
This is the accepted manuscript made available via CHORUS, the article has been
published as:

Quantum collapse and the second law of thermodynamics
Sahand Hormoz

Phys. Rev. E 87, 022129 — Published 20 February 2013
DOI: 10.1103/PhysRevE.87.022129

http://dx.doi.org/10.1103/PhysRevE.87.022129


Quantum Collapse and the Second Law of Thermodynamics

Sahand Hormoz∗

Kavli Institute for Theoretical Physics, Kohn Hall,

University of California, Santa Barbara, CA 93106, USA

A heat engine undergoes a cyclic operation while in equilibrium with the net result of conversion
of heat into work. Quantum effects such as superposition of states can improve an engine’s effi-
ciency by breaking detailed balance, but this improvement comes at a cost due to excess entropy
generated from collapse of superpositions on measurement. We quantify these competing facets for
a quantum ratchet comprised of an ensemble of pairs of interacting two-level atoms. We suggest
that the measurement postulate of quantum mechanics is intricately connected to the second law
of thermodynamics. More precisely, if quantum collapse is not inherently random, then the second
law of thermodynamics can be violated. Our results challenge the conventional approach of simply
quantifying quantum correlations as a thermodynamic work deficit.

I. INTRODUCTION

Kelvin’s statement of the second law of thermodynam-
ics claims that “no process is possible in which the sole
result is the absorption of heat from a reservoir and its
complete conversion into work.” [1] First written in 1849,
more than a half-century before the discovery of quan-
tum mechanics, it is generally regarded as one of the im-
mutable laws of nature. Here, we explore the implication
of this statement on the laws of quantum mechanics, in
particular the measurement postulate.
According to quantum theory, on measurement a state

collapses probabilistically into an eigenstate of the mea-
sured observable [2, 3]. The objectively random outcomes
from measurements of a superposition of eigenstates have
been proposed as an unbiased physical source for gener-
ating random numbers [4]. Thus far, experimental tests
have found no deviation from randomness for sequences
generated using quantum collapse [5–7]. However, de-
spite some limited theoretical constraints on computabil-
ity of quantum measurement outcomes [8], the inherently
probabilistic nature of quantum collapse remains a pos-
tulate; for a derivation of collapse probabilities without
appealing to Born rule see [9, 10]. We suggest a possible
connection between the inherent indeterminacy in quan-
tum collapse and the second law of thermodynamics by
exploring quantum protocols for converting heat to work.
A heat engine is a system that is cyclically modified

while in thermal equilibrium with the net result of con-
version of heat into mechanical work. To extend this
notion into the quantum regime, quantum analogues of
various isothermal and adiabatic steps for running the
engine have been considered [11–14]; other quantum ef-
fects such as the discrete nature of energy states [13] and
indistinguishability of particles [14] can also modify the
operations of a quantum engine. However, more exotic
quantum properties such as quantum coherence, at first
seem impossible to achieve in a system in contact with a
thermal reservoir. Thermal equilibrium implies that the
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engine is described by a canonical ensemble of orthogonal
energy eigenstates –diagonal density matrix. Nonethe-
less, if some degrees of freedom of the system are ne-
glected (traced over), the remaining subsystem is not in
general described by a canonical ensemble. To access ex-
otic quantum features, the observer operating the engine
must focus on a subsystem. A bipartite system shared
between two parties is the simplest quantum engine of
interest.
In [15] and [16], it is shown that less work can be

extracted from a heat bath when a bipartite system is
shared between two parties than when one party has
global possession of the system. Thermodynamic mea-
sures such as the amount of extractable work are used
to quantify available resources for quantum information
processing, such as quantum correlations. However, de-
spite their utility in providing a quantitative metric for
non-local resources, these approaches do not estimate the
maximum locally extractable work correctly, by missing
a crucial ingredient: the same non-orthogonal states that
introduce added inefficiencies in the operations of a local
observer can also break detailed balance. The subsystems
are effectively out of equilibrium, and measures deduced
from equilibrium thermodynamics are not strictly valid.
Here, we quantify the thermodynamic benefits and

costs of locally manipulating a simple quantum heat en-
gine comprised of an ensemble of interacting pairs of
atoms. We estimate the locally extractable work by ac-
counting for the broken detailed balance associated with
the collective measurement of a subsystem (one atom of
each pair). With detailed balance broken, the engine
can rectify thermal fluctuations to extract work, much
like the “ratchet and pawl” engine used by Feynman in
his Lectures [17]. In the proposed quantum ratchet, ir-
reversibility of quantum collapse (or decoherence) per-
mits extraction of net motion from thermal fluctuations
of a single heat bath. We show that the work cost
due to the excess entropy generated from the collapse
of non-orthogonal states, compensates for the gain ob-
tained from ratcheting thermal fluctuations. Kelvin’s
statement is never violated. We use this simple construct
to demonstrate that if a sequence of collapsed measure-
ment outcomes is nonrandom, or algorithmically com-
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pressible, then the second law of thermodynamics can be
violated.

Since we are interested in measurements and the role of
an observer in extracting thermodynamic work, we adopt
the setup of Maxwell’s demon [18]. This demon can mea-
sure the state of a system, for example the position of a
single gas molecule in a chamber, and extract work from
its knowledge, for instance by positioning a piston appro-
priately and carrying out an isothermal expansion [19].
As first observed by Szilard [19], and later by Landauer
and Bennett [20, 21], the demon does not violate Kelvin’s
statement, since in a cyclic operation the same amount
of work is required to erase the demon’s memory as is
extracted. Maxwell’s demon establishes a connection be-
tween information and thermodynamic entropy. The flow
of information is analogous to the flow of heat in and out
of a Carnot engine from thermal reservoirs. If the reser-
voirs have the same temperature, the inflow and outflow
of heat are the same, and the net work extracted zero.
Implications of a demon measuring quantum states were
considered early on by von Neumann [22], who showed
that the ability to distinguish non-orthogonal states is
equivalent to a violation of the second law.

At first sight, quantum measurements seem to intro-
duce further inefficiencies in the operations of the demon.
Take the example of a single spin in an external magnetic
field first discussed in [23]. The spin is initially in state

|→〉 = 1/
√
2(|↑〉+ |↓〉), where |↓〉 (|↑〉) points in the same

(opposite) direction as the external field and has energy
−µB (µB). One way to extract work from such system
is to rotate the spin to the |↓〉 by applying a π/2 pulse,
extracting work µB. Alternatively, one can measure the
spin along the magnetic field direction, if the outcome is
|↑〉 the spin can be rotated to |↓〉 state with a π pulse
to extract work 2µB. Since this outcome occurs half
the time, on average the work extracted is µB, same as
before. However, the process of measurement has gen-
erated a ‘waste’ bit of information, which requires work
kBT ln 2 to erase, making the overall process less effi-
cient. Naively, one might expect that quantum effects in
general can only decrease efficiency by generating excess
entropy from measurements of non-orthogonal states.

Scully et al. in a pioneering paper [24] showed how
work can be extracted from a single quantum heat bath.
The key idea is to use quantum coherence to break de-
tailed balance. Using a three-level atomic system in a
photon bath, they showed that a properly tuned super-
position of the almost-degenerate ground states can re-
sult in destructive interference between the absorption
paths. With a reduced absorption probability, the atoms
can effectively act as a higher temperature reservoir, per-
mitting extraction of work. Of course, the cost of gen-
erating the initial coherence precludes the possibility of
violating the second law.

Here, we combine the above seemingly contrasting
views into a consistent picture using the language of
Maxwell’s demon. Before introducing the specifics of the
quantum ratchet, we consider a general cycle for a quan-

tum heat engine.

II. GENERIC ENGINE CYCLE

Consider the following cyclic operation for an engine
with access to a single heat bath; for similar cycles see
[11–13, 25]
Step 1– The system with Hamiltonian H1 is put in con-
tact with a thermal reservoir at temperature T . At
equilibrium system is descried by density matrix ρ1 =
1
Z1

e−βH1 , where β = (kBT )
−1 and Zi = Tr{e−Hi/kBT }

is the partition function.
Step 2– The system is isolated from the thermal reser-
voir. The Hamiltonian is adiabatically changed to H2,
leaving the occupation probability of each energy level
unchanged. The density matrix of the system after the
transition is ρ̄1 =

∑

i pi|ei〉〈ei|, where {pi} are the eigen-
values of ρ1 and {|ei〉} the energy eigenstates of H2

[12]. The amount of work performed by the system is
W1 = Tr{ρ1H1} − Tr{ρ̄1H2} [13].
Step 3– The demon extracts work from the system by first
measuring it and gaining information S(ρ̄1) = S(ρ1) =
−Tr{ρ1 ln ρ1}, where S is the von Neumann entropy.
The system is then put in contact with the thermal bath
and work extracted from a quasi-static isothermal expan-
sion in phase space from the known state (measurement
outcome) to one with maximum entropy [16, 20, 21, 25];
the final density matrix is ρ2 = 1

Z2

e−βH2 . Using the first
law of thermodynamics, work done by the system is given
by,

W3 = ∆U3 − β−1Tr{ρ2 ln ρ2}+ β−1Tr{ρ1 ln ρ1}, (1)

where ∆U3 = Tr{ρ̄1H2} − Tr{ρ2H2} is the change in
internal energy of the system. The second term on the
right hand side the is heat flow from the isothermal ex-
pansion, and the last term, the work cost of erasing the
information gained from the demon’s measurement.
Step 4– Finally, to complete the cycle the Hamiltonian
is adiabatically changed back to H1 with the work ex-
tracted given by W4 = Tr{ρ2H2} − Tr{ρ̄2H1}, where
ρ̄2 has the same occupation probabilities as ρ2 but with
eigenstates corresponding to the energy levels of H1.
The net work by the system in the full cycle is,

Wnet = Tr{(ρ1 − ρ̄2)H1}+ β−1
(

S(ρ2)− S(ρ1)
)

. (2)

Substituting H1 = −β−1 ln(Z1ρ1) in above expression
gives Wnet = β−1(Tr{ρ̄2 ln ρ1} − Tr{ρ2 ln ρ2}). Since
S(ρ2) ≤ −Tr{ρ̄2lnρ1} [26], for any choice of H1,2,
Wnet ≤ 0, which implies that the cycle can only convert
work to heat, in agreement with Kelvin’s statement.
The demon, however, can access non-equilibrium en-

sembles by observing subsystems. The broken detailed
balance in the subsystems can be exploited to enhance
efficiency. However, observing subsystems can gener-
ate excess entropy and increase the work cost of erasure
[16], which we demonstrate first. Assume that there are
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two subsystems, A and B, with reduced density matrices
ρA(B) = TrB(A){ρ}. Step 3 above needs to be modified
to,
S tep 3’– The demon measures subsystem A using
a complete projective measurement, ΠA. pπA=ai

=
Tr{ρA1 ΠA=ai

} is the probability of outcome ai from
measuring subsystem A. The demon gains information
H(ρA1 ) = −∑

i pai
ln pai

, the Shannon information of
the measurement outcomes; in general, H(ρA1 ) ≥ S(ρA1 ),
where S(ρA1 ) = −Tr{ρA1 ln ρA1 } is the von Neumann en-
tropy of subsystem A.
The demon does the same with subsystem B. Informa-

tion gained from the second measurement, however, is
not independent from the first one, and given by,

S(ρB1 |ΠA) = ΣipπA=ai
S(ρ

B|πai

1 ), (3)

where ρ
B|πai

1 = TrA{ρ1ΠA=ai
}/pπA=ai

is the state of
B after the measurement on A. The system is then put
in contact with the thermal bath and work extracted as
before.
The net work of one cycle is,

W ′
net = Tr{(ρ1−ρ̄2)H1}+β−1

(

S(ρ2)−H(ρA1 )−S(ρB1 |ΠA)
)

.
(4)

Even for the optimal choice of ΠA, local measurement
can generate additional entropy, H(ρA1 ) + S(ρB1 |ΠA) >
S(ρ1), if there are quantum correlations, for example en-
tanglement, present between the two subsystems [28–30].
Quantum correlations exist even if the individual states
making up ρ are separable, ρ = pi,j |Ai〉〈Ai| ⊗ |Bj〉〈Bj |,
as long as states |Ai〉 (|Bj〉) form a non-orthogonal set for
subsystem A (B) [27]. Quantum correlations are encoded
in non-orthogonal states of the subsystems or entangled
states, which collapse when measured locally. The ex-
cess entropy generated from the measurement-induced
collapse of these states is given by,

δ = H(ρA1 ) + S(ρB1 |ΠA)− S(ρ1). (5)

This quantity is known as quantum discord [16, 28, 29,
31]. δ is always greater than or equal to zero.
The net work extracted from local measurements Eq.

(4) can be naively related to that from global measure-
ments Eq.(2), W ′

net = Wnet−β−1δ; as argued in [15, 16].
It seems that local measurements produce a smaller net
work by an amount equal to the discord. However, Eq.(4)
has neglected a crucial ingredient: the same quantum
correlations that create discord can also break detailed
balance. Measuring subsystems, besides generating ex-
cess erasure cost, can also enhance engine efficiency. To
correctly calculate the maximum extractable work, we
need to exploit the broken detailed balance in the en-
gine.

III. QUANTUM RATCHET

Periodic potentials with broken parity symmetry (e.g.
a sawtooth pattern), might seem capable of extracting

a)

b)

c)

FIG. 1. Quantum Ratchet. a) An ensemble of two level
systems in equilibrium at temperature T. Application of the
pulse excites the atoms that were initially in the ground state,
resulting in (b). Atoms in the excited state (highlighted) are
not altered. Work is extracted by the demon rotating all the
atoms to the ground state (c). Such a pulse violates the prin-
ciple of detailed balance. However, a physical realization is
possible using a collective quantum non-demolition measure-
ment of the entangled pairs of atoms.

net directed motion (and thereby work) by rectifying
thermal kicks. Smoluchowski and later Feynman, using a
“ratchet and pawl” construct, showed that detailed bal-
ance precludes this possibility [17, 32]. Out of equilib-
rium, however, correlated fluctuations [33], non-thermal
kicks, or time-varying potentials [34], can give rise to di-
rected motion.
We use the inherent non-equilibrium nature of quan-

tum collapse to implement a quantum ratchet. But first,
consider a simple equilibrium case: an ensemble of two-
level atoms in contact with a thermal reservoir at tem-
perate T (Fig.1a); a fraction of the atoms are thermally
excited. Assume that a pulse of light exists that only ex-
cites the atoms in the ground state, leaving the excited
atoms unaltered. After applying such a pulse, which re-
quires work, all the atoms will be in the excited state
(Fig.1b). The demon then extracts work by rotating all
the atoms back to the ground state. Since the entropy
of the system is zero after the pulse, there is no erasure
work. The net work extracted is equal to the energy of
the thermally excited atoms, as the work extracted from
the atoms initially in the ground state is equal to the
work spent applying the pulse. This protocol ‘ratchets’
work from thermal excitations of the system. Of course,
such a pulse does not exist, as it violates detailed bal-
ance: absorption and emission are no longer on the same
footing. A π pulse, for instance, will also result in decay
of all the excited atoms in addition to exciting all the
ground state atoms. More generally, unitarity in quan-
tum mechanics requires that any coupling be hermitian,
implying that any transfer from the ground state to the
excited state must occur equally in the reverse direction.
Nonetheless, it is possible to implement the above

ratchet using entangled pairs of atoms as effective two-
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level systems. Our engine will be an ensemble of N ≫ 1
pairs of interacting atoms (A and B) each in a box of
size L. The internal state of the atoms is represented as
a spin-1/2 system with energy gap ω. The two atoms
interact (XY-interaction) with a coupling constant that
is a function of their separation distance.
The Hamiltonian for each subsystem (pair of atoms) is

given by,

H = ωSz
A + ωSz

B + λ(r)(S+
AS−

B + S−
AS+

B ), (6)

where Sz
j = σz

j /2 and S±
j = Sx

j ± iSy
j , with σx,y,z

j the
Pauli matrix acting on atom j = A,B.
The coupling is only turned on when the separation

distance of the atoms is below a certain cutoff.

λ(r) =

{

λ, if |r| ≤ r0
0, if |r| > r0

(7)

The engine is operated as follows (for a detailed anal-
ysis see Supplementary Information):
Step 1– Initially, the box size L is smaller than the cut-
off r0. Each pair is equilibrated via exchange of photons
with an incoherent thermal radiation field. Above Hamil-
tonian has four energy eigenstates; two separable states:
|gg〉 and |ee〉,where |e〉 and |g〉 denote the single-atom
excited and ground states (Sz = ±1/2); two entangled

energy eigenstates: |±〉 = 1/
√
2(|eg〉 ± |ge〉), which have

an energy separation of 2λ. The equilibrium occurrence
probabilities of the entangled states are denoted as p±.
Step 2– The radiation field that thermalized the inter-

nal state of each atom-pair is turned off, ensuring that
the probability of occurrence of each internal state is kept
constant. The translational degrees of freedom of the
atoms, however, can equilibrate via collisions with the
walls of the box. The volume of the boxes are doubled.
Atom-pairs in the separable states have no energetic pref-
erence for their separation distance. The energy of the
entangled state |−〉, however, increases by λ if the separa-
tion distance of the atoms exceeds the cutoff (uncoupling
the pair); thermal fluctuations can provide this energy.
Conversely, state |+〉 has a lower energy in the uncou-
pled state. The equilibrium probability of finding inter-
nal states |±〉 in the uncoupled state is p±o = 1/(1+e∓βλ)
(Fig.2).
Step 3– A quantum non-demolition measurement is

performed on the collective spin of all the A-atoms,

S̃z
A = 1/

√

N/2
∑N

i=1 S
z
A,i, where the i summation runs

over all the boxes. The measurement outcome does not
reveal which A-atoms are excited, but only their total
number [35]. The information obtained is logarithmic in
the system size N and has a negligible erasure cost. The
measurement collapses all the entangled states, since a
superposition of an A-atom in the excited and ground
states can not correspond to a known total number of
excited A-atoms. (Non-demolition means that the mea-
surement Hamiltonian commutes with the single-atom
Hamiltonian (Sz

A), leaving the A-atom states unaltered;

see Supplementary Information for an implementation
using Faraday-rotation). The average energy of a cou-
pled atom-pair increases to their uncoupled state after
the collapse. This is manifested in the higher effective
temperature of the individual atoms (Fig.2 inset); work
is required for the collective measurement. However, as
in the simple example above, this work will be retrieved
in the final step. For the pairs thermally excited to the
uncoupled state, the collapse requires no work. Restoring
these pairs to the initial state will effectively convert ther-
mal excitations in the translational motion of the atoms
to useful work; the cycle operates like a quantum ratchet.
Unlike the simple π pulse of the above example, the col-
lective measurement inherently breaks detailed balance.
Decoherence/collapse of the entangled states is an irre-
versible process. The measurement increases the energy
of the coupled pairs to that of uncoupled pairs, but not
the reverse.

Step 4– The volume of the boxes are restored to their
initial value. The demon measures the internal state of
each pair of atoms, reducing their entropy to zero. An
isothermal reversible expansion is performed to the ini-
tial state. As discussed above, the probabilistic collapse
of the entangled states, by the local (one atom of each
pair) collective measurement, results in an increase in
entropy by δ. Therefore, the erasure cost will exceed
the work extracted during the isothermal expansion by
β−1δ. The ratchet provides useful work by effectively
lowering the work cost of the collective measurement in
the previous step. Thermally uncoupled |−〉 states save
λ in measurement work, whereas, uncoupled |+〉 states
require additional work λ. On average, the net work ex-
tracted in the cycle from each atom-pair is

W ′′
net = λ(p−p

−
o − p+p

+
o )− β−1δ, (8)

where the first term on the right hand side is the work ob-
tained from ratcheting thermal fluctuations in the trans-
lational motion of the atoms, and the second term, the
erasure cost of the excess entropy generated from the
random collapse of the entangled states.

Measurement-induced collapse of quantum states per-
mits ratcheting of work from thermal fluctuations by
breaking detailed balance. Above, this has increased the
net extracted work compared to the protocol in Eq. 4,
where W ′

net = −β−1δ with local measurements but with-
out a ratchet.

The erasure cost of δ precludes the possibility of vio-
lating the second law of thermodynamics. In the above
cycle, W ′′

net ≤ 0, for all values of coupling λ and tem-
perature T (Fig.2). Unlike Eq. 4, local measurements
of subsystems do not just introduce added inefficiencies
through δ, but also enhance efficiency by breaking de-
tailed balance. Non-random quantum collapse will have
thermodynamical implications that we explore below.
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FIG. 2. Net work extracted. Left: probability of finding the
pair of atoms in the uncoupled state as a function of cou-
pling parameter λ, for, from right to left, β = 1,2, and 10;
ω = 1. The inset shows the ratio of the effective temperature
of each atom to the actual temperature as a function of in-
verse temperature, for, from bottom to top, λ = 0.2, 0.3 and
0.4. Right: Net work extracted from the cycle for the same
color-coded values of λ as the inset. The three curves on the
top correspond to δ = 0 and imply a violation of Kelvin’s
statement.

IV. NON-RANDOM COLLAPSE

Each cycle of our engine produces a classical measure-
ment outcome stored by the demon. Quantum theory
tells us the occurrence probability of a particular out-
come pi [3, 9, 10]. Each outcome is assumed to be un-
correlated from the preceding ones; the indeterminacy
of each measurement is an inherent property of the sys-
tem. The demon stores a sequence of its measurement
outcomes, s. In the limit N → ∞ outcomes, this se-
quence can be reversibly compressed into a sequence of
size NH({pi}), where H is the Shannon entropy of out-
come probabilities pi. The compressed sequence must be
irreversibly erased to complete the cyclic requirement of
the engine.
Of course, the demon does not need to know about

quantum theory. It simply compiles a large sequence of
measurement outcomes and then searches for a method to
maximally compress this sequence to minimize the work
for erasure. In general, the compressed sequence s∗ can
be thought of as a program that when executed on a uni-
versal computer, yields s. The size of this program |s∗| is
called the Kolmogorov complexity of s, K(s) [36–38], and
corresponds to the minimum number of bits that need to
be irreversibly erased, setting the minimum erasure work
[39].
The average Kolmogorov complexity of all possible se-

quences of outcomes is well-approximated by the entropy
of the sequences, 〈K(s)〉s ≈ NH({pi}); almost all se-
quences are random strings and algorithmically incom-
pressible [36–38]. However, an infinitesimal fraction of
the sequences have concise descriptions that are asymp-
totically negligible compared to the size of the sequence,
limN→∞ K(s)/N → 0. Such strings, like the binary dig-
its of π, might appear random but have concise algo-
rithmic descriptions. K(s) is not a computable function
[36–38]; it is impossible to distinguish between random
strings and those that just ‘look’ random. An observer

making a finite number of measurements and performing
a finite number of statistical tests can never be sure if the
outcomes are truly random; for experimental searches for
non-randomness in quantum collapses see [5–7]. Below,
we show that an algorithmically compressible or non-
random sequence of quantum measurement outcomes will
result in a violation of the second law of thermodynamics.

Assume that quantum measurement outcomes are de-
terministic, that is the observer can algorithmically com-
pute the expected outcome of a collapse based on its ob-
servations. Consider a bipartite ensemble with quantum
correlations described by density matrix Σipi|Ai〉〈Ai| ⊗
|Bi〉〈Bi|. The joint-states |Ai〉 ⊗ |Bi〉 form an orthog-
onal set, however, for subsystem A(B), {|Ai〉}({|Bi〉})
are not necessarily orthogonal. The entropy of this sys-
tem is H({pi}). Local measurements of subsystem A
are assumed to be deterministic, such that the subset
of non-orthogonal states |Ai∈k〉 that are expected to col-
lapse with outcome k are known a priori. The probability
of measuring outcome k is pk = Σi∈kpi. A subsequent
measurement of B fully identifies the initial state. The
entropy of the outcomes from local measurement of A
followed by B is given by H({pk}) + ΣkpkH({pi∈k}) =
H({pi}). The equality follows from additivity of Shannon
entropy; entropy is independent of how the process is di-
vided into parts. With deterministic collapse, no excess
entropy is generated by measuring subsystems, δ = 0.

For the quantum ratchet considered above, the excess
entropy is generated from collapse of entangled states
when measured locally. A demon that can deterministi-
cally predict future collapses from the sequence of pre-
ceding outcomes can sufficiently compress the measured
outcomes to ensure δ = 0. From Eq. 8, the engine oper-
ated by a demon that does not generate excess entropy
from collapsing superpositions, will yield W ′′

net > 0, in
violation of Kelvin’s statement (Fig.2).

Quantum effects, such as non-orthogonal states, are
on one hand beneficial for operating a heat engine since
they can potentially break detailed balance; on the other
hand, measuring such states results in generation of ex-
cess entropy and added inefficiencies. As we have shown,
the second law of thermodynamics precludes the possibil-
ity of nonrandom outcomes from measurements of non-
orthogonal quantum states. In general, any system with
quantum correlations (even without entanglement) has
the potential to break detailed balance. However, quan-
tifying the benefits may be more difficult than the above
construct. Besides an exercise in connecting fundamental
laws, the result that thermodynamic work deficit is not
strictly equal to discord might prove useful in identifying
the important ingredients for quantum information pro-
cessing. A quantum ratchet based on decoherence is also
of practical interest when generation of excess entropy is
tolerable.
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Appendix A: Quantum Ratchet

We present a detailed analysis of the quantum ratchet
engine proposed in the main text of the paper.

1. The subsystems

The working substance of the engine is comprised of
N ≫ 1 subsystems, each composed of two interacting
atoms (A and B) in a box of size L. Each atom is a
two-level system with energy gap ~ω. We set ~ = 1 for
the remainder of the discussion. The internal state of the
atom is represented as a spin-1/2 system. The two atoms
interact (XY-interaction) with a coupling constant that
is dependent on the separation distance of the two atoms.
The Hamiltonian for each subsystem is given by,

H = ωSz
A + ωSz

B + λ(r)(S+
AS−

B + S−
AS+

B ), (A1)

where Sz
j = σz

j /2 and S±
j = Sx

j ± iSy
j , with σx,y,z

j the
Pauli matrix acting on atom j = A,B.
The coupling is only turned on when the separation

distance of the atoms is below a cutoff.

λ(r) =

{

λ, if |r| ≤ r0
0, if |r| > r0

(A2)

Note that there is no kinetic energy term in the Hamil-
tonian, which implies that the ‘gas’ of two atoms has no
pressure. Therefore, there is no energetic cost (gain) in
compressing (expanding) the gas by changing the dimen-
sions of the box.

2. Step 1: Initializing the engine

Initially, the box size is smaller than the interaction
range of the atoms, L0 < r0. The Hamiltonian then has
no r dependence and the coupling is always on.

Hi = ωSz
A + ωSz

B + λ(S+
AS−

B + S−
AS+

B ), (A3)

The atoms are allowed to interact with a thermal radi-
ation field at temperature T to reach equilibrium. Each
subsystem is described by density matrix,

ρint = e−βHi/T r{e−βHi}, (A4)

where β = (kBT )
−1 is the inverse temperature. From

here on, we choose our units such that kB = 1. The
above density matrix corresponds to the internal degrees
of freedom of the atomic pair. Next, we assume that the
internal degrees of freedom are held fixed (i.e. ρint does
not change) but the system is allowed to equilibrate via
the translational degrees of freedom of the atoms.

3. Step 2: Thermalizing translational degrees of

freedom

In this step we assume that with the thermal radiation
removed the internal degrees of freedom of the atoms are
held fixed. This means that the occupation probability of
the energy levels corresponding to Hamiltonian (Eq.A3)
or equivalently the eigenvalues of ρint are constant. The
spacing between the energy levels, however, can change
as the Hamiltonian changes as a function of inter-atomic
separation distance.
The box size is now expanded to L ≈ 21/3r0. As noted,

no energy is extracted from this expansion. We assume
that for one atom held fixed, the volume where the cou-
pling in non-zero, |r| ≤ r0, is equal to the volume where
coupling is zero, |r| > r0, so that there is no entropic
preference for coupling or uncoupling; there is however
an energetic preference. The probability of finding the
atomic pair coupled (|r| ≤ r0) is given by,

pi =

〈

e−βHi

e−βHi + e−βH0

〉

ρint

, (A5)

whereHi is the interacting Hamiltonian given above, and
H0 is the non-interacting Hamiltonian (Hi with λ = 0).
The expectation value is taken over the internal state
density matrix, Eq.A4. Equivalently, the probability of
finding the atomic pair in an uncoupled state is,

po =

〈

e−βH0

e−βHi + e−βH0

〉

ρint

. (A6)

The average energy of the uncoupled state is higher
than the coupled state. It is therefore less likely to find
the atoms with separation distance larger than the inter-
action cutoff, |r| > r0. Thermal fluctuations, i.e. from
collision of atoms with the walls of the box, however, re-
sult in transient excitations, and a non-zero probability
of observing the uncoupled state at equilibrium. We can
think of each box of two atoms as a two level subsys-
tem, with the excited state corresponding to uncoupled
atoms, and the ground state corresponding to coupled
atoms. A demon can extract useful work from this sys-
tem by measuring the state of atoms and extracting the
excess energy of the coupled state. However, the demon’s
observation comes at the cost of increasing the entropy
of the demon’s memory by an amount equal to the Shan-
non entropy of pi and po. The energy cost of erasing the
memory for a cyclic operation exceeds the energy gain
from coupling of uncoupled atoms.
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Next, we will show that it is possible to extract useful
work from thermally excited states of the atomic pairs
without measuring the state of each subsystem (box)
individually. This is done by collapsing the entangled
states of the two atoms by a collective measurement of
all the subsystems. Of course, as we will show, the sec-
ond law is not violated since the collapse of the non-
orthogonal states generates excess entropy.

4. Step 3: Collective measurement of the atoms

The Hamiltonian in Eq.A3 has the following eigen-
states: |g〉A ⊗ |g〉B = |gg〉, |−〉 = 1/

√
2(|eg〉 − |ge〉),

|+〉 = 1/
√
2(|eg〉+ |ge〉), and |ee〉; |g〉 and |e〉 correspond

to the ground state and excited state of an individual
atom, Sz = ±1/2. The corresponding eigenvalues are re-
spectively −ω, −λ, λ, and ω. With the coupling turned
off, λ = 0, the energy eigenstates are separable: |gg〉,
|ge〉, |eg〉, and |ee〉, with energy eigenvalues −ω, 0, 0, ω
respectively.

The probability of finding internal state |+〉 in the cou-
pled (interacting) state is given by p+i = 1/(1 + eβλ).
Similarly, the probability of finding internal state |−〉 in
the coupled state is given by p−i = 1/(1 + e−βλ). The
probability of finding these states in the uncoupled state
is respectively, p+o = 1− p+i and p−o = 1− p−i . |−〉 has a
lower energy in the coupled state, and is therefore more
likely to be found in this state at equilibrium. |+〉, how-
ever, energetically prefers the uncoupled state and has a
higher equilibrium probability of occurring in such state.

One way to decouple the pair of atoms is to measure
the spin of one the atoms, for instance atom A. Such
measurement will collapse the entangled states |±〉 to
one of the separable state |eg〉 or |ge〉. The act of mea-
surement and collapse of state |−〉 will cost energy λ;
alternatively, collapse of |+〉 results in a gain of the same
amount of energy.
We first present a simple model of collective spin mea-

surement to convey the conceptual picture, later a more
realistic physical implementation using Faraday rotation
interaction of the atoms with linearly polarized light is
presented.
Simple model– A collective quantum non-demolition

measurement of the atomic internal states (spins) will
determine the total number of A atoms in the excited
state; however, it will be impossible to tell which par-
ticular boxes contained the excited A atoms. Note that
the measurement is ‘non-demolition’ in the sense that
the Hamiltonian of probe-interaction commutes with the
single-particle Hamiltonian (Sz

A) (see section below). Re-
peated collective measurements will produce the same
outcome of number of excited atoms, for uncoupled pairs,
or sufficiently short interval between the measurements.
Equivalently, the state of the atoms (|g〉 or |e〉) is unal-
tered by the measurement, such that the excited atoms
can be used in the next step to extract work.
Let’s demonstrate this first for the simpler case when

the initial state is a pure state of all subsystems in state
|+〉. The collective measurement will collapse all the en-
tangled states in the subsystems; the resulting state is a
superposition of all possible permutations of the excited
atoms over all boxes.

|0〉p ⊗ |+〉1 ⊗ . . .⊗ |+〉N →
∑

m

√
pm|m〉p ⊗

(

N
∑

i1,i2,...,im

1
√

(

N
m

)

|gA1 eB1 , . . . , eAi1g
B
i1 , . . . , e

A
imgBim , . . . , gANeBN 〉

)

, (A7)

where pm is the probability of observingm excited atoms.
The subscript p denotes the probe state and 1 . . .N the
index of the subsystems. The second summation on the
right hand side is over all permutations of assigning m
excited A-atoms to N boxes. After the measurement all
the subsystem are in eigenstates of H0.

For the more complicated scenario, where the initial
state of each subsystem is the mixed state ρint, the post-
measurement state of the system is also a mixed state.
However, as in the simpler case, all entangled states in
the subsystems will collapse by the measurement of the
collective spin. A subsystem can not remain in a su-
perposition of the atomic pair in excited/ground states

when the total number of excited A-atoms is known (en-
tangled with the state of the probe). Tracing out the
B-atom states results in a state after the measurement
that is a statistical ensemble of all possible permutations
of the excited atoms over all the boxes,

|0〉〈0|p⊗ρA1 ⊗. . .⊗ρAN →
∑

m

pm|m〉〈m|p⊗
N
∑

i1,i2,...,im

ρi1,...,im ,

(A8)
where where ρAi = TrB{ρint} is the density matrix of
atom A in box i. The summation in the second term on
the right hand site is over all permutations of assigning
m excitations to N boxes; each index runs from 1 to N
and no two indices can take on the same value.
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ρi1,...,im =
1

(

N
m

) |g1, . . . , ei1 , . . . , eim , . . . , gN〉〈g1, . . . , ei1 , . . . , eim , . . . , gN |A. (A9)

ρAi is always diagonal. Denote the probability of finding
atom A in the excited state as pAe and in the ground
state as pAg = 1− pAe .The probe before the measurement
is in state |0〉p. After interacting with the system, the
probe is in state |m〉p (where m denotes the number of

excitations) with probability pm. The number of excited
atoms is not affected by the interaction of the probe since
it is a non-demolition measurement. A measurement of
the probes state with an outcome m′ implies that the
A-atoms are described by density matrix,

N
∑

i1,i2,...,im′

1
(

N
m′

) |g1, . . . , ei1 , . . . , eim′
, . . . , gN〉〈g1, . . . , ei1 , . . . , eim′

, . . . , gN |A. (A10)

The atomic pairs in each box are no longer entangled
in the post-measurement state above. Having observed
the state the A atoms has collapsed the entangled states
|±〉; the resulting delocalized excitations imply that now
all the boxes are entangled; this entanglement, however,
does not affect the energy of the system. There is an
energy cost to the collapse of |±〉 for the atomic pairs
with non-zero coupling. On average, the work required
for conducting this measurement is given by,

Wp = Nλ(p−p
−
i − p+p

+
i ), (A11)

where p± is the equilibrium probability of observing the
entangled states |±〉 (Eq.A4). p±i is the probability of
finding state |±〉 in the coupled state, as defined above.
Wp is not a work cost in the cycle. The energy put in the
system in collapsing the energetically favorable entangled
states will be retrieved in the next step, when work is
extracted from the atoms.
The actual cost of the measurement is in the informa-

tion gained, which incurs an erasure penalty. It is easy to
show that the information penalty from the probe’s mea-
surement is negligible. First, since we have knowledge of
the initial density matrix of the atoms ρint (having pre-
pared it in the first step), we can easily calculate the
average number of excited A atoms, NpAe . The only in-
formation gained from the measurement is fluctuations
around this average due to a finite N . Number of exci-
tations is given by a binomial distribution with variance
σ2 = NpAe p

A
g . The information gained per box from the

measurement is the entropy of the binomial distribution,

Hp =
1

2N
log2(2πeσ) ∼ log(N)/N (A12)

For N ≫ 1, the information gained from the finite-size
fluctuations is negligible. The collective measurement
seems to have given us everything for free. The collapse of
the entangled states effectively decoupled all the atoms,
raising all the subsystems to their ‘excited’ state. The
work cost of the measurement –corresponding to rais-
ing the coupled ground state pair to uncoupled excited

states, is retrieved in the next step when the demon mea-
sures the atoms individually. The non-local entanglement
between all the boxes due to delocalization of the exci-
tations will also collapse when each atom is measured
individually; there is no energetic cost to causing this
collapse. Moreover, the entropic cost of the informa-
tion gained by the collective measurement is negligible
for large system sizes. Naively, it might seems that this
procedure allows us to extract useful work from thermal
fluctuations that resulted in uncoupled atoms in the pre-
vious step. However, as we will show, the collapse of the
entangled states, encoding the quantum correlations be-
tween the two atoms in each box, results in generation of
excess entropy. When the demon measures the state of
all the individual atoms to extract work, it has to be pay
an erasure cost for this excess entropy, which exceeds the
gain from ‘ratcheting’ of thermal fluctuations.

Faraday rotation interaction– A possible implemen-
tation of the quantum non-demolition collective mea-
surement discussed above is using Faraday rotation in-
teractions of the atoms with a linearly polarized light
pulse. Define the collective spin operator of A atoms as,

S̃z
A = 1/

√

N/2
∑N

i=1 S
z
A,i, where the i summation runs

over all boxes. The y and z components of the normal-
ized Stokes operator of a pulse of probe light of duration

t is defined as, L̃y = (i
√
2NL)

−1
∫ t

0
(a†+a− − a†−a+)dT ,

L̃z = (
√
2NL)

−1
∫ t

0
(a†+a+ − a†−a−)dT , where NL is the

average number of photons in the pulse, and a± is the an-
nihilation operator of σ± circularly polarized light mode
[40]. The Hamiltonian for Faraday rotation interaction

is given by, HFR = αL̃zS̃
z
A, for some real constant α

[41]. The interaction does not modify the z-component

of the collective spin, [HFR, S̃
z
A] = 0, and therefore con-

stitutes a quantum non-demolition measurement. The
y-component of the Stokes operator evolves under this
interaction to L̃y → L̃y + κS̃z

A, for come constant κ. A

measurement of L̃y will project the system into an eigen-

state of the collective spin operator S̃z
A, in analogy to the

fixed excitation-number |m′〉 state of the probe discussed
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above. For an example of experimental implementation
of this scheme see [42].

5. Step 4: Demon measures the subsystems

In this step, the demon measures the internal state
(spin) of every atom and extracts useful work. Following
the collective measurement, the size of each box is re-
duced to that of Step 1, L < r0, ensuring that two atoms
are always interacting. With no entangled pairs, there is
no energetic cost for reducing the size of the subsystems.
This ensures that the demon’s measurement of the atoms
contains no information on whether the atoms were in a
coupled or uncoupled state.
The demon measures the state of each atom in ev-

ery subsystem. Let’s assume without loss of general-
ity that atom A is measured first in box 1. As dis-
cussed in the main text, the demon gains information
H(ρA1 ). The demon then measures the state of atom
B. Because of correlations, information gained from
this measurement is not independent of the measurement
outcome of atom A. Entropy of measurement of B is

given by S(ρB1 |ΠA) = ΣipπA=ai
S(ρ

B|πai

1 ), where ΠA is a
complete projective measurement on A –corresponding
to a measurement in the |g〉 and |e〉 basis of the A
atom; pπA=ai

= Tr{ρA1 ΠA=ai
} is the probability of out-

come ai from measuring subsystem A; and ρ
B|πai

1 =
TrA{ρ1ΠA=ai

}/pπA=ai
is the state of B after the mea-

surement on A. As noted in the main text, the total en-
tropy of the demon’s measurement is greater than the en-
tropy of the initial state ρint due to the random collapse
of the entangled states by the collective measurement.
The excess entropy is given by,

δ = H(ρA1 ) + S(ρB1 |ΠA)− S(ρint). (A13)

This is the entropic price of having collapsed the super-
positions in each subsystem.
From the single-atom density matrices, individual

atoms appear to be at an effectively higher temperature,

Teff = −ω/ ln(1/ρA,B
2,2 − 1), (A14)

where ρA,B = TrB,A{ρint}, and the subscript 2, 2 refers
to the corresponding element (|e〉〈e|) of the single-atom
density matrix. For the above system Teff > T . The
atoms are effectively hotter after the collapse of the en-
tangled states. The effective higher temperature is due
to the work put in the system during the collective mea-
surement that uncoupled the atomic pairs.

6. Net work extracted

The demon extracts work from each box by using the
following procedure: 1) Demon measures the state of each
atomic pair, reducing the subsystem’s entropy to zero.

2) The subsystem is placed in contact with the thermal
reservoir and allowed to isothermally and reversibly ex-
pand to its initial state, which is characterized by ρint.
Work is extracted during this quasi-static reversible ex-
pansion. 3) The demon erases the information obtained
from measuring each subsystem.
The net work extracted from the collective measure-

ment and the actions of the demon can be calculated
using the first law of thermodynamics.

∆U = W +Q, (A15)

where ∆U is the change in internal energy, W the net
work performed by the system, and Q the net heat flow,
per box.
Let’s analyze each term of the above equation sepa-

rately. The change in the internally energy is zero for
the atoms-pairs that where in the coupled state (ground
state of the effective two-level system of each atomic pair)
at the time of the collective measurement, since the ini-
tial and final states are the same. However, the story
is different for the thermally excited states. Thermally
uncoupled |−〉 states are energetically beneficial, since
they require no work expenditure during the collective
measurement, but result in a reduction of the internal
energy by λ after the reversible expansion to the initial
coupled state. Similarly, uncoupled |+〉 states require no
work during the collective measurement. However, they
increase the internal energy by λ when restored to the
initial coupled state.
The average net change in the internal energy of a sub-

system in a cycle is given by

∆U = λ(p−p
−
o − p+p

+
o ), (A16)

where p±o is the probability of finding internal state |±〉
in the uncoupled state (see above). p± is the equilibrium
probability of internal state |±〉 deduced from density
matrix ρint (Eq.A4). This non-zero change in internal
energy corresponds exactly to the energy ‘ratcheted’ from
thermal kicks in the system. In the limit of very small
coupling, λ → 0, ∆U ∼ λ2. The second law of thermo-
dynamics precludes conversion of this energy into useful
work by completing a cycle. Below, we show that the en-
tropy generation from measurement-induced collapse of
the non-orthogonal states compensates the work poten-
tial of the ratchet.
The last term in Eq.A15 is the net heat flow out of

the system (to be consistent with our sign convention)
per subsystem. Heat flow into the system during the
isothermal expansion following the demon’s measurement
is given by,

Qin ≤ TS(ρint), (A17)

where S denotes the von Neumann entropy. The inequal-
ity becomes an equality when the isothermal expansion
occurs reversibly and quasi-statically. Any irreversibility
in the expansion implies entropy generation without the
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corresponding heat flow, which in turn implies a lower
extractable work.
The heat flow out of the system is set by the erasure

work.

Qout = TS(ρint) + Tδ, (A18)

where δ (Eq.A13) is the excess entropy generated from
the probabilistic collapse of the entangled states induced
by the collective measurement.
Putting everything together, the net work performed

by the system must satisfy

W ≤ λ(p−p
−
o −p+p

+
o )+TS(ρint)−TS(ρint)−Tδ. (A19)

With the assumption that the isothermal expansion is
reversible,

Wcyc = λ(p−p
−
o − p+p

+
o )− Tδ. (A20)

Without loss of generality, the energy units are selected
such that ω = 1. Subsequently, Wcyc ≤ 0, for all values
of λ and T ; in accordance with the second law of ther-
modynamics, ensuring that no net work is extracted from
the cycle. As discussed in the main text, if the outcomes
of the collapse of the entangled states were nonrandom,
then δ = 0, allowing the demon to extract work from
each cycle, in direct violation of Kelvin’s statement.
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