− 1)dr′± (44)

In order to derive the sought condition, we move the
second term on the left hand side of (44) to the right
hand side. Then, we use the inner solution to evaluate
the right hand side of the equation and the outer solution
for the left hand side. We specialize this equation to the
leading order and we use (29b) to find

−ǫ∗B1(t̃) =
√
δ

∫ ∞

0

(c̃±cl0±(η
±, t̃)−1)dη±+

ǫ∗√
δ

∂ψ̃±
cl0±(0, t̃)

∂η±

(45)
Now, we utilize (19d) to remove the singularity as δ ap-
proaches zero in the last term on the right hand side of

(45) so that ǫ∗√
δ

∂ψ̃±
cl0±(0,t̃)

∂η± =
√
δ
φ

∂ψ̃±
0 (0,t̃)

∂ξ± . Finally, we sub-

stitute (39) and (27b) to obtain the following integral
equation

−ǫ∗B1(t̃) =
√
δ

∫ t̃

0

dA3(k)

dk

√

4D∗ 1
1−ν

√

π(t̃− k)
dk+

√
δ

φ
√
1− ν

A3(t̃)

(46)
By Laplace transforming (43) and (46) and solving for

the transformed variables, we finally find

L[A3](s̃) =
L[α](s̃)

√
1−ν

2

1√
1−ν +

√

D∗φ2
√
s̃+ s̃+ d∗

√
δ

ǫ∗

(

2
√

D∗
s̃ + 1

φ

)

(47a)

L[B1](s̃) =
−

√
δ

ǫ∗
√
1−ν

(

2
√

D∗
s̃ + 1

φ

)

L[α](s̃)
√
1−ν

2

1√
1−ν +

√

D∗φ2
√
s̃+ s̃+ d∗

√
δ

ǫ∗

(

2
√

D∗
s̃ + 1

φ

)

(47b)
where we use L[·] to identify unilateral Laplace trans-
formation and s̃ as the, dimensionless, Laplace variable.
All the other integration constants can be computed from
these two quantities based on the relationships presented
above, for example,

L[A1](s̃) = (
√

D∗φ2
√
s̃+ s̃)L[A3](s̃) (48)

G. Composite solution

The composite solutions for the counterion concentra-
tion and the electric potential are determined by combin-
ing the outer solutions with the inner solutions and by
accounting for their common limits, see for example [37].

By following this process, we find

L[c̃](x̃, s̃) = 1

s̃
−L[A3](s̃)e

− (1−x̃)
√

1−ν

δ +L[A3](s̃)e
− (1+x̃)

√
1−ν

δ

(49a)

L[ψ̃](x̃, s̃) = L[A1](s̃)x̃+ L[A3](s̃)
1

1− ν
e−

(1−x̃)
√

1−ν

δ

− L[A3](s̃)
1

1− ν
e−

(1+x̃)
√

1−ν

δ (49b)

L[c̃cl±](r±, s̃) =
1

s̃
∓ L[A3](s̃)e

−
√

s(1−ν)
D∗

d
∗∓r±√

δ (49c)

L[ψ̃cl±](r±, s̃) = ±L[B1](s̃)r± ± L[α](s̃)
2

(49d)

H. Equivalent circuit model

By using dimensional variables in (42) and assuming
that d ≪ h for simplicity, we find the following relation
between the current through the IPMC and the applied
voltage

L[I](s) =

ǫi
√
1− ν

2λ

(
√
Dd

λ

√
s+ s

)

1 +
h
√

Dd(1− ν)

D

√
s+

hλ
√
1− ν

D
s

L[V ](s)

(50)
where we introduce the notation Dd = φ2Dcl for the
diffusivity in the composite layer scaled by the ionomer
volume fraction consistently with [24] and we use s for the
dimensional Laplace variable. Therefore, the impedance
of the IPMC for small applied voltages Z(s) is written as

Z(s) =
L[V ](s)

L[I](s) =
1 + (RW )

√
s+ (RC)s

W
√
s+ Cs

(51)

where C = ǫi
√
1−ν
2λ is the capacitance associated with

the double layers in the ionomer, R = 2hλ2

ǫiD
is the re-

sistance associated with charge transport in the ionomer

bulk, and W =
ǫi
√
Dd(1−ν)
2λ2 is the Warburg impedance

generated by the charge diffusion in the composite layer.
The electric circuit associated with the impedance Z(s)
is depicted as Figure 3. Such circuit is a specific instance
of the classical Randles circuit in which the resistance
associated to the interface is shortcircuited, see for ex-
ample [44].
We note that the same circuit is derived in [24] without

utilizing the method of matched asymptotic expansions.
Therein, the exact solution of a linearized PNP system,
in which the electron flux in the composite layers is ac-
counted for and steric effects are discarded, is directly
approximated. Yet, the numerical values of the capaci-
tance and resistance are different due to steric effects.
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C

W

R

FIG. 3. Equivalent circuit model for small voltage inputs.

IV. ANALYSIS FOR LARGE VOLTAGE INPUTS

The analysis of IPMC charge dynamics in response to
a large applied DC voltage with a superimposed small
time-varying signal follows the procedure explained in
Section III, that is based on the method of matched
asymptotic expansions. Differently than the analysis for
small input voltages, here we linearize in the neighbor-
hood of a nontrivial chemoeletric solution, which is con-
trolled by the steady state modified PNP system with
the DC voltage as the input. Such steady state solution
is also determined by using the method of asymptotic ex-
pansions. When possible, we thus consolidate the deriva-
tion in the following section and we refer to the detailed
analysis in Section III.

A. Steady state solution with large DC bias

The modified PNP system for the state state analysis
of IPMC response is obtained by setting to zero the ion
flux in the ionomer and composite layers given by (16b)
and (18b), while retaining the original Poisson’s equa-
tion where time derivatives are not present. Specifically,
in steady state conditions, the modified Nernst-Planck
constitutive equations yield

1

1− νc̄(x̃)

dc̄(x̃)

dx̃
+ c̄(x̃)

dψ̄(x̃)

dx̃
= 0 (52a)

1

1− νc̄cl±(r±)

dc̄cl±(r±)

dr±
+ c̄cl±(r±)

dψ̄cl±(r±)

dr±
= 0

(52b)
where we use a superimposed bar to identify steady state
variables.

1. Ionomer

By using a regular regular asymptotic expansion for
both the counterion concentration and electric potential
similarly to (21) in (16a) and (52a) and adapting the
initial condition (19g), we obtain the leading order solu-
tion

c̄◦0(x̃) = 1 (53a)

ψ̄◦
0(x̃) = E1 (53b)

where E1 is an unknown constant.
Similarly, we modify the local analysis in (23) and (25)

to obtain the leading order equations for the inner solu-
tions

−d2ψ̄±
0 (ξ

±)

d(ξ±)2
= c̄±0 (ξ

±)− 1 (54a)

1

1− νc̄±0 (ξ
±)

dc̄±0 (ξ
±)

dξ±
+ c̄±0 (ξ

±)
dψ̄±

0 (ξ±)

dξ±
= 0 (54b)

Following [54], we define the functions y±(ξ±) as

c̄±0 (ξ
±) =

ey
±(ξ±)

1− ν + νey±(ξ±)
(55)

By substituting (55) into the modified Nernst-Planck
equation (54b) and integrating, we find

ψ̄±
0 (ξ

±) = −y±(ξ±) + E±
2 (56)

where E±
2 are unknown constants. By adapting the

matching conditions (38b), we obtain E±
2 = E1. Further-

more, by substituting (55) and (56) into (54a), we re-
trieve a second order nonlinear ordinary differential equa-
tion for y±(ξ±), namely, we find

d2y±(ξ±)

d(ξ±)2
=

ey
±(ξ±)

1− ν + νey±(ξ±)
− 1 (57)

By adapting the matching condition (38a), we have that
y±(ξ±) should vanish as ξ± → ∞. Following [54],
y±(ξ±) can be univocally computed in terms of y±(0)
through the numerical solution of (57). However, y±(0)
depends on the steady state chemoelectric behavior in
the composite layer as illustrated in what follows.

2. Composite layers

We begin the analysis of the steady state response in
each composite layer by studying the inner solutions in
the vicinity of both the interfaces using the local vari-
ables in (30) and (35). Following the procedure pre-
sented in Section III to analyze inner expansions at the
ionomer-composite layer and electrode-composite layer
interfaces, we find that c̄±cl0±(η

±) = G±
1 , ψ̄

±
cl0±(η

±) =

G±
2 , c̄

∓
cl0±(ζ

±) = G±
3 , and ψ̄∓

cl0±(ζ
±) = G±

4 , where G
±
1 ,

G±
2 , G

±
3 , and G

±
4 are all unknown constants.

By adapting the regular expansion (28) for the steady
state outer solution and substituting in the Poisson
equation (18a) and the modified Nernst-Planck equa-
tion (52b), we find

−ǫ∗
d2ψ̄◦

cl0±(r±)

d(r±)2
= c̄◦cl0±(r±)− 1 (58a)
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1

1− νc̄◦cl0±(r±)

dc̄◦cl0±(r±)

dr±
+ c̄◦cl0±(r±)

dψ̄◦
cl0±(r±)

dr±
= 0

(58b)
This problem is similar to the inner solution for the
ionomer presented in Section IVA1. Thus, we introduce
the functions y±cl (r±) defined by

c̄◦cl0±(r±) =
ey

±
cl (r±)

1− ν + νey
±
cl (r±)

(59)

Use of these functions yield

ψ̄◦
cl0±(r±) = −y±cl(r±) +G±

5 (60a)

ǫ∗
d2y±cl (r±)

d(r±)2
=

ey
±
cl (r±)

1− ν + νey
±
cl (r±)

− 1 (60b)

where G±
5 are unknown constants. Note that in this case,

the domain of integration of (60b) is bounded.
By imposing matching conditions (38c), (38d), (38e),

and (38f) and the boundary condition (19e), we express
all the integration constants G±

1 , G
±
2 , G

±
3 , and G±

4 in
terms of G±

5 , y
±
cl(0), and y±cl (d

∗). Specifically, we have

G±
1 = ey

±
cl (d

∗)/(1 − ν + νey
±
cl (d

∗)), G±
2 = −y±cl(d∗) + G±

5 ,

G±
3 = ey

±
cl (0)/(1 − ν + νey

±
cl (0)), and G±

4 = −y±cl(0) +
G±

5 = ±ᾱ/2, where ᾱ is the applied large DC voltage
V̄ nondimensionized with respect to the thermal voltage.
Notably, by rearranging these equations, we obtain

y+cl(0)− y−cl (0) = −ᾱ (61)

3. Boundary conditions

Next, we combine the solutions for the composite layers
and the ionomer through the boundary conditions (19a)
and (19b) to find G±

5 = E2 and y±(0) = y±cl (d
∗). Fi-

nally, by imposing the constraint (13) and the boundary
condition (19c), we find

dy+cl(0)

dr+
= −dy−cl(0)

dr−
(62a)

dy±cl (d
∗)

dr±
= 0 (62b)

The functions y±cl (r
±) are obtained by numerically inte-

grating (60b) with boundary conditions (61) and (62).
The counterion concentration and electric potential pro-
files in the ionomer are then computed by solving (57)
with y±(0) = y±cl(d

∗) and lim
ξ±→∞

y±(ξ±) = 0.

B. Perturbation analysis with DC bias

Here, we investigate IPMC response to a time varying
voltage input composed of a large DC bias and a superim-
posed small time-varying signal by linearizing the mod-
ified PNP systems (16) and (18) in the neighborhood

of the steady state concentration and electric potential
generated by ᾱ. Thus, we write

c̃(x̃, t̃) = c̄(x̃) + ĉ(x̃, t̃) (63a)

ψ̃(x̃, t̃) = ψ̄(x̃) + ψ̂(x̃, t̃) (63b)

c̃cl±(r±, t̃) = c̄cl±(r±) + ĉcl±(r±, t̃) (63c)

ψ̃cl±(r±, t̃) = ψ̄cl±(r±) + ψ̂cl±(r±, t̃) (63d)

where a superimposed hat indicates the perturbation
with respect to the steady state values. The modified
PNP system for the perturbations with respect to steady
state is

−δ2 ∂
∂x̃

(

ǫ(x̃)

ǫi

∂ψ̂(x̃, t̃)

∂x̃

)

= ĉ(x̃, t̃) (64a)

∂ĉ(x̃, t̃)

∂t̃
= δ

∂

∂x̃

[

1

1− νc̄(x̃)

∂ĉ(x̃, t̃)

∂x̃
+

νĉ(x̃, t̃)

(1− νc̄(x̃))2
dc̄(x̃)

dx̃

+ĉ(x̃, t̃)
dψ̄(x̃)

dx̃
+ c̄(x̃)

∂ψ̂(x̃, t̃)

∂x̃

]

(64b)

−ǫ∗ ∂
2ψ̂cl±(r±, t̃)

∂(r±)2
= ĉcl±(r±, t̃) (64c)

∂ĉcl±(r±, t̃)

∂t̃
= D∗δ

∂

∂r±

[

1

1− νc̄cl±(r±)

∂ĉcl±(r±, t̃)

∂r±

+
νĉcl±(r±, t̃)

(1− νc̄cl±(r±))2
dc̄cl±(r±)

dr±
+ ĉcl±(r±, t̃)

dψ̄cl±(r±)

dr±

+c̄cl±(r±)
∂ψ̂cl±(r±, t̃)

∂r±

]

(64d)

We note that (64) reduces to (16a), (18a), and (20) for
null DC voltage.

1. Ionomer

By adapting the regular asymptotic expansion (21)

to the perturbations ĉ(x̃, t̃) and ψ̂(x̃, t̃) and substituting
into (64a) and (64b), we find the leading order outer so-
lutions

ĉ◦0(x̃, t̃) = 0 (65a)

ψ̂◦
0(x̃, t̃) = H1(t̃)x̃+H2(t̃) (65b)

where H1(t̃) and H2(t̃) are unknown functions of time.
The inner solutions are computed by using the local

variable (23), adapting the expansion (25), and replacing
into (64a) and (64b). To simplify the computation, we
make the ansatz that the ion flux in the vicinity of the
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polymer-composite layer interface is zero based on the
solution for null DC voltage and we later verify that this
assumption allows for fulfilling the continuity of the ion
flux in (19c) at the leading order. Thus, we have the
following leading order equations

−∂
2ψ̂±

0 (ξ
±, t̃)

∂(ξ±)2
= ĉ±0 (ξ

±, t̃) (66a)

1

1− νc̄±0 (ξ
±)

∂ĉ±0 (ξ
±, t̃)

∂ξ±
+

νĉ±0 (ξ
±, t̃)

(1− νc̄±0 (ξ
±))2

dc̄±0 (ξ
±)

dξ±

+ ĉ±0 (ξ
±, t̃)

dψ̄±
0 (ξ

±)

dξ±
+ c̄±0 (ξ

±)
∂ψ̂±

0 (ξ
±, t̃)

∂ξ±
= 0 (66b)

This system can be conveniently cast in the form of a
first order linear system of differential equations for the
two dimensional state vector with entries β1(ξ

±, t̃) =

ĉ±0 (ξ
±, t̃) and β2(ξ

±, t̃) =
∂ψ̂±

0 (ξ±,t̃)
∂ξ±

(

∂β1(ξ
±,t̃)

∂ξ±

∂β2(ξ
±,t̃)

∂ξ±

)

=

(

M±
1 (ξ±) M±

2 (ξ±)
−1 0

)(

β1(ξ
±, t̃)

β2(ξ
±, t̃)

)

(67)
where the entries of the state matrix are given by

M±
1 (ξ±) = − ν

1− νc̄±0 (ξ
±)

dc̄±0 (ξ
±)

dξ±

− (1− νc̄±0 (ξ
±))

dψ̄±
0 (ξ

±)

dξ±
(68a)

M±
2 (ξ±) = −(1− νc̄±0 (ξ

±))c̄±0 (ξ
±) (68b)

The solution of system (67) can be written in the form of
a state matrix mapping the value of the state vector at
the origin to the values at an arbitrary abscissa. Specifi-
cally, we can write

(

β1(ξ
±, t̃)

β2(ξ
±, t̃)

)

=

(

Φ±
11(ξ

±) Φ±
12(ξ

±)
Φ±

21(ξ
±) Φ±

22(ξ
±)

)(

β1(0, t̃)
β2(0, t̃)

)

(69)
By adapting the matching condition (38a) for the outer

solution (65a) and the inner solution given by (69), we
obtain

ĉ±0 (0, t̃) = N±
1

∂ψ̂±
0 (0, t̃)

∂ξ±
(70)

where

N±
1 = lim

ξ±→∞
−Φ±

12(ξ
±)

Φ±
11(ξ

±)
(71)

Moreover, by substituting the expression for the coun-
terion concentration at ξ± = 0 given by (70) in (69),
integrating as ξ± varies from 0 to ∞ and adapting the

matching condition (38b) for the outer solution in (65b),
we find

ψ̂±
0 (0, t̃) = ±H1(t̃) +H2(t̃)−N±

2

∂ψ̂±
0 (0, t̃)

∂ξ±
(72)

where

N±
2 =

∫ ∞

0

Φ±
22(γ)dγ +N±

1

∫ ∞

0

Φ±
21(γ)dγ (73)

We comment that the functions N±
1 and N±

2 are cal-
culated from the state transition matrix in (69), which
is, in turn, numerically evaluated from the steady state
solution. We also note that if ᾱ = 0, that is, the DC bias
is null, the state matrix in (67) becomes constant and
N±

1 =
√
1− ν and N±

2 = 1/
√
1− ν.

2. Composite layers

The outer solution in the composite layers is obtained
by adapting the outer expansion (28) to the analysis
of the perturbation of the counterion concentration and
electric potential with respect to their steady state val-
ues. Specifically, by replacing such regular expansions
into the modified PNP system in (64c) and (64d) and
following a procedure similar to the one presented in Sec-
tion III D for null DC voltages, we obtain

ĉ◦cl0±(r±, t̃) = 0 (74a)

ψ̂◦
cl±(r±, t̃) = K±

1 (t̃)r± +K±
2 (t̃) (74b)

where K±
1 (t̃) and K±

2 (t̃) are unknown functions of time
and the initial condition (19h) is taken into consideration.
The analysis of the boundary layers in the vicinity of

the two interfaces of each composite layer duplicates the
arguments in Section III F. Specifically, we use the local
variables (30) and (35) in the modified PNP system (64c)
and (64d). By adapting the matching condition (38c)
with null outer solution, see (74a) and the initial condi-
tion (19h), we obtain

ĉ±cl0±(η
±, t̃) =

∫ t̃

0

dK±
3 (k)

dk
Erfc

[

η±
√

4D∗(σ±)2(t̃− k)

]

dk

(75a)

ψ̂±
cl0±(η

±, t̃) = K±
4 (t̃)η± +K±

5 (t̃) (75b)

ĉ∓cl0±(ζ
±, t̃) = 0 (75c)

ψ̂∓
cl0±(ζ

±, t̃) = K±
6 (t̃) (75d)

where σ± =
√

1/(1− νG±
1 ) is computed from the steady

state solution analogously to the state transition ma-
trix in (69) and K±

3 (t̃), K±
4 (t̃), K±

5 (t̃), and K±
6 (t̃) are

unknown functions of time. By adapting the match-
ing conditions (38d), (38e), and (38f) with the outer
solution given by (74), we find K±

4 (t̃) = 0, K±
5 (t̃) =

K±
1 (t̃)d∗ +K±

2 (t̃), and K±
6 (t̃) = K±

2 (t̃).
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3. Boundary conditions

By using the boundary conditions (19a), (19b), and
(19e) for the fields given by (75) and the values in (70)

and (72), we find K±
3 (t̃) = N±

1 ∂ψ̂
±
0 (0, t̃)/∂ξ

±, K±
5 (t̃) =

±H1(t̃) + H2(t̃) − N±
2 ∂ψ̂

±
0 (0, t̃)/∂ξ

±, and K±
6 (t̃) =

±α̂(t̃)/2. Here, α̂(t̃) is the voltage superimposed to

the DC value Ṽ (t) nondimensionalized with respect to
the thermal voltage. We note that the flux continuity
in (19c) is automatically satisfied at the leading order
through (75a) and (75b) thus verifying the initial ansatz.
Finally, by following the line of arguments in Sec-

tion III F, we modify the derivations based on (40) and
(44) to obtain the following relationships, conveniently
written in the Laplace domain,

(s̃+
√
D∗φσ±N±

1

√
s̃)
∂L[ψ̂±

0 ](0, s̃)

∂ξ±
= ∓L[H1](s̃) (76a)

−ǫ∗L[K±
1 ](s̃) =

√
δ

(

2

√

D∗

s̃
σ±N±

1 +
1

φ

)

∂L[ψ̂±
0 ](0, s̃)

∂ξ±

(76b)
By Laplace transforming (72) and substituting into (76),
we find

L[H1](s̃) =
L[α̂](s̃)

2

1 + U+(s̃) + U−(s̃)
(77a)

L[H2](s̃) = (U−(s̃)− U+(s̃))L[H1](s̃) (77b)

∂L[ψ̂±
0 ](0, s̃)

∂ξ±
= ∓ L[H1](s̃)

s̃+
√
D∗φσ±N±

1

√
s̃

(77c)

where

U±(s̃) =
N±

2 + d∗
√
δ

ǫ∗

(

2
√

D∗
s̃ σ

±N±
1 + 1

φ

)

2(s̃+
√
D∗φσ±N±

1

√
s̃)

(78)

In practical terms, once the DC bias is assigned, the
steady state solution is computed by following the pro-
cedure described in Section IVA and all the parameters
N±

1 , N±
2 , and σ± are consequently calculated. Such pa-

rameters ate then used in (77) to compute H1(t̃) and
H2(t̃) from which all the other pertinent parameters are
derived by using the relationships presented above. A
composite solution for the counterion concentration and
electric potential in the whole IPMC is readily computed
by duplicating the arguments in Section IIIG.

4. Equivalent circuit model

We compute the current flowing through the IPMC
in response to the applied voltage V (t) = V̄ + V̂ (t)

by adapting (14). Specifically, we use (72) to calculate
the displacement current and we combine (75a), (75b),
and (19c) to compute the conduction current. Using di-
mensional variables and assuming d ≪ h, the current
through the IPMC can be written in the Laplace domain
as

L[I](s) =
ǫiD
2hλ2L[V̂ ](s)

1 + 1

2hλ

DN
+
2

s+
2h

√
Ddσ+N

+
1

DN
+
2

√
s

+ 1

2hλ

DN
−
2

s+
2h

√
Ddσ−N

−
1

DN
−
2

√
s

(79)

Thus, the IPMC impedance Z(s) = L[V̂ ](s)/L[I](s)
corresponds to the lumped circuit model displayed in Fig-
ure 4, which consists of a resistor modeling counterion dif-
fusion in the ionomer bulk and two complex impedances
quantifying double layer and mass transport phenomena
in the vicinity of the anode and the cathode. Namely, we
have

Z(s) = R +
1

W+
√
s+ C+s

+
1

W−√s+ C−s
(80)

with

R =
2hλ2

ǫiD
(81a)

C± =
ǫi

λN±
2

(81b)

W± =
ǫi
√
Ddσ

±N±
1

λ2N±
2

(81c)

We note that while the IPMC resistance R is indepen-
dent of the DC voltage, the capacitances C± and War-
burg impedances W± are all controlled by the DC bias.
Specifically, the capacitances and Warburg impedances
can be written in terms of the values for null DC off-
set in Section IIIH as: C± = 2

N±
2

√
1−νC and W± =

2σ±N±
1

N±
2

√
1−νW . Here, the presence of the factor 2 is due to

the separation of impedances associated with the cath-
ode and the anode while the presence of the terms N±

1

and N±
2 evidences the effect of the DC bias on IPMC

impedance. This equivalent model can be assimilated to
two Randles circuits with the resistances associated to
the interfaces are shortcircuited.

V. RESULTS

A. Verification of the semianalytical solution

through finite element results

To offer verification of the proposed semianalytical so-
lution based on matched asymptotic expansions, we com-
pare our predictions on the counterion concentration and
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FIG. 4. Equivalent circuit model under large DC bias voltage.
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FIG. 5. (Color online) Concentration of counterions and
electric potential in the ionomer and the composite layer
computed using the proposed semianalytical solution (mark-
ers) and the numerical solutions from COMSOL (lines) for
δ = 10−5, ǫ∗ = 1, D∗ = 1, φ = 0.5, d/h = 0.01, ν = 0.6,
and α = 0.4. Red (gray), cyan (lightest gray), green (light
gray), blue (darkest gray), and purple (dark gray) colors refer
to t̃ = 0.01, 0.1, 1, 10, and 100, respectively. (a) Counterion
concentration in the ionomer; (b) counterion concentration in
the composite layer;(c) electric potential in the ionomer; and
(d) electric potential in the composite layer.

the electric potential within the IPMC with finite ele-
ment results obtained by using the commercial software
COMSOL Multiphysics 4.2 [66]. IPMC parameters are
selected so that the key dimensionless parameters are
δ = 10−5, ǫ∗ = 1, D∗ = 1, φ = 0.5, d/h = 0.01, and
ν = 0.6. The direct sparse linear system solver MUMPS
is used for the finite element implementation and the do-
main discretization consists of approximately 2000 ele-
ments in the ionomer core and 5000 elements in each of
the composite layers. Moreover, in the proximity of each
interface, meshes are refined to ensure accurate resolu-
tion of the boundary layers [67].

As a first benchmark for the semianalytical solution,
we compare the predictions obtained in Section III with
finite element results computed by implementing the lin-
earized modified PNP system (16a), (18a), and (20). We
focus on a step input α(t̃) = 0.4 to elucidate the ac-
curacy of the proposed solution in capturing transient
phenomena. Specifically, Figure 5 displays the profiles of
the counterion concentration and the electric potential in
both the ionomer and the composite layer proximal to the
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FIG. 6. (Color online) Concentration of counterions and
electric potential in the ionomer and the composite layer
computed using the proposed semianalytical solution (mark-
ers) and the numerical solutions from COMSOL (lines) for
δ = 10−5, ǫ∗ = 1, D∗ = 1, φ = 0.5, d/h = 0.01, ν = 0.6, and
α(t̃) = 8+0.4 sin(2πt̃). Red (gray), cyan (lightest gray), green
(light gray), and blue (dark gray) colors refer to t̃ = 1, 1.25,
1.5, and 1.75, respectively. (a) Concentration of counterions
in the composite layer near the cathode; (b) concentration of
counterions in the ionomer near the cathode; (c) concentra-
tion of counterions in the ionomer near the anode; (d) concen-
tration of counterions in the composite layer near the anode;
(e) electric potential in the composite layer near the cathode;
(f) electric potential in the ionomer near the cathode; (g) elec-
tric potential in the ionomer near the anode; and (h) electric
potential in the composite layer near the anode.

anode. The time snapshots refer to the instants t̃ = 0.01,
0.1, 1, 10, and 100. Figure 5 demonstrates the accuracy
of the semianalytical solution in predicting the formation
of charge boundary layers at the interface between the
composite layer and the ionomer, whose thickness is on
the order of δ. While the concentration boundary layer
in the ionomer has nearly the same length for all instants
of time, such length varies in the composite layer due to
the counterion diffusion. In the latter, the electric poten-
tial is almost constant indicating that capacitive effects
in the composite layer are negligible as compared to the
double layer capacitance in the ionomer.
Further validation of the proposed approach is pre-
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ᾱ
(b)

ν

ν
ν

ν

FIG. 7. (Color online) (a) Capacitance at the anode (solid
line) and cathode (dash-dotted line) scaled with respect to
the value for null DC bias and (b) Warburg impedance at the
anode (solid line) and cathode (dash-dotted line) scaled with
respect to the value for null DC bias for δ = 10−5, ǫ∗ = 1,
D∗ = 1, φ = 0.5, and d/h = 0.02. Red (gray), green (light
gray), and blue (dark gray) colors refer to ν = 0.1, 0.6 and
0.9, respectively.

sented in Figure 6, where we compare predictions ob-
tained in Section IV with finite element results computed
through the analysis of the original nonlinear PNP sys-
tem in (16) and (18). To differentiate from the step input
analysis, we consider a harmonic signal superimposed to
a DC bias, namely, we set ᾱ = 8 and α̂(t̃) = 0.4 sin(2πt̃).
Beyond illustrating the accuracy of the proposed method,
Figure 6 displays a variety of relevant phenomena tak-
ing place in IPMC chemoelectrical response. Specifi-
cally, Figure 6(a) demonstrates the role played by steric
effects in limiting the concentration of the counterions
in the vicinity of the electrodes to the relative value of
1/ν = 1.67. Comparison of concentration profiles in the
vicinity of the anode and the cathode, that is, comparison
of Figures 6(a) and 6(b) with Figures 6(c) and 6(d), indi-
cates the presence of a prominent lack of spatial symme-
try in the IPMC charge dynamics. This effect is consis-
tent with findings in [28, 36, 37] and is attributed to non-
linear electromigration in the Nernst-Planck equation. In
agreement with results for small applied voltage inputs,
the electric potential in the composite layers displays a
significantly slower variation than the electric potential
in the ionomer, indicating that the capacitive behavior is
controlled by double layer phenomena developing in the
ionomer also at nonzero DC bias.

B. Parametric analysis of the circuit model

Here, we investigate the effect of several key param-
eters on IPMC chemoelectric behavior. Specifically, we
consider the effect of the steric coefficient ν and relative
thickness of the composite layer d/h on IPMC impedance
as the nondimensional DC voltage ᾱ is systematically
varied. In all the simulations, we select δ = 10−5, ǫ∗ = 1,
D∗ = 1, and φ = 0.5. Figure 7 displays both the capac-
itances and the Warburg impedances for the anode and
the cathode with d/h = 0.02 as ᾱ is varied from 0 to 20.
Therein, three different values of ν are explored, that is,

ν = 0.1, 0.6 and 0.9. For ν = 0.1, the capacitance and
Warburg impedance corresponding to the cathode are in-
dependent of the DC bias, while increasing the DC bias
reduces the capacitance and warburg impedance corre-
sponding to the anode. Overall, this produces a reduction
in the IPMC capacitance as predicted by [37, 41, 54] in
absence of the composite layers. For ν = 0.6, a similar be-
havior is observed for the capacitances associated to the
anode and the cathode, while the Warburg impedance is
largely insensitive to changes in the DC bias. Finally, as
ν is increased to ν = 0.9, the overall impedance of the
IPMC is controlled by the cathode as the capacitance
and Warburg impedance corresponding to the anode are
drastically reduced as the DC bias is increased. We com-
ment that if steric effects are marginal, that is, ν = 0.1,
the Warburg impedance is bound to decrease in the con-
sidered range of DC bias. This behavior can be further
elucidated by analyzing the steady state profiles of the
counterion concentration and the electric potential for
ᾱ = 8 at the three selected values of ν as depicted in
Figure 8. Therein, it is demonstrated that the depletion
of counterions in the vicinity of the anode and the cor-
responding counterion enrichment near the cathode are
influenced by both the applied DC bias and the steric
coefficient ν. Specifically, counterion enrichment in the
vicinity of the cathode is drastically limited as ν increases
to 0.9 thus reducing IPMC impedance.
Notably, when comparing Figure 6 with Figure 8 we

observe that a reduction in the thickness of the compos-
ite layer drastically modifies the concentration of coun-
terions and the electric potential profiles in the IPMC.
Specifically, as d/h increases charge depletion and en-
richment in the ionomer becomes less evident without
altering the qualitative behavior of the concentration and
electric potential of wider composite layers. The effect of
varying d/h is further illustrated in Figure 9 in which
we hold ν = 0.6 and we vary d/h to take the values
0.01, 0.02, and 0.04. Therein, it is shown that as d/h
and is decreased, both the capacitance and the Warburg
impedance associated with the cathode strongly decrease
with the DC bias. On the other hand, as the thick-
ness of the composite layer increases the dependence on
the DC bias is reduced for both the anode and cathode
impedances. For sufficiently thick composite layers, the
circuit model in Figure 4 are largely independent of the
DC bias.

C. Experiments

To validate the proposed modeling framework based on
the modified PNP system and the composite layers’ hy-
pothesis, we compare theoretical predictions with exper-
imental results on the impedance of Nafion-based IPMCs
neutralized with sodium counterions. We use the same
in-house fabricated samples and experimental setup pre-
sented in [24]. The explored frequency range is from
0.1Hz to 10 kHz and the selected DC biases are 0V,
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FIG. 8. (Color online) Steady state concentration of counte-
rions and electric potential in the ionomer and the composite
layer computed for δ = 10−5, ǫ∗ = 1, D∗ = 1, φ = 0.5,
d/h = 0.02, and ᾱ = 8. Red (gray), green (light gray),
and blue (dark gray) lines refer to ν = 0.1, 0.6 and 0.9, re-
spectively. (a) Concentration of counterions in the composite
layer near the cathode; (b) concentration of counterions in the
ionomer near the cathode; (c) concentration of counterions in
the ionomer near the anode; (d) concentration of counterions
in the composite layer near the anode; (e) electric potential
in the composite layer near the cathode; (f) electric poten-
tial in the ionomer near the cathode; (g) electric potential in
the ionomer near the anode; and (h) electric potential in the
composite layer near the anode.
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FIG. 9. (Color online) (a) Capacitance at the anode (solid
line) and cathode (dash-dotted line) scaled with respect to
the value for null DC bias and (b) Warburg impedance at the
anode (solid line) and cathode (dash-dotted line) scaled with
respect to the value for null DC bias for δ = 10−5, ǫ∗ = 1,
D∗ = 1, φ = 0.5, and ν = 0.6. Red (gray), green (light gray),
and blue (dark gray) colors refer to d/h = 0.01, 0.02, and
0.04, respectively.

0.2V, and 0.5V so that ᾱ varies approximately from 0 to
20. Experiments are executed on twelve samples. Each
sample is tested at the three different DC biases and tests
are 100 s apart. The application of the DC bias is ran-
domized so that each sample is tested in a random order
of DC voltages.

Figure 10 displays a representative impedance mea-
surement for a sample from our batch with surface
area equal to 1.21 cm2 and nominal semithickness of the
ionomeric membrane h = 10−4m. Visual inspection of
the graphs indicates that DC bias is not a determinant
of the impedance of the IPMC, which, in turn, suggests
that the composite layer has moderate thickness based
on Figure 9. Figure 10 also illustrates the predictions
of the proposed modeling framework in absence of DC
bias, whose equivalent circuit is in Figure 3, with param-
eters identified through least square error minimization
as in [24, 68] from the experimental data for null DC
bias. Specifically, we find R = 3.106Ω, C = 0.136mF,
and W = 0.0123 s1/2Ω−1. The minimal discrepancy be-
tween the experimental data for null DC bias (red solid
line) and the model with fitted parameters (black dash-
dotted line) is likely due to experimental uncertainties
and technical difficulties in measuring IPMC impedance
at low frequencies [24].

Salient parameters of the modified PNP model can be
extracted from these equivalent circuit properties. Thus,
we hypothesize ν = 0.25 (based on a spacing between

counterions a equal to 7 Ȧ) and use F = 96485Cmol−1,
R = 8.314 Jmol−1 K−1, T = 300K, c0 = 1200molm−3,
and vacuum permittivity ǫ0 = 8.854 × 10−12 Fm−1 to
find ǫi = 1.51 × 10−9, D = 1.19 × 10−10, and Dd =
2.06 × 10−15. We comment that the selection of a is
informed by the evidence presented in [69] that sodium
counterions are surrounded by four water molecules. No-
tably, these parameter values yield δ = 5.8× 10−6 in line
with the proposed analysis based on matched asymptotic
expansions. Experimental data on DC biases of 0.2V and
0.5V can be utilized to bound from below the thickness
of the composite layers, see also Figure 9. Specifically, by
systematically varying d from 0 to 4.0× 10−6m in steps
of 0.1× 10−6m, we find that the variation of the counte-
rion concentration at both the ionomer-composite layer
interfaces as the voltage is changed from 0 to 0.5V is less
than 1% for d > 2.3×10−6m. Given the secondary effect
of the DC bias on the impedance of this IPMC, we ex-
pect that composite layers are thicker than 2.3× 10−6m.
Such prediction is in agreement with scanning electron
micrographs reported in [26].

To elucidate on the effect of DC bias on the whole
set of 12 IPMCs considered in this work, we perform a
statistical analysis of the experimental data by using a
one-way analysis of variance (ANOVA) [70]. Specifically,
we seek to test the hypothesis of whether the slope of the
impedance magnitude in the low frequency limit between
0.1Hz and 1Hz varies as the DC bias is changed. The
selection of such parameter as compared to the capaci-
tances or Warburg impedances of the equivalent circuit
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FIG. 10. (Color online) Experimental data on the impedance
of a Nafion-based IPMC for DC bias equal to 0V (red (gray)
solid line), 0.2V (green (light gray) solid line), and 0.5V (blue
(dark gray) solid line) and theoretical prediction (black dash-
dotted line) of the circuit model in Figure 3 with R = 3.106 Ω,

C = 0.136mF, andW = 0.0123 s1/2 Ω−1. Magnitude is in (a),
phase in (b), and Nyquist plot in (c).

model in Figure 4 is motivated by the robustness of its
identification from the experimental data and its strong
dependence on the thickness of the composite layer, as
further illustrated in what follows. Table I displays the
mean and the standard deviation of such low frequency
slope (computed with a population of 12 samples). In
the analysis, the DC bias is considered as the indepen-
dent variable while samples are the dependent variable.
Data analysis is carried out using Statview 5.0. The sig-
nificance level is set at p ≤ 0.05 for all analyses. Fish-
ers protected least significant difference (PLSD) post-hoc
tests are used where a significant main effect of the con-
dition variable is observed. Specifically, DC bias compar-
isons are found to be similar (F2,33 = 0.52, p = 0.5994),
that is, the impedances of the samples for the null DC
bias 0V and the DC biases 0.2V and 0.5V do not signif-
icantly differ. Post-hoc comparisons reveal that compar-
ing DC bias pairs (0V vs 0.2V, 0V vs 0.5V, and 0.2V vs
0.5V) does not yield significant differences (p = 0.4359,
0.347, and 0.8698, respectively). We comment that a sim-

TABLE I. Experimental data on the low frequency slope of
the impedance magnitude of in-house fabricated Nafion-based
IPMCs.

DC bias [V] Mean [-dB/decade] Std.Dev.

0 10.345 0.920

0.2 10.731 1.326

0.5 10.812 1.308
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FIG. 11. (Color online) Theoretical predictions of the slope of
the impedance magnitude in the low frequency for different
values of the DC voltage against experimental results from
Table I. Theoretical results are based on parameter values
from the sample in Figure 10 and are plotted for d = 2.3 ×

10−6 m (red (gray) line), d = 1.0× 10−6 m (green (light gray)
line), and d = 0.5 × 10−6 m (blue (dark gray) line). Open
circles are the mean values of the experimental data and error
bars refer to standard deviations.

ilar behavior on Nafion-based IPMCs is also documented
in [42] when IPMCs are tested for DC bias not larger
than 0.5V. As the DC voltage is increased to 1V, no-
ticeable variations in IPMC impedance are therein found,
which may possibly be attributed to hydrolysis or chem-
ical reactions at the metal electrodes, see also [41]. Fig-
ure 11 displays the experimental data in Table I along
with model predictions obtained by using the parame-
ters extracted from the analysis of the sample in Figure
10 (including ǫi = 1.51 × 10−9, D = 1.19 × 10−10, and
Dd = 2.06 × 10−15) for different values of the thickness
of each composite layer. As anticipated earlier, for small
values of d the slope of the impedance magnitude changes
as the DC voltage is increased towards -20dB/decade,
indicating that capacitive effects dominate diffusive phe-
nomena associated with the Warburg impedances. For
d = 2.3 × 10−6m, such slope does not vary with the
DC voltage and is proximal to -10dB/decade, suggest-
ing that diffusive phenomena are determinants of IPMC
charge dynamics.

VI. CONCLUSIONS

In this paper, we have analyzed the influence of a DC
bias voltage on the chemoelectrical response of IPMCs
to a small time-varying voltage input. We have pro-
posed a novel modeling framework based on the modified
Poisson-Nernst-Planck system [52–54] and the concept of
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composite layers [24]. This approach allows for a com-
prehensive description of the complex charge dynamics
taking place in the vicinity of the IPMC electrodes by
accounting for steric effects as well as the presence of
dispersed metal particles in the ionomeric membrane.
A semianalytical solution for the counterion concentra-

tion and the electric potential in the ionomeric membrane
and the composite layers was derived using the method
of matched asymptotic expansions. The semianalytical
solution allowed for accurately resolving the charge dy-
namics in the vicinity of the two metal electrodes and es-
tablish a tractable equivalent circuit model for the IPMC
impedance for a large DC bias. The circuit model com-
prises the series connection of a resistor, associated to
counterion diffusion in the bulk of the IPMC, and two
complex elements, related to mass transport and charge
accumulation in the vicinity of the electrodes. Each of
these two elements consists of the parallel connection of
a capacitor and a Warburg impedance. For null DC bias,
these two elements are identical and the circuit reduces
to the classical Randles model consistently with [24]. On
the other hand, for nonzero DC bias, the capacitor and
the Warburg impedance corresponding to the anode and
the cathode are different and their dependence on the
DC bias is controlled by steric effects and counterion dif-
fusion in the composite layer. Notably, we find that such
impedances can decrease, increase, or remain nearly con-
stant as the DC bias increase depending on the numerical
value of the composite layers’ thickness and the steric co-
efficient.

Implementation of the semianalytical solution to study
IPMC chemoelectric behavior requires: i) solving a non-
linear ordinary differential equation for the selected value
of DC bias to calculate the counterion concentration and
the electric potential at the steady state; ii) calculat-
ing pertinent integrals of the counterion concentration
to obtain the IPMC impedance and iii) computing an
inverse Laplace transform to obtain the the counterion
concentration and the electric potential in response to
the time-varying superimposed voltage signal. The pro-
posed semianalytical solution was verified using finite ele-
ment results on the modified Poisson-Nernst-Planck sys-
tem. Specifically, we compared theoretical predictions on
the counterion concentration and electric potential in re-
sponse to a small step input voltage as well as a small har-
monic voltage superimposed to a large DC bias. Further,
the proposed modeling framework was validated against
experimental results on the impedance of Nafion-based
IPMCs.
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