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Structural features of phase separated athermal colloid-polymer mixtures in the so-called “protein
limit,” where polymer chain dimensions exceed those of the colloid, are investigated using grand
canonical Monte Carlo simulations on a fine lattice. Previous work [N. A. Mahynski, et al. Phys.
Rev. E 85, 051402 (2012)] has shown that this model accurately captures the phase behavior of
experimental systems, and that colloids with sufficiently small diameters, o., relative to that of the
monomeric segments, o, phase separate more readily than their large-diameter counterparts. In
the present study, we directly connect colloid and polymer structure with their phase behavior by
investigating these solutions along their binodal curves; we also explore the role of colloid surface
curvature in destabilizing such solutions. Our findings suggest that simple consideration of an
additional depletion radius, on the order of the o, leads to a quantitatively accurate prediction
of the division between stable and unstable ranges of d = os/0.. We compare these results to
continuum models with different bonding potentials between monomer segments in order to elucidate
the significance of the lattice model’s bond fluctuations and inherently coarse colloid surface. In
a number of cases, the continuum models deviate both qualitatively and quantitatively from the
lattice results, but the binodals of the continuum models are presently not known, making a strong

conclusion about these differences impossible.

PACS numbers: 64.70.pv, 64.70.km, 64.75.Gh

I. INTRODUCTION

Colloid-polymer systems are common in industrial
products such as inks, paints, foams, and surfactants [1].
These systems are of particular interest because they
serve as a convenient model to study depletion interac-
tions, which also play a considerable role in biological
settings, contributing to protein folding, fiber bundling,
and the formation of supramolecules [2-5]. Depletion
arises as two or more confining surfaces approach one
another and exclude a region between them where the
depletant, in this case polymer, can no longer exist.
This produces an osmotic pressure difference between the
bulk and the locally depleted region, which results in
an effective attraction that can be strong enough to in-
duce phase separation into colloidal “liquid” and “vapor”
phases [5, 6]. Fluid phase behavior in colloid-polymer
systems is typically characterized by the macroscopic ra-
tio, ¢ = 2R, /0., where Ry is the average radius of gy-
ration of the polymer in its pure dilute state, and o, is
the colloid diameter.

Much prior work has been devoted to describing this
behavior for systems in the so-called “colloid limit”,
where ¢, < 1 [5-15]; in this limit, many coarse-grained
descriptions of the polymer are reasonably successful de-
spite neglecting the internal conformational degrees of
freedom associated with the polymer chain. In the “pro-
tein” limit, g, > 1, such approaches begin to fail as the
overall free energy of the system becomes sensitive to de-
tails of the polymer. A previous study of the phase be-
havior of lattice colloids and linear chains demonstrated
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that proposed rescaling arguments involving the poly-
mer correlation length, £, qualitatively failed to collapse
the colloid-rich portion of the binodal in the protein
limit [16]; this observation had not been previously cap-
tured in simulation or analytical models which suggested
such a collapse should be possible [17-19], however it is
consistent with recent experimental findings [20].

Remarkably, results from Ref. 16 were in near quantita-
tive agreement with experimental binodals, demonstrat-
ing the influence of another characteristic length scale in
the protein limit, d = 04/0., where o is the diameter of
a monomer segment [16, 21]. These clearly showed that
for athermal systems with monomer-monomer excluded
volumes, critical densities for d < 0.25 collapse to a uni-
form master curve under rescaling arguments; however,
for d > 0.25 at identical g,, the solutions start demixing
at much lower concentrations. McMillan-Mayer-type ap-
proaches have suggested this may be due to many-body
effects [22, 23], but to our knowledge simulations sup-
porting this claim have not yet been performed in the
protein limit. In Ref. 16 we postulated that the quan-
titative improvements observed in that study stemmed
from the use of a finely discretized lattice, in which each
site interacts with twenty-six nearest neighbors (coordi-
nation number, z = 26), rather than the more commonly
used z = 6. This has significant implications for allow-
able polymer configurations. “Corner” neighbors on such
a lattice give rise to bond lengths of V2 and /3, fluctuat-
ing without an energy penalty. Consequently, there is a
degree of bond compressibility built into this model that
is not present in the lower coordination case where bond
lengths are uniformly 1.

In the present study, we examine the structure of
colloid-polymer systems over a range of ¢, and d values



FIG. 1. (Color online) Binodal curves for o. = 4, based on
data from Ref. 16. Large circles indicate the locations of the
points sampled along the binodals in the present work, and
two tie lines are shown as guides to the eye. 95% confidence
intervals are reported when they are larger than symbol size.
The abscissa is the monomer concentration, n, = M p,, where
pp is the polymer number density.

along the binodal curves for the z = 26 lattice model of
Ref. 16 in an effort to characterize the structure of these
systems at coexistence and to clarify the significance, if
any, of bond compressibility. We also examine continuum
models at the same densities although their binodals are
unknown. Additionally, we seek an explanation for the
dramatic instability previously observed for sufficiently
small colloids. We find a range of diverse structural fea-
tures that emerge on different sides of these binodals as
gr is increased, illustrating the non-trivial contribution
polymer internal degrees of freedom have on the overall
free energy of the system. While there have been the-
oretical attempts to treat such systems at coexistence
with liquid-state integral equation theory [24-26], such
theories can only predict the spinodal curve, rather than
the binodal. Due to computational limitations, previous
simulations have also not been able to capture structural
details of large many-body systems, nor have they been
explicitly linked to phase behavior as they are often at
the limit of either one or two colloids [27, 28], or have re-
stricted colloid translational degrees of freedom such as
in quenched matrices [29].

The rest of this paper is organized as follows. In Sec-
tion IT we describe our methodology for both the lattice
and continuum models we employ, and describe the met-
rics used to quantify relevant structural characteristics
of the colloid-polymer mixtures. Section III illustrates
the results for the fine lattice model at a variety of g,
and d along their respective binodal curves. Finally, Sec-
tion IV qualitatively addresses the influence of bond com-
pressibility by contrasting the results from the fine lattice
with those of continuum models.

FIG. 2. (Color online) Binodal curves for o. = 8, based on
data from Ref. 16. Symbols, lines, and error bars are the same
as Fig. 1.

II. METHODS

We examine the structure of the colloid-polymer sys-
tems for both a fine lattice (z = 26), and in continuum
space. All interactions are athermal, that is, all species
interact with one another through a hard sphere poten-
tial in continuum space, or by site exclusion on the lat-
tice. Lattice colloids exclude all sites within a radius of
o./2 of their centers, while polymers are modeled as lin-
ear chains of beads each occupying a single lattice site
(o0s = 1). This is representative of fully flexible polymers
in a good solvent; while we may envision the beads as
either monomers or Kuhn segments, we adopt the con-
vention of referring to these segments as monomers in the
rest of this report. In order to examine a range of macro-
scopic, ¢, and microscopic, d, length scales we employ
a similar grid of parameters as previously investigated
for phase behavior [16] in Table I. It has been shown
that d < 0.125 is representative of the large-diameter
(low curvature) limit, while d = 0.25 exhibits instabili-
ties associated with increased curvature. In this way we
contrast the effect of d in both limits at constant ¢, as
illustrated along the diagonals of Table I. Chain lengths
have been estimated based on the desired ¢, according
to their dilute scaling relationship, R, = 0.508 /0588
which has been previously verified for this lattice even
at very short chain lengths [16]. Due to discrete chain
lengths, it is not possible to exactly reproduce identical
qr values; the target values were ¢, = 1,2, and 4 which
are used as shorthand references henceforth.

We performed grand canonical Monte Carlo (MC) sim-
ulations at chemical potentials corresponding to four tie
lines we selected; two such tie lines are indicated explic-
itly in Figs. 1 and 2, with equilibrium points listed al-
phabetically in order of decreasing colloid density. This
alphabetic naming scheme is adopted for all colloid diam-
eters and chain lengths in this report. Only two tie lines
are explicitly drawn since all properties we measured var-



TABLE I. The macroscopic, ¢, = 2R4/0., and microscopic,
d, size ratios for the lattice systems studied.

Chain length, M

Oc d=os/0c 10 33 110 350
4 0.25 0.984 1.985 4.029
8 0.125 0.992 2.014 3.978

ied smoothly between them; in the interest of brevity we
often present only the data corresponding to these two
lines for each set of size ratios. These coexistence chemi-
cal potentials were obtained previously through the use of
histogram reweighting as described elsewhere [16]. Monte
Carlo moves included local displacements of the colloid
by one lattice site, and insertion and deletion of both
species, in which Rosenbluth sampling was employed for
the polymer [30]. Systems were initialized from configu-
rations on the desired side of the binodal, and care was
taken to ensure that only that side was sampled over
the course of the simulation. Typical simulations lasted
between 50x10° and 1x10° steps, with a previously op-
timized ratio of moves. In order to ensure ergodic sam-
pling of system configurations, simulations were run for
long enough to ensure that the component of the system
with the largest volume fraction reached a ratio of total
number of successful insertions and deletions to the av-
erage number of that species in the box of at least 1x103.
Therefore, each of the 1x103 snapshots of the system that
were collected over the course of the simulation may be
taken as independent configurations. Simulation for ad-
ditional steps did not change any measured properties
significantly. In each case, the box size was sufficiently
large so that no measured property exhibited features at
distances greater than half of the box length.

Two related continuum models were also simulated
using molecular dynamics (MD) simulations for com-
parison with the lattice model. We used the HOOMD
(Highly Optimized Object-oriented Many-particle Dy-
namics) package [31, 32] which takes advantage of graph-
ics processing units (GPUs) to accelerate the simu-
lation of large systems [33]. All athermal interac-
tions were approximated through the use of a Lennard-
Jones potential cut off at the minimum, U;;(r) =

12 6
4e ((T_lAM) — (T_lAm_) > for r < reuw + Ay, and

zero elsewhere. We define r.,; = 216 and AV
(0;+0;)/2—1, so that all particles interact with an iden-
tical purely repulsive force independent of particle size.
We set the reduced temperature to kgT'/e = 1.0. This
value has been shown to reproduce hard sphere behavior
for symmetric spheres [34].

The first continuum model, the ‘fixed-bond’ model,
uses a harmonic bond potential between polymer beads
with a coefficient k& = 500: Ufixed bond (1) = %k(r —04)%
Compared to the second model it has a large energy
penalty associated with bond length fluctuations away
from its equilibrium size. The second model, which we

FIG. 3. (Color online) A two-dimensional schematic projec-
tion of a polymer in the vicinity of a colloid.

will refer to as the ‘free-bond’ model, has a shallow bond-
ing potential, allowing the bonds to fluctuate essentially
without an energy penalty between 1 and v/3, which are
the limits imposed in the lattice model: Ugxed bona () =

16
ks (r - 1*—2‘/5) . With a value of ky = 1x10® this can

be integrated with timesteps similar to those required for
the Lennard-Jones bead-bead potential. Thus, we can di-
rectly contrast the structural effects, if any, due to freely
fluctuating bonds.

A Nosé-Hoover thermostat with a coupling constant,
7 = 1, was found to equilibrate the system quickly, yield-
ing stable runs at long times. Each MD simulation was
run for 300x10° steps, with a snapshot taken every 1x10°
steps. The timestep was varied as necessary to give stable
results, but in general varied between 0.001 and 0.004 re-
duced time units. MD simulations were performed at av-
erage number densities near the binodal curves obtained
from the MC simulations on the lattice.

Polymer structure was quantified through two metrics:
the gyration tensor, S , and the second Legendre polyno-
mial, P». The gyration tensor for a chain of length, M,
is:

| M
Sij = g7 2 — ") (@} — 2§") (1)
k=1
where 7% = (zf, 25 2%) are the cartesian coordinates of

bead k. Diagonalization of this tensor leads to three
eigenvalues, \;, which give the three principal axes of the
polymer. The square of the radius of gyration is obtained
from the sum of these eigenvalues, (R2) = 23’:1 Ai. The
orientation of each axis relative to a colloid surface is
quantified via the second Legendre polynomial, defined
as:

1
Pg)i = 5 (3COS291' — 1) (2)

where 0; is the angle formed by the vector between cen-
ters of mass of a polymer and a colloid, and the vector
starting at the polymer center of mass extending along
Ai. Thus we obtained 3 polynomials, P, ;, which describe
the orientation of each semi-axis of the polymer relative
to a colloid surface. A value of +1 reflects an orientation



of 180 °, while a value of -0.5 corresponds to an angle of
90 °; random orientations average to a value of 0. Fig-
ure 3 illustrates a projection of these metrics into two
dimensions, though of course, our simulations are three
dimensional and have an additional eigenvector pointing
out of the plane of the page. In this work, we focus our
attention on the behavior of the largest semi-axis, Ps ;.
Furthermore, we compare our models by examining the
effective monomer depletion layer thickness around the
colloids, §, which may be calculated from the pairwise

correlation function:

47 Oc 3 oe\3\ 9

3 ((7 +5) - (?) ) = 47r/gc/27° (1= gem(r))dr
(3)

In what follows, errors are calculated by blocking mea-
surements into 10 independent subsets to generate 95%
statistical confidence intervals. Measurements that could
not be blocked as such, owing to the rarity of such a con-
figuration, are not shown as their statistical error is too
large (> 30% of the mean value) to be of any statistical
significance.

oo

III. LATTICE MODEL

We begin with the results from the fine lattice. Quan-
tities are commonly plotted with an abscissa of | =
(r—os)/o. =r/o.—d, which we refer to as the “reduced
distance” (cf. Fig. 3). We do so because the locations
of key structural features for all d collapse nicely when
plotted against this quantity, which conveniently takes
into account both the colloid and monomer length scales.
This collapse is illustrated with dashed lines on figures
as appropriate.

As a reference, we first examine the structure at ¢, =
1. Figure 4 illustrates the average radius gyration for
0. = 8 M = 33 as a function of the distance between
the center of mass of a colloid and that of a polymer,
averaged over all configurations. The location of the first
peak does not appear to depend on the position along the
binodal (density) and remains constant at roughly the ra-
dius of the colloid; as a colloid penetrates a polymer coil’s
core it expands the polymer by roughly 30% over its bulk
dimensions. The curves along the polymer-rich branch of
the binodal (C, D), are nearly indistinguishable from one
another; however, with increasing colloid density along
the opposite branch (A, B), it is clear that the polymers
become increasingly compressed. Along the polymer-
rich branch, the polymer is semidilute and is thus char-
acterized by a meshwork, while along the polymer-lean
branch it is far more dilute. As previously shown, the
polymer-rich branch can be collapsed using scaling argu-
ments based on correlation length, yet such arguments
fail for the polymer-lean branch [16]. Thus, where the
binodal collapses based on polymer scaling, polymer di-
mensions remain independent of density. However, along
the polymer-lean branch a clear oscillatory trend with a

FIG. 4. (Color online) The average radius of gyration of poly-
mers normalized by the values in Table I, and P»; as a func-
tion of reduced distance, I, between their center of mass and
neighboring colloids for 0. = 8, M = 33 (¢» = 1). The dashed
black line is the result at point A for 0. = 4 and ¢, = 1; while
the magnitudes vary, the location of the features align nicely
with the results for o. = 8.

period of roughly 2R, emerges, progressively increasing
in amplitude as colloid density increases. This is also
evident for the case of o, = 4 (d = 0.25). Results for
point A are indicated by the dashed line in Fig. 4; the
location of the maxima and minima are consistent with
the results for 0. = 8, though the overall magnitude of
compression is less for the smaller colloids.

Similar trends appear in the inset of Fig. 4 for Ps 1;
again these curves collapse for the polymer-rich branch
of the binodal (C, D). Near the colloids, the largest semi-
axis rotates almost perfectly tangential to the surface
(P21 < —0.4) in what is known as the “docking tran-
sition” [27, 35, 36], whereupon the polymer becomes fur-
ther distended. Remarkably, this effect occurs in equal
magnitude for both halves of the binodal, independent
of density. However, only for the colloid-rich branch are
additional long range effects observed. In fact, around a
given colloid at least three coherent “shells” are clearly
visible. In each of these shells, the polymer displays a
weak preference to orient normal to the colloid surface
(P21 < 0). As a polymer moves between these shells,
however, the trend is reversed, exhibiting a weak prefer-
ence to orient its longest semi-axis parallel to the outward
normal vector from the surface (Py 1 > 0). These trends
become stronger as colloid density increases.

However, with increasing g, these effects quickly disap-
pear. Once ¢, reaches 4, only local effects in the vicinity
of the colloid surface remain. Figure 5 illustrates this
point; as we push further into the protein limit, the dis-
tortion of the chain dimensions and orientations now oc-
curs only for polymers whose center of mass have en-
gulfed colloids (I < ¢,/2 —d = 1.75); this is accompanied
by a significant reduction in the orientational preference
trends observed for smaller chain lengths. As colloids



FIG. 5. (Color online) Average radius of gyration of poly-
mers, normalized by the values in Table I, and preferential
orientation, P» 1, for the case of . = 4, M = 110 (g» = 4).
Larger coils show decreasing long range effects but with in-
creasing colloid density, the peak in Ry is shifted to greater
distances as colloids are increasingly expelled from the core.

approach the core of a polymer coil, P»; displays a min-
imum at [ ~ 1, that is, half way between the center and
perimeter of the coil for ¢. = 4. As a colloid approaches
a polymer coil’s core, the relative orientation begins to
randomize. This is simply a result of the fact that small
fluctuations in chain orientation much more drastically
impact the angle between the semi-axes of the polymer
and the vector connecting their centers of mass, the latter
of which is now quite small. For the polymer-rich branch
of the binodal, chain size remains essentially independent
of colloid density, while for the colloid-rich branch, in-
creasing density compresses the coils and shifts the peak
in Fig. 5 toward the perimeter of the coil. This may
be understood through an osmotic compression mecha-
nism, as follows. In general, the compression of a poly-
mer chain at sufficiently high colloid density derives from
a polymer coil’s entropic expulsion of the colloid species
from its core. This creates an osmotic pressure differ-
ence between the center of the coil and the bulk which
progressively compresses the coil as overall colloid density
(osmotic pressure) increases [37, 38]. When g, is large the
net volume occupied by the monomers in a chain com-
prises a very small fraction of the total coil volume [39].
As the coils progressively compress along the colloid-rich
branch of the binodal, their internal density increases
making further invasion by the colloid species less and
less favorable. This drives any invading colloids from the
center of the chain toward the surface of the coil causing
the peak in Fig. 5 and the lower bound of the curves in
the inset of Fig. 6 to shift to larger distances from the
core. Measurements could not be made reliably at dis-
tances shorter than those illustrated in the figures, and
are omitted for clarity. This effect is most pronounced
for large g, where the chain can accommodate the col-
loid species closer to its center of mass when sufficiently

8ep()

FIG. 6. (Color online) Colloid-polymer-center-of-mass pair
correlation function for o. = 8, ¢» = 1 and 4 (inset). Error
bars are small and omitted for clarity. Symbols are the same
as in Fig. 5; the dashed black line is the result at point A for
oc.=4and g = 1.

dilute (cf. Fig. 4). Regardless of ¢, or d, the ratios of
the gyration tensor’s eigenvalues in the bulk were roughly
12:3:1, and remained constant both during compression
and across phase boundaries. This is in excellent agree-
ment with data in Ref. 40 reported for random walks,
as well as simulations involving only a single colloid at
similar densities [27, 35].

Figure 6 shows the colloid-polymer-center-of-mass ra-
dial distribution function for o, = 8 at ¢, = 1 (main plot)
and ¢, = 4 (inset). At low ¢,, significant correlation, ex-
tending relatively far into the bulk, is observed along the
colloid-rich branch of the binodal reminiscent of Fig. 4.
As g, is increased to 4 (M = 350), such correlations are
completely lost for polymers which do not engulf a colloid
(I > gr/2 —d = 1.875). When engulfment does occur, a
clear separation of each half of the binodal at small sep-
arations becomes apparent. For the colloid-rich branch,
the more compressed coils osmotically repel the colloid
from the core of the polymer more strongly; extrapolating
near the center of the coil to g. (I = 0) ~ 0.1, while along
the polymer-rich branch this rises to g. (I = 0) ~ 0.3.
This is, of course, approximate as the center of a coil is
actually located at [ = —d, which is not shown for clar-
ity. As g, crosses from the colloid to the protein limit,
chain size is no longer a relevant length scale. Slowly
giving way instead to the correlation length, the loss of
significant correlations for ¢, > 4 depicted in Fig. 6 is
consistent with the previous observation [16] that criti-
cal point densities decay to a constant, finite limit above
this macroscopic size ratio.

The potential of mean force (PMF) offers further in-
sight. In Fig. 7, we show the results for o, = 8 for the tie
line furthest from the critical point (points A and D). As
expected, the polymer-rich branch of the binodal (filled
symbols) is much more attractive at contact (nearly a fac-
tor of 2). However, the effective depletion potential is less
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FIG. 7. (Color online) Potential of mean force (PMF) be-
tween colloids for o. = 8 far from the critical point (A and
D, main plot) and as they approach it (B and C, inset) for
all gr investigated. As the critical point is approached the
PMF on both sides of the binodal approaches as value of -1,
while further away the halves of the binodal split. Open and
closed symbols correspond to the polymer-lean and polymer-
rich phases, respectively.

than 1 kg7 along the opposite branch (open symbols).
As g, increases, we observe a counterintuitive decrease
in the attractive force at contact, despite the fact that
these systems are less stable and demix at lower colloid
concentrations [16]. At long range, this trend reverses;
along the colloid-rich branch the repulsive barrier is sig-
nificantly lowered, and the polymer-rich portion becomes
even more attractive, though the effect becomes less pro-
nounced for ¢, > 2. Given that significantly more struc-
ture exists at low g, it is reasonable to expect short range
interactions to be stronger at ¢, = 1, whereas the in-
creasing magnitude of the longer range interaction with
increasing ¢, is responsible for the overall decrease in
critical point densities as ¢, increases. Figure 7 suggests
the crossover occurs at r ~ 1.20.. The inset of Fig. 7
contrasts the PMF near the critical point (tie line con-
necting points B and C); the effects are qualitatively the
same with increasing ¢, but at contact the force is weak-
ened by 10-20%. As the critical point is approached, the
average contact PMF between each phase converges to
-1 kgT.

One major area of interest for colloid-polymer systems
is estimating the effect dissolved colloids have on poly-
mer dimensions. Different simulations and theories have
previously predicted expansion, contraction, or little to
no effect on polymer radii of gyration [38, 41-45]. For the
systems we studied, however, we find the chains are uni-
versally compressed. Figure 8 shows the ratio between
the bulk radius of gyration and that predicted by the
scaling result in Table I. It is clear that with increasing
gr and o, the chains are progressively compressed as col-
loid density increases. Extrapolation to p. = 0 suggests
that chains are still compressed over their infinitely dilute

dimensions; this is a consequence of the polymer mesh,
which is sufficiently dense to begin screening out excluded
volume effects between the monomers, reducing the Flory
scaling exponent. This effect becomes more pronounced
along binodals with larger colloid diameters (higher crit-
ical colloid densities) and chain lengths, consistent with
the previously discussed polymer coil osmotic compres-
sion mechanism.

Such observations are further supported by theory and
simulations of coarse-grained polydisperse ideal polymers
in the protein limit [42, 43], which suggest that variabil-
ity in polymer size can stabilize these systems against
demixing. While these previous studies have focused on
ideal polymers without explicit monomer-level detail, the
introduction of an internal degree of freedom to account
for polymer size variations due to polydispersity is akin
to the size fluctuations due to internal rearrangements
of a monodisperse species observed in this report. Re-
markably we observe similar results. The trend in Fig. 8
suggests that with increasing colloid diameter, the chains
are more compressed relative to their small particle coun-
terparts; as shown previously [16], this is associated with
a significant increase in the critical densities.

Finally, we consider the monomer depletion radius,
that is, the radius around any given colloid from which
the monomer is effectively absent (cf. Eq. 3). Coarse-
grained descriptions of colloid-polymer solutions often
employ an effective length scale of the polymer deple-
tion radius and ignore effects on this smaller scale. This
mean-field assumption ignores localized monomer order
which could significantly contribute to polymer stabil-
ity. Figure 9 illustrates two remarkable trends. First,
with increasing g, the depletion radius observed on both
sides of the binodal increases, indicating an increasing
propensity for monomer evacuation near the surface of
the colloid, commensurate with the decrease in critical
point densities as ¢, is increased. It is also clear that
with increasing d (smaller o.) the radius increases sig-
nificantly, consistent with the solution’s destabilization.
The second observation is that as ¢, increases an asym-
metry develops between the two corresponding phases
for both values of d. At ¢. = 1, the depletion radius
for each tie line is roughly equal in each phase for both
d, however ¢ increases significantly faster with ¢, along
the colloid-rich branch of the binodal than in the corre-
sponding polymer-rich phase. For the latter phase, by the
time ¢, reaches 4 the radius slows its growth and begins
to collapse. This asymmetry is due to the role-reversal
first pointed out by Paricaud et al. [46]; in the protein
limit, rather than the conventional idea of polymers de-
pleting the colloidal species, instead the colloids may be
thought of as the depletant for the polymers. As a result,
as ¢, increases rather than colloids partitioning between
phases of similar polymer densities, the polymer instead
begins to partition itself between phases with similar col-
loid densities. The expanding monomer depletion radius
simply reflects this increased polymer partitioning.

At this point the significant destabilization previously
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FIG. 8. (Color online) The ratio of the bulk radius of gyration
to the known scaling for polymers on the fine lattice as a
function of reduced colloid density along the binodals. Open
and filled symbols denote measurements for o. = 4 and o. =
8, respectively.

16
14t

12t
v
X 08 f

0.6 z?ﬁ/ qr

04 D

0.2

0 0.5 1 15
PC/P crit
c

FIG. 9. (Color online) Monomer depletion radius around
colloids as a function of reduced colloid density along the
binodals. Open and filled symbols denote measurements for
o. = 4 and o, = 8, respectively. Points nearest the critical
point (B, C) are not depicted.

observed on this lattice at sufficiently large d [16] still
remains unexplained. We suggest the smaller colloid’s
instability can be rationalized by the emergence of a sec-
ond, monomer-level depletion radius which destabilizes
the solution at the onset of many-body interactions. Of
course, given the freely-jointed nature of our model poly-
mer chain we may use the concept of “monomer” diam-
eter and Kuhn length interchangeably here. Consider
a simple monomeric depletion radius around the colloids
to be on the order of the monomer diameter. Simple ge-
ometry reveals that the ratio of the monomer to colloid
diameters at which 3-body overlap of these layers begins
to occur is d = 0.1547, or equivalently o, ~ 6.5. This
limit falls nicely between the two diameters we have in-
vestigated, which separate the unstable regime (o, < 6.5)

from the one where scaling nicely collapses the critical
points [16]. This estimate of the monomer depletion ra-
dius is more of a “local” approximation than that re-
ported in Fig. 9, which is significantly larger, simply be-
cause the latter is the result of integrated pair correla-
tion functions and incorporates long range density fluc-
tuations in surrounding “shells”. It has been previously
suggested that many-body effects may be responsible for
increased immiscibility of smaller colloids due to over-
lapping many-bodied polymer depletion layers [22, 23],
however in this work we posit that many-body depletion
on a monomeric level is a more satisfactory explanation,
given that in the protein limit, polymeric depletion ef-
fects are felt at distances on the order of the polymer
mesh’s correlation length which is much smaller than the
polymer’s overall dimensions. This is supported by the
observation that the locations of structural features col-
lapse only when the abscissa is linearly shifted by the
monomer diameter (reduced distance, 1), suggesting that
there is an underlying effect at this length scale.

IV. CONTINUUM MODELS

Lattice colloids have an inherently coarse surface es-
pecially prevalent at low o., which could introduce a
steric interaction between surfaces that is not present in
smooth, continuum models. Additionally, the impact of
the lattice model’s freely fluctuating bonds in determin-
ing structure in these solutions is unclear. In this section,
we report the structure of two continuum space colloid-
polymer models at the coexistence densities of the lattice
model. Differences between the fixed-bond and free-bond
models are expected to be significant in the crossover
region between the colloid and protein limits where the
characteristic length scale over which depletion acts shifts
from the order of the chains’ overall dimensions to the
correlation length of the solution’s polymer mesh. Al-
though we exclusively report on o. = 4 in this section,
the general trends are equally representative of the sys-
tem with o, = 8 as well.

The most salient difference between the models is in
the behavior of the chains’ radii of gyration (cf. Fig. 10).
In all cases, the free-bond model has an inherently larger
absolute radius of gyration. At low ¢, both models show
relatively little density dependence, however as ¢, in-
creases a separation between locations along the bin-
odals becomes apparent. Both continuum models behave
qualitatively the same, but exhibit significantly different
trends with density than on the lattice (cf. Figs. 4 and 5).
Along the colloid-rich branch of the binodals (A, B) the
radii of gyration collapse more closely than along the
polymer-rich branch (C, D), but not perfectly. Further-
more, the radii of gyration no longer monotonically vary
with colloid density along the binodal curve as the lattice
results did. As colloid density decreases in the colloid-
rich phase (A to B), the chain is weakly expanded at
all separations, while in the opposite polymer-rich phase,
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FIG. 10. (Color online) Average radius of gyration for polymers in continuum models at densities corresponding to lattice
binodals for 0. =4, M = 10 (left, g- = 1), 110 (right, ¢» = 4). As M increases both continuum models begin to show a weak
density dependence, though the trend is clearly different from that observed on the lattice (cf. Fig. 5).

such a decrease (C to D) leads to chain compression. This
effect is more noticeable with the free-bond model, but
is not entirely absent from the fixed-bond model either.
Care must be taken when drawing conclusions from these
observations. The binodals for the continuum models are
unknown, therefore a direct comparison of these results
to those obtained on the fine lattice is not possible. We
simply remark that both continuum models show similar
qualitative behavior that is distinctly different from the
lattice results.

More subtle differences are present in the second Leg-
endre polynomial associated with the largest polymer
semi-axis. For ¢, = 1, the continuum models show no no-
ticeable differences and results from the lattice in Fig. 4
are representative for the continuum models as well. At
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FIG. 11. (Color online) Second Legendre polynomial for a

polymer’s largest semi-axis in the case of 0. = 4, M = 110
(¢r = 4). The magnitude of the features decays from top to
bottom (fixed- to free-bond) while the range over which the
colloids perturb the polymer increases in this order. Symbols
are the same as in Fig. 10.
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FIG. 12. (Color online) Colloid-polymer-center-of-mass pair
correlation function for o. = 4, M = 110 (¢» = 4). Polymer
wrapping increases from left to right. All curves approach
unity beyond the range shown. Symbols are the same as in
Fig. 10.

qr = 4, the continuum models again show an approximate
collapse along the colloid-rich branch (A, B) rather than
the polymer-rich portion (C, D) of the binodal, unlike
the lattice results. The range and magnitude of the ori-
entational preference increase with colloid density. The
fixed-bond model P ; shows a minimum at [ ~ 1, similar
to the lattice model, though the magnitude is roughly
half that observed in the latter. The free-bond model
shows a bit more variability with a minimum ranging
from [ =~ 1 — 1.5, again with a much smaller magnitude
than the lattice results. Finally, in both continuum mod-
els, the magnitude of the P» ; curve over the entire range
of [ is a monotonic function of colloid density, unlike the
lattice model (cf. Fig. 5).

When Figs. 10 and 11 are compared to Figs. 4 and 5, it
is clear that the lattice model is characterized by stronger



short-range effects, while the continuum models tend to
exhibit a weaker long-range influence on polymer struc-
ture. This observation is summarized in Fig. 12, which
shows the weakening capacity of the polymer coils to re-
pel colloids from their core as bonds “soften”, with the
correlation function approaching unity at shorter range
moving from the free-bond to the lattice model. While it
is beyond the scope of this paper to report extensively on
the details of continuum results, it is important that these
qualitative differences be mentioned to illustrate the non-
trivial differences between lattice and continuum models.
Part of the differences may be due to our ignorance of the
continuum binodal curves.

V. CONCLUSIONS

In this report, we investigated the structure of phase
separated systems of athermal colloids and linear poly-
mers in the protein limit. We reported the influence of
two length scales: the macroscopic ratio, ¢, = 2Ry /0,
and the microscopic ratio, d = os/0.. For the lattice
model, for which the binodals are known, we find that
polymer size and orientation are strongly influenced by
the location along the binodal. For all macroscopic size
ratios we find that the bulk polymer is compressed weakly
over its infinitely dilute size primarily due to excluded
volumes between monomers in the polymer-rich phase,
and strongly in the opposite phase primarily due to in-
teraction with the colloids. Along the colloid-rich branch
of the binodal for ¢, = 1, polymers form up to 3 weakly
structured “shells” of preferential size and orientation
around the colloids which weaken further into the bulk.
In these shells, the polymer is distended and preferen-
tially oriented normal to the surface of the colloid; these
features are progressively weakened as g, increases (for
all d). Less stable phases with smaller colloidal species
(0. = 4) compress the polymers over their infinitely di-
lute state relatively less than their more stable, large par-
ticle counterparts in both phases consistent with results
for polydisperse ideal polymers which suggest variabil-
ity in polymer size is associated with more stable solu-
tions [42, 43].

We observed that structural features of these phase
separated mixtures changed qualitatively little with col-
loid curvature (d); instead, the most significant differ-
ences appeared in the degree of chain dimension com-
pression and the size of the monomer depletion radius.
We further suggest the source of the instability with small
colloidal species observed in Ref. 16 may be due to many-
body effects on a monomer level. Structural features tend
to collapse to consistent locations in terms of reduced dis-
tances, | = (r — 05)/0. = r/o. — d, which incorporates
a linear shift by the monomer size, suggesting there are
relevant interactions at this length scale. By this hypoth-
esis, the emergence of 3-body effects due to overlapping
monomer depletion layers should appear at o, =~ 6.5;
this provides a quantitatively accurate division between
the unstable, small colloids (6. = 4) and the more sta-
ble, large colloids (0. = 8) where it has been previously
shown that critical points may be collapsed to a universal
curve [16].

Finally, we attempted to reconcile the differences be-
tween our z = 26 lattice model and continuum models
with different bonding potentials, to examine the impor-
tance of the fine lattice’s freely fluctuating bonds and
relatively coarse colloidal surfaces. Results from the con-
tinuum models are qualitatively very similar and show
only small quantitative differences from each other; these
models reproduce some, but not most, of the features ob-
served on the lattice. Without knowledge of the exact
location of the binodals for the continuum models, it is
not possible to draw a strong conclusion about the rela-
tive impact of these factors; it remains an open question
for future work.

ACKNOWLEDGMENTS

This publication is based on work supported by grant
CBET-1033155 from the U.S. National Science Foun-
dation. Barry Irick was supported by an REU grant
from the Princeton Center for Complex Materials, a U.S.
National Science Foundation Materials Research Science
and Engineering Center (grant number DMR-0819860).

[1] H. N. W. Lekkerkerker and R. Tuinier, Colloids and the
Depletion Interaction, Lecture Notes in Physics, Vol. 833
(Springer, 2011).

[2] P. J. Skrdla, Langmuir 28, 4842 (2012).

[3] B. van den Berg, R. Wain, C. M. Dobson,
Ellis, EMBO Journal 19, 3870 (2000).

[4] D. Marenduzzo, K. Finan, and P. R. Cook, Journal of
Cell Biology 175, 681 (2006).

[5] S. Asakura and F. Oosawa, Journal of Polymer Science
33, 183 (1958).

[6] S. Asakura and F. Oosawa, Journal of Chemical Physics
22, 1255 (1954).

and R. J.

[7] A. Vrij, Pure and Applied Chemistry 48, 471 (1976).

[8] A. P. Gast, C. K. Hall, and W. B. Russel, Journal of
Colloid and Interface Science 96, 251 (1983).

[9] H. N. W. Lekkerkerker, W. C. K. Poon, P. N. Pusey,
A. Stroobants, and P. B. Warren, Europhysics Letters
20, 559 (1992).

[10] H. N. W. Lekkerkerker, Colloids and Surfaces 51, 419
(1990).

[11] M. Dijkstra, R. van Roij, R. Roth, and A. Fortini, Phys-
ical Review E 73, 041404 (2006).

[12] P. G. Bolhuis, A. A. Louis, and J. P. Hansen, Physical
Review Letters 89, 128302 (2002).



[13] S. M. Ilett, A. Orrock, W. C. K. Poon, and P. N. Pusey,
Physical Review E 51, 1344 (1995).

[14] E. J. Meijer and D. Frenkel, Physical Review Letters 67,
1110 (1991).

[15] E. J. Meijer and D. Frenkel, Journal of Chemical Physics
100, 6873 (1994).

[16] N. A. Mahynski, T. Lafitte, and A. Z. Panagiotopoulos,
Physical Review E 85, 051402 (2012).

[17] P. G. Bolhuis, E. J. Meijer, and A. A. Louis, Physical
Review Letters 90, 068304 (2003).

[18] G. J. Fleer and R. Tuinier, Physical Review E 76, 041802
(2007).

[19] G. J. Fleer and R. Tuinier, Advances in Colloid and In-
terface Science 143, 1 (2008).

[20] K. J. Mutch, J. S. van Duijneveldt, J. Eastoe, I. Grillo,
and R. K. Heenan, Langmuir 25, 3944 (2009).

[21] C. Chou, T. Vo, A. Z. Panagiotopoulos, and M. Robert,
Physica A 369, 275 (2006).

[22] M. Surve, V. Pryamitsyn, and V. Ganesan, Journal of
Chemical Physics 122, 154901 (2005).

[23] V. Ganesan, C. J. Ellison, and V. Pryamitsyn, Soft Mat-
ter 6, 4010 (2010).

[24] M. Fuchs and K. S. Schweizer, Europhysics Letters 51,
621 (2000).

[25] M. Fuchs and K. S. Schweizer, Journal of Physics: Con-
densed Matter 14, R239 (2002).

[26] J. B. Hooper, K. S. Schweizer, T. G. Desai, R. Koshy,
and P. Keblinski, Journal of Chemical Physics 121, 6986
(2004).

[27] M. Doxastakis, Y.-L. Chen, O. Guzmdn, and J. J.
de Pablo, Journal of Chemical Physics 120, 9335 (2004).

[28] M. Doxastakis, Y.-L. Chen, and J. J. de Pablo, Journal
of Chemical Physics 123, 034901 (2005).

[29] M. A. Annunziata and A. Pelissetto, Molecular Physics

10

109, 2823 (2011).

[30] D. Frenkel and B. Smit, Understanding Molecular Simu-
lation, 2nd ed. (Academic Press, 2002).

[31] “Hoomd-blue,” See http://codeblue.umich.edu/hoomd-
blue (2012).

[32] J. A. Anderson, C. D. Lorenz, and A. Travesset, Journal
of Computational Physics 227, 5342 (2008).

[33] D. N. LeBard, B. G. Levine, P. Mertmann, S. A. Barr,
A. Jusufi, S. Sanders, M. L. Klein, and A. Z. Pana-
giotopoulos, Soft Matter 8, 2385 (2012).

[34] D. M. Heyes and H. Okumura, Journal of Chemical
Physics 124, 164507 (2006).

[35] R. C. Picu and M. S. Ozmusul, Journal of Chemical
Physics 118, 11239 (2003).

[36] T. Pakula, Journal of Chemical Physics 95, 4685 (1991).

[37] M. R. Shaw and D. Thirumalai, Physical Review A 44,
R4797 (1991).

[38] P. van der Schoot, Macromolecules 31, 4635 (1998).

[39] M. Rubinstein and R. H. Colby, Polymer Physics (Oxford
University Press, 2003).

[40] H. W. H. M. Janszen, T. A. Tervoort,
Macromolecules 29, 5678 (1996).

[41] M. Vacatello, Macromolecules 35, 8191 (2002).

[42] A. R. Denton and M. Schmidt, Journal of Physics: Con-
densed Matter 14, 12051 (2002).

[43] B. Lu and A. R. Denton, Journal of Physics: Condensed
Matter 23, 285102 (2011).

[44] D. Antypov and J. A. Elliott, Macromolecules 41, 7243
(2008).

[45] Q. W. Yuan, A. Kloczkowski, J. E. Mark, and M. A.
Sharaf, Journal of Polymer Science Part B: Polymer
Physics 34, 1647 (1996).

[46] P. Paricaud, S. Varga, and G. Jackson, Journal of Chem-
ical Physics 118, 8525 (2003).

and P. Cifra,



