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Memristive systems, namely resistive systems with memory, are attracting considerable attention
due to their ubiquity in several phenomena and technological applications. Here, we show that
even the simplest one-dimensional network formed by the most common memristive elements with
voltage threshold bears non-trivial physical properties. In particular, by taking into account the
single element variability we find i) dynamical acceleration and slowing down of the total resistance
in adiabatic processes, ii) dependence of the final state on the history of the input signal with same
initial conditions, iii) existence of switching avalanches in memristive ladders, and iv) independence
of the dynamics voltage threshold with respect to the number of memristive elements in the network
(scale invariance). An important criterion for this scale invariance is the presence of memristive
systems with very small threshold voltages in the ensemble. These results elucidate the role of
memory in complex networks and are relevant to technological applications of these systems.

PACS numbers:

I. INTRODUCTION

Resistors whose resistance depends on the past evolu-
tion of the system are quite common in both basic and
applied science, and they have been known for at least
several decades [1]. Recently, they have attracted con-
siderable interest in the context of memory applications
– where they are oftentimes referred to as memristive
systems [2] – but their range of applicability spans var-
ious disciplines as diverse as non-traditional computing
and biophysics [3–5]. In addition to their ubiquity, their
theoretical description is quite simple: if a memristive
system is subjected to a voltage V (t), its resistance can
be written as R(x, V, t), namely it may depend on the
voltage itself (which would simply make it a non-linear el-
ement), and, most importantly, it depends on some state
variable(s), x, which could be, e.g., the spin polarization
[6, 7] or the position of atomic defects [8], or any other
physical property of the system that gives it memory.

While most of the research so far has focused on the
properties of these single elements – both by identifying
the physical mechanisms for memory, and by devising
innovative ways to employ them in practice – very little
is known about their response when they are organized
into networks, with the associated (and inevitable) ele-
ment variability. In other words, the statistical properties
of networks of memristive systems are largely unknown
and, as we demonstrate below, are different than those
of traditionally studied networks [9–11].

Addressing this issue has several immediate benefits. It
is not at all obvious how a network whose elements have
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memory of past dynamics evolves collectively in time, or
whether it possesses fundamental (and universal) charac-
teristics that can be found in the natural world. In ad-
dition, a resistance with memory is just a particular case
of a general class of response functions that depend on
state variables [12] – memcapacitive and meminductive
[12] systems are similarly defined. Moreover, networks
with memory have been shown to be promising candi-
dates for the solution of complex optimization problems
(see, e.g., Ref. 13), and their circuit applications are
likely to involve a combination of several elements with
memory. Finally, it is worth mentioning that the human
(and animal) brain is - in its most basic description - sim-
ply a network with memory. This type of research may
thus have consequences in neuroscience.

With these motivations in mind, in this paper we set to
study, both numerically and theoretically, the statistical
properties of the simplest network of memristive systems:
a finite 1D network (Fig. 1). In order to obtain its gen-
eral features, we abstract as much as possible, and do not
consider any particular physical mechanism for memory.
However, due to physical constraints, memristive systems
are commonly found with a threshold voltage, namely
it takes a minimal voltage Vt to change their resistance
(see, e.g., Refs. 1, 14–16). Therefore, in order to be as
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FIG. 1: (color online). One-dimensional network of N ran-
domly oriented memristive systems Mi connected to a voltage
source V .
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close as possible to experimental realizations, we focus on
such type of elements. Moreover, it is generally observed
that the memristance R changes between two limiting
values, Ron and Roff . This experimental observation
is also taken into account in our model. An extensive
list of bipolar memristive devices with threshold can be
found in the recent comprehensive review paper [1]. Spe-
cific examples of memristive systems with threshold that
can be used to verify our predictions include different
metal/oxide/metal memristive nanodevices [8, 14, 15].

Probability distribution functions fVt
(V ), fR(R),

fRon
(R), fRoff

(R) satisfying the normalization condi-
tions

∫ ∞

0

fi(y)dy = 1 (1)

where i = Vt, R, Ron or Roff are used to describe thresh-
old voltages, memristances and limiting values of memris-
tances in the network, respectively. To understand the
meaning of these distribution functions, we note that,
e.g., fVt

(V )dV is the probability to find a memristive de-
vice in the network with Vt in the interval between V and
V + dV . All other distribution functions are introduced
in a similar way. Moreover, we suppose that systems with
required fVt

(V ), fRon
(R) and fRoff

(R) can be fabricated
"on demand". (For example, one can extract a subset of
devices from an ensemble with Gaussian distribution to
form a different distribution. This can be performed,
roughly speaking, by taking memristive devices one-by-
one from the ensemble, measuring their characteristics
and deciding if each of the devices should be kept.) Even
in an ensemble of devices fabricated with specific values
of Vt, Ron or Roff , an inevitable fluctuation of Vt, Ron

and Roff around their average values can also be de-
scribed by the above mentioned distribution functions.
Finally, we note that the memristance distribution func-
tion fR(R) is a time-dependent function, unlike fVt

(V ),
fRon

(R) and fRoff
(R) distribution functions. The dis-

tribution function fR(R) can be easily pre-set to the re-
quired form by applying appropriate pulse sequences to
individual memristive devices [17]. Below, we give several
examples of the evolution of fR(R).

In what follows, we will show that despite their appar-
ent simplicity, memristive networks indeed show a quite
complex dynamical behavior, and some general scale-
invariant properties that can be readily verified exper-
imentally. This paper is organized as follows. In Sec. II
we consider adiabatic processes and introduce two types
of memristive dynamics. Sec. III studies the dependence
of the final state on the history of applied voltage. Scale-
invariance properties of memristive networks are demon-
strated in Sec. IV. In Sec. V we consider a memristive
ladder and demonstrate the existence of avalanches in its
switching dynamics. Finally, in Sec. VI we report our
conclusions.
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FIG. 2: (color online). Total memristance Rtot in a network of
10 randomly oriented devices as a function of a slowly ramped
voltage V . In this simulation, we have used fixed values of
Ron = 0.05R0 and Roff = 1.95R0. The threshold voltages
and initial memristances of memristive systems have been
randomly selected in the interval [0,V max

t ] and [Ron,Roff ],
respectively.

II. ACCELERATION AND SLOWING-DOWN

OF THE RESISTANCE SWITCHING IN

ADIABATIC PROCESSES

Let us first discuss the switching dynamics in a 1D
chain of memristive systems. For the sake of definiteness
let us consider a simplified version of a generic threshold
voltage model of memristive system [5]

I = x−1VM , (2)

ẋ = β (VM − 0.5 [|VM + Vt| − |VM − Vt|])
× [θ (VM ) θ (Roff − x) + θ (−VM ) θ (x−Ron)] ,(3)

where I and VM are the current through and the volt-
age across the system, respectively, x is the internal state
variable playing the role of memristance, x ≡ R, θ(·) is
the step function, β is a positive constant characteriz-
ing the rate of memristance change when |VM | > Vt, Vt

is the threshold voltage, and Ron and Roff are limiting
values of the memristance R. In Eq. (3), the role of
θ-functions is to confine the memristance change to the
interval between Ron and Roff . In our numerical sim-
ulations, the value of x = R is monitored at each time
step and in the situations when x < Ron or x > Roff ,
it is set equal to Ron or Roff , respectively. Importantly,
the model given by Eqs. (2) and (3) describes a system
whose memristance can only change when the applied
voltage magnitude exceeds the threshold voltage. In ad-
dition, according to the sign of the applied voltage its
resistance may increase or decrease, thus representing an
asymmetric system, as indicated by the black thick line
in the memristor symbols in Fig. 1.

For our numerical simulations, it is convenient to write
Eq. (3) in dimensionless form. This can be done by
expressing the voltage in units of Vt, the memristance
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(and resistances) in units of R0 and the time in units of

t0 = R0/βVt. Introducing ṼM = VM/VT , x̃ = x/R0 and

t̃ = t/t0, we rewrite Eq. (3) in the following form

dx̃

dt̃
=
(
ṼM − 0.5

[
|ṼM + 1| − |ṼM − 1|

])

×
[
θ
(
ṼM

)
θ
(
R̃off − x̃

)
+ θ

(
−ṼM

)
θ
(
x̃− R̃on

)]
.(4)

Fig. 2 presents the total memristance of a network of
such elements as a function of a slowly ramped voltage for
a particular network realization. The initial resistances
and the threshold voltages have been chosen randomly
within uniform distributions. The polarity of the mem-
ristive elements in the network has also been randomly
selected. The voltage is then increased following an adi-

abatic process: its increase rate is so slow that at any
moment of time the network is in its equilibrium state.
However, even in this simple adiabatic switch-on, one can
easily notice two distinctive types of switching behavior.
An abrupt – accelerated – switching, with well defined
steps (see Fig. 2), occurs when the memristance Rj of
the j-th memristor in the network increases at the given
voltage polarity. In fact, as soon as the voltage drop
across such element exceeds its threshold voltage, the in-
crease in memristance increases the voltage drop across
it, th us accelerating the switching. Instead, for memris-
tive systems connected with opposite polarity, a decrease
in memristance decreases the voltage drop across the sys-
tem, thus decelerating the switching. This effect is clearly
seen in long switching tails.

The dependence of the switching rate on the device
polarity in 2D networks of ideal memristors [18] was pre-
viously reported in Ref. [19]. This previous result, how-
ever, does not take into account the threshold-type dy-
namics of realistic memristive devices [1]. Consequently,
in adiabatic experiments, instead of sharp steps and long
tails predicted by us, this previous work suggests unre-
alistic switching of memristors into their limiting states
already at very small applied voltages and the absence of
any subsequent evolution of Rtot as shown in Fig. 2.

The accelerated/decelerated switching behavior de-
scribed above reflects also on the evolution of the resis-
tance distribution function, fR(x), of the network. This
is shown in Fig. 3 at several moments of time when
the applied voltage V0 adiabatically ramps up from 0 to
10Vmax

t . In fact, the memristance distribution function
dynamics (Fig. 3) indicates a faster switching of mem-
ristive systems with initially higher memristances (thus
with voltage drops exceeding their threshold voltages).
Moreover, while the switching into the "off" state is al-
ways complete (since it is accelerated), memristive sys-
tems connected with opposite polarity may only partially
switch toward the "on" state because of the decelerat-
ing switching effect discussed above. Higher values of
applied voltage would further promote their switching
as well as initiate switching of memristive systems with
higher Vt and lower initial resistances, requiring higher
voltage drops to induce their dynamics.
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FIG. 3: (color online). Evolution of memristance distribu-
tion function fR in a network of 10 randomly oriented mem-
ristive systems subjected to an adiabatically switched volt-
age V0. In this simulation, we have used fixed values of
Ron = 0.5R0 and Roff = 1.5R0, the threshold voltages and
initial memristances of memristive systems have been ran-
domly selected (with uniform distribution) in the interval
[0,V max

t ] and [Ron,Roff ], respectively. The memristance dis-
tribution function fR has been obtained by averaging over 104

random realizations of the network.

Fig. 4 presents the evolution of the resistance distribu-
tion function in the case of normally distributed thresh-
old voltages and limiting values of memristances. The
overall behavior of fR(x) is very similar to that shown
in Fig. 3 for the case of uniformly distributed device
parameters. Specifically, in both cases, memristive de-
vices switch into the limiting Roff states faster than into
Ron ones. Moreover, the dynamics of total memristance,
Rtot(t) in the network with normally distributed device
characteristics has exactly the same features as Rtot(t)
depicted in Fig. 2 (acceleration and slowing-down of the
switching ).

III. DIFFERENT FINAL STATES WITH SAME

INITIAL CONDITION

Another consequence of memory is that the memris-
tance at the final moment of time is determined both
by the initial conditions and by the actual shape of the
applied signal, so that if the initial conditions are the
same, the final memristance could be different according
to the way the input signal is applied. This effect is even
more pronounced in memristive networks, where all el-
ements are collectively coupled by current conservation.
As an example we compare the evolution of memristances
in a network subject to both a slowly ramped-up voltage
(from 0 to 10Vmax

t ) and a step voltage of 10Vmax
t applied
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FIG. 4: (color online). Evolution of memristance distribution
function fR in a network of 10 randomly oriented memristive
systems subjected to an adiabatically switched voltage V0. In
this simulation, we have used normally distributed Ron, Roff ,
and Vt with means 0.5R0, 1.5R0 and V 0

t and standard devia-
tions 0.02R0, 0.02R0 and 0.05V 0

t , respectively. The memris-
tance distribution function fR has been obtained by averaging
over 105 random realizations of the network.

at t = 0. The initial conditions (initial parameters of
memristive systems in the network) are chosen to be the
same. Fig. 5 shows results of our simulations for a partic-
ular network realization of ten elements. One can clearly
notice that in this particular situation the main differ-
ence of final states is associated with the fourth mem-
ristor from the left. While in the case of slowly ramped
voltage R4(t = tfinal) = R4(t = 0), the sudden voltage
pulse switches the fourth memristive element into the
"off" state Roff . According to our observations, such a
significant difference occurs in ∼ 8% of network realiza-
tions at the selected simulation conditions.

In order to understand the signal-dependent switching
in the memristive networks, let us consider the simplest
nontrivial case of a network of two memristive elements,
M1 and M2, connected in series (see Fig. 1) . According
to Eqs. (2), (3), such a network, subjected to a non-
negative voltage V ≥ 0, is described by the following
equations

dR1

dt
=






±β
(

R1

R1+R2
V − Vt1

)
,when R1

R1+R2
V > Vt1,

and R1 < Roff for sign "+",

or R1 > Ron for sign "-";

0, in all other cases;

(5)

dR2

dt
=






±β
(

R2

R1+R2
V − Vt2

)
,when R2

R1+R2
V > Vt2,

and R2 < Roff for sign "+",

or R2 > Ron for sign "-";

0, in all other cases,

(6)
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FIG. 5: (color online). Initial (top) and final (bottom) mem-
ristances in a network of 10 memristive elements (denoted by
the index i) subjected to a slow ramp-up and a step-like ap-
plied voltage so that in both cases V (t = tfinal) = 10V max

t

(the respective voltage shapes are indicated in the middle).
In this simulation, we have used fixed values of Ron = 0.05R0

and Roff = 1.95R0, the threshold voltages and initial mem-
ristances have been randomly selected (with uniform distri-
bution) in the interval [0,V max

t ] and [0.05R0 ,1.95R0], respec-
tively, and the polarity of the memristive systems in the net-
work has also been randomly selected. However, both sim-
ulations have been performed starting with the same initial
randomly selected network realization.

where R1 and R2, and Vt1 and Vt2 are the memristances
and the threshold voltages of the first and second mem-
ristive systems, respectively. The signs ”± ” in the RHS
of Eqs. (5), (6) take into account different possible po-
larities of the memristive systems in the network. Here
we suppose that the parameter β determining the switch-
ing rate is positive and of the same magnitude for both
memristive systems. Eqs. (5), (6) determine a system of
nonlinear differential equations, which must be supplied
with the initial conditions for memristances R1 and R2

at t = 0.

Let us consider a situation when a constant voltage
V is applied at t = 0. In this case, Eqs. (5), (6) can
be solved analytically. However, due to rather complex
functional dependencies in the RHS of these equations,
there are a lot of cases depending on the mutual relations
between the initial memristances, threshold voltages, and
applied voltage V . Below, we investigate several possible
scenarios for signal-dependent switching.

According to Eqs. (5), (6), any changes in mem-
ristances occur when the voltage drop across at least
one memristive system exceeds its threshold voltage.
Let us consider then the case when the voltage drop
V1 = R1V/(R1 + R2) across M1 exceeds Vt1, but the
voltage drop V2 = R2V/(R1 + R2) across M2 is smaller
then Vt2. We also suppose that Ron < R1 < Roff . In
this case (see Eq. (6)), the memristance R2 does not
change, R2 = const. Eq. (5) can be integrated resulting
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in the following algebraic equation for R1(t):

R1 +
V R2

V − Vt1
ln

[
(V − Vt1)R1 − Vt1R2

(V − Vt1)R1(0)− Vt1R2

]
=

R1(0)± β(V − Vt1)t. (7)

It should be noted that Eq. (7) is valid while the following
inequalities are satisfied:

Ron < R1 < Roff , (8)

V1 =
R1

(R1 +R2)
V > Vt1, (9)

V2 =
R2

(R1 + R2)
V < Vt2. (10)

If we have a "positive" polarity with respect to applied
external voltage V (sign "+" before β in the RHS of Eq.
(5)), then as it follows from Eq. (7) or directly from
Eq. (5), the memristance R1 increases with time. In
this case the voltage drop V1 increases, but V2 decreases,
because the total voltage drop across both memristors
is constant, V1 + V2 = V . Thus the memristance R1

increases with an acceleration (as V1 increases). When
R1(t) reaches Roff (the corresponding moment of time
t can be immediately calculated from Eq.(7)), the mem-
ristance R1 stops increasing (according to Eq. (5)) and
stays constant.

In the case of a "negative" polarity (sign "−" before
β in the RHS of Eq. (5)), it follows from Eq. (7) (or di-
rectly from Eq. (5)) that the memristance R1 decreases
with time. In this case the voltage drop V2 increases, and
V1 decreases. This evolution, as determined by Eq.(7)
stops when memristance R1 reaches the lowest possible
value Ron, or inequality (9) does not hold, depending on
what happens first. If inequality (10) becomes invalid
first, while other inequalities (8), (9) are still valid, we
encounter the situation when both memristances change
(if, of course, Ron < R2 < Roff ). Let us now consider
the case when both memristances are changed simultane-
ously. This is possible only when the following inequali-
ties are valid:

Ron < R1,2 < Roff , (11)

V1 =
R1

(R1 +R2)
V > Vt1, (12)

V2 =
R2

(R1 + R2)
V > Vt2. (13)

We limit ourselves to the cases when the memristive
elements, M1 and M2, are connected with the same po-
larity. Then by taking the sum of Eqs. (5) and (6), and
integrating it with respect to time we find for the total
memristance

R1 +R2 = ±β(V − Vt1 − Vt2)t+R1(0) +R2(0). (14)

By substituting this relation into Eq. (5) we get a lin-
ear differential equation which can be easily integrated.

As a result we find the following expressions which de-
termine the time dependence of memristances for both
memristors:

R1(t) = P (R1 +R2)
V

V −Vt1−Vt2 +
Vt1

Vt1 + Vt2
(R1 +R2), (15)

R2(t) = −P (R1 +R2)
V

V −Vt1−Vt2 +
Vt2

Vt1 + Vt2
(R1 +R2),(16)

where the parameter P is determined by the initial con-
ditions

P =
Vt2R1(0)− Vt1R2(0)

Vt1 + Vt2
(R1(0) +R2(0))

− V
V −Vt1−Vt2 .(17)

From Eqs. (14)-(17) it follows that the voltage drop
V1 increases with time for the "positive" polarity and
when Vt2R1(0) > Vt1R2(0), while the voltage drop V2

decreases. Thus it leads to accelerating of the switching
of memristor M1 and to decelerating of the switching of
memristor M2.

Having discussed the switching dynamics due to a con-
stant applied voltage, let us compare the final states of
memristive systems for two different bias application pro-
tocols. Specifically, by assuming the same initial states
of the memristive systems and the same final voltage
magnitude, we consider the situations of the step and
slowly ramped voltages. Our consideration is based on
the following model parameters: R1(0) = R2(0) = 0.2R0,
Ron = 0.05R0, Roff = 1.95R0, Vt1 = V/3, Vt2 = 1.1V/3,
and the signs ” + ” in the RHS of Eqs. (5), (6).

For slowly ramped applied voltage, M1 is in the regime
of accelerated switching (see also discussion after Eq.
(10)). In addition, one can easily notice that the volt-
age drop across M2 never exceeds Vt2. Consequently, the
final memristances are R1(t = tfinal) = Roff = 1.95R0

and R2(t = tfinal) = R2(t = 0) = 0.2R0.
In the case of the step-like applied voltage V , with

our specific model parameters the inequalities (11)-(13)
are satisfied at the initial moment of time. As a re-
sult, both memristances are changing according to Eqs.
(14)-(17). Because of the positivity of the parameter
P , the voltage V1 increases in time, but the voltage
V2 decreases (as it follows from Eqs. (14)-(16)). At
the same time, both memristances R1 and R2 increase
according to Eqs. (5), (6). At a certain moment of
time the voltage drop V2 across memristor M2 becomes
equal to the threshold voltage Vt2, and further change
of M2 becomes impossible. Further evolution of mem-
ristance R1 is determined by Eq. (7) and leads to
R1(t = tfinal) = Roff = 1.95R0, while the memristance
R2 does not change, R2(t = tfinal) = 0.33R0. Clearly,
the final state of M2 in this case is different than that for
the case of the slowly ramped voltage.

We would like to emphasize that the different final
states are obtained as a result of the collective dynam-

ics of many memristive systems in the network. Such a
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behavior cannot be observed considering a single mem-
ristive device described by Eqs. (2), (3) subjected to
similar voltage patterns. The interaction among devices
in the network is provided by the current that, at each
moment of time, is determined by states of all devices in
the network.

Our observation of different final states can find useful
applications in electronics, albeit in a modified form. For
example, the sensitivity of the final states to the applied
pulse profile can be used in signal recognition. We would
also like to note that the response of single memristive de-
vices with more complex internal degrees of freedom can
be richer than that predicted by Eqs. (2), (3). Even with
such single memory devices, one can expect the depen-
dence of the final states on the applied voltage protocol.
Examples of such memory devices can be found in Refs.
[20, 21].

IV. SCALE INVARIANCE OF DYNAMICS

THRESHOLD VOLTAGE

In this Section, we ask the question of the probability
of dynamics in the memristive network. Let us consider
a random memristive network (Fig. 1) that is character-
ized by smooth distribution functions fVt

(V ) and fR(R),
which are the same for all memristive systems in the net-
work. Moreover, the results of this section do not depend
on the orientation (polarity) of memristive systems in the
network. Clearly, if a very low voltage V is applied to the
network then the probability of dynamics is close to zero
as the voltage across each memristive system is likely be-
low its threshold voltage. If a high voltage is applied, the
probability of dynamics is close to 1 as it is highly proba-
ble that the voltage across at least one memristive system
exceeds its threshold. To quantify this effect, let us find a
dynamics voltage threshold V ∗, which is the magnitude of
the applied voltage when, with a probability of 1/2, the
state of at least a single memristive system will change.
Formally, it can be found from

pd(V
∗) =

∫
pd(V

∗|R1, ..., RN )
N∏

i=1

fR(Ri)dRi = 1/2,

(18)
where pd(V

∗|R1, ..., RN ) is the conditional probability
of dynamics in the network at given memristances R1,
R2, ..., RN . Alternatively, Eq. (18) can be rewritten
as 1 − pd(V

∗) = 1/2, where the left-hand-side is the
probability of no dynamics. The latter occurs when the
voltage across each memristive system in the network,
Vi, does not exceed its threshold voltage, Vt,i. Con-
sequently, the conditional probability of no dynamics
pnd(V

∗|R1, ..., RN ) = 1− pd(V
∗|R1, ..., RN ) can be writ-

ten as a product of single element conditional probabili-
ties

pnd(V
∗|R1, ..., RN ) =

N∏

i=1

p(Vi ≤ Vt,i|R1, ..., RN ), (19)

where Vi = RiV
∗/Rtot and Rtot =

∑N
i=1 Ri. Notic-

ing that the probabilities in Eq. (19) can be expressed
through the threshold voltage distribution function fVt

as

p(Vi ≤ Vt,i|R1, ..., RN ) =

∞∫

Vi

fVt
(y)dy, (20)

we finally arrive at the following equation

∫



N∏

i=1

∞∫

RiV ∗/Rtot

fVt
(yi)dyi




N∏

i=1

fR(Ri)dRi = 1/2

(21)
determining the dynamics threshold voltage V ∗.

A. General case, narrow distribution of initial

memristances

Assuming that initial memristances are narrow dis-
tributed around a certain value R̄ (formally we can as-
sume fR(R) = δ(R − R̄)) we use Vi = V ∗/N in Eq. (21)
to derive




∞∫

V ∗/N

fVt
(x)dx




N

= 1/2. (22)

Let us then find the dynamics threshold voltage V ∗ in the
limit of large N . By using the normalization condition,
and by taking the logarithm of both sides of Eq. (22) we
find, for arbitrary N , the following relation

ln


1−

V ∗/N∫

0

fVt
(x)dx


 = − ln 2

N
. (23)

From Eq. (23) we conclude that for large N the integral
in Eq. (23) tends to zero. Because of the positivity of
the distribution function fVt

(x) this means that the inte-
gration domain must tend to zero as N tends to infinity.
Thus we see that limN→∞ V ∗/N = 0. This means that
we can use the asymptotic behavior of the distribution
function to find the dynamics threshold voltage. Let us
then consider a general situation when

fVt
(x) = f0x

γ , x → 0, (24)

with some positive parameters f0 and γ ≥ 0. In this case
the integration in Eq. (23) gives the final result

V ∗ =

[
(1 + γ) ln 2

f0

]1/(1+γ)

N
γ

1+γ , N → ∞. (25)

When there is a finite probability of arbitrarily small
thresholds (γ = 0 and f0 6= 0), we obtain a scale invariant
expression

V ∗ =
ln 2

fVt
(0)

, N → ∞. (26)
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This is the main result of Section IV.

B. Exponential distribution of threshold voltages

Note that the condition Ri = R̄ is not always nec-
essarily required to obtain Eq. (26). To see this, let
us consider, e.g., an exponential distribution of thresh-
old voltages, fVt

(y) = exp (−y/V0) /V0, where V0 is a
characteristic threshold voltage of memristive systems.
It follows from Eq. (21) that

∫ ( N∏

i=1

e−
Vi
V0

)
N∏

i=1

fR(Ri)dRi = 1/2. (27)

Since
∑

Vi = V ∗, and taking into account normaliza-
tion conditions (1) we find the following scale invariant
expression for the dynamics threshold voltage:

V ∗ = ln(2)V0, (28)

which is in full agreement with Eq. (26). Note, however,
that Eq. (28) has been obtained without the assumption
of narrow distribution of memristances.

C. Uniform distribution of threshold voltages

Let us now consider the uniform distribution of the
threshold voltages, namely, fV (x) = 1/VM , if 0 ≤ x ≤
VM , and fV (x) = 0 otherwise. Here, VM is the max-
imum threshold voltage. For the sake of simplicity, we
also assume a narrow distribution of initial memristances
Ri = R̄. Then, from Eq. (21), it can be found that

V ∗ = NVM

(
1− N

√
1

2

)
N→∞−−−−→ ln(2)VM . (29)

Clearly, the right hand side of Eq. (29) is again of the
form of Eq. (26). Numerical calculations shown in Fig.
6 indicate that a random uniform distribution of initial
memristances does not change the result predicted by Eq.
(29).

D. xexp(−x) distribution of threshold voltages

Finally, we consider an ensemble of memristive systems
described by the threshold voltage distribution function
fV (x) = (x/V 2

0 )exp(−x/V0). The difference with the
previously considered cases is that now fV (0) = 0 and
Eq. (26) is not applicable. Assuming a narrow distribu-
tion of initial memristances Ri = R̄, Eq. (21) is written
as

(
1 +

V ∗

NV0

)N

e−
V ∗

V0 = 1/2. (30)
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R=0

 ∆
 

R=R
0
/2

FIG. 6: (color online). Dynamics threshold voltage as a func-
tion of the number of memristive systems in the network.
This plot has been obtained assuming uniform probability
distributions of threshold voltages and initial memristances.
Specifically, initial memristances are selected randomly (with
uniform distribution) in the interval between R0 − ∆R and
R0 +∆R, and threshold voltages are selected in the interval
between 0 and VM . The solid line was obtained using Eq.
(29).
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FIG. 7: (color online). Dynamics threshold voltage as a func-
tion of the number of memristive systems in the network.
This plot has been obtained as a solution of Eq. (30) based
on xexp(−x) distribution of threshold voltages.

Fig. 7 shows a numerical solution of Eq. (30). The
asymptotic behavior of the dynamics threshold voltage
V ∗ as N tends to infinity is described by Eq. (25) with

γ = 1, and f0 = 1/V 2
0 , i.e. V ∗ = V0

√
2 ln 2N as N → ∞.

Of course, the same result can be derived from Eq. (30)
as well. It is clearly seen that the dynamic threshold
voltage V ∗ does not saturate as in the case of previously
considered distributions (see Eqs. (26), (28) and (29)).
We relate this observation to the absence of memristive
systems with zero threshold voltage, Vt, in the ensemble.
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FIG. 8: (color online). (a) Memristive ladder consisting
of N randomly oriented memristive systems. (b) Individ-
ual memristances Ri in a memristive ladder of 16 randomly
oriented devices as a function of a slowly ramped voltage.
The memristance of each device is represented by a color
in the band in the vertical direction representing time evo-
lution. In this simulation, we have used fixed values of
Ron = 0.5R0 and Roff = 1.5R0. The threshold voltages
and initial memristances of memristive systems have been
randomly selected (with uniform distribution) in the inter-
val [0,V max

t ] and [Ron,Roff ], respectively. The polarities of
memristive devices in (a) and (b) are not related to each other.

V. SWITCHING AVALANCHES IN

MEMRISTIVE LADDERS

Finally, let us consider the possibility of avalanches in
memristive networks. By an avalanche, we mean the situ-
ation where a single rapid switching event induces switch-
ings in other memristive systems. It follows from our pre-
vious considerations (reported in Sec. II) that avalanches
are not possible in purely 1D networks. Indeed, an ac-
celerated switching can not induce an avalanche since
the increase in memristance of the switching element re-
duces the voltages across all other elements in the net-
work. During the slowing-down switching, the inducing
switching event is not well characterized as being spread
in time.

Avalanches, however, are possible in networks of higher
dimensions. A memristive ladder (a quasi-one dimen-
sional memristive network) presented in Fig. 8(a) is an
example of such situation. We have performed a numer-
ical simulation of the dynamics of a memristive ladder
consisting of 2 chains of 8 memristive systems each (16
memristive devices in total) subjected to a slowly ramped

voltage. In the particular realization of memristive de-
vices whose evolution is presented in Fig. 8(b), the simul-
taneous switching of 3-rd and 4-th memristive systems
into the "off" state is an avalanche.

In the memristive ladder, an avalanche is possible in
a pair of memristive systems connected in parallel (Mj

and Mj+1, where j is an odd number) that are in the
regime of accelerated switching. The switching of the
memristive system with a lower Vt, say Mj , initiates the
avalanche (the switching of Mj+1) if the voltage across
these two memristive systems after the switching of Mj

exceeds the threshold voltage of Mj+1. As the switch-
ing in the accelerated switching regime occurs fast, ef-
fectively, the switchings of Mj and Mj+1 are observed at
the same value of slowly ramped voltage (see Fig. 8(b)
for an example). Moreover, in the circuit in Fig. 8(a)
an avalanche can develop only in the vertical direction.
Since there are only 2 memristive devices in the vertical
direction in each cell, the maximum number of devices in
avalanche is two. Horizontal avalanches are not possible
since a memristive device switching into its "off" state re-
duces the voltage fall across all other cells of the ladder.
We expect that the size and role of switching avalanches
increase with the increase of the network complexity. In
particular, avalanches involving several memristive de-
vices are possible in ladders as in Fig. 8(a) extended in
the vertical direction. Detailed studies of avalanches in
2D and 3D networks will be reported elsewhere.

VI. CONCLUSIONS

In conclusion, we have found that one-dimensional
memristive networks exhibit several distinctive features
that make them quite unlike traditionally studied dynam-
ical networks [10, 11]. The essential difference is related
to intrinsic non-local interactions coupled to memory fea-
tures. Indeed, the order of memristive systems in 1D net-
works is completely irrelevant since the current through
the network is conserved. Two possible types of switch-
ing dynamics – accelerating and decelerating – have been
identified depending on the polarity of memristive ele-
ments in the network. We have also demonstrated that
the final state of the network depends on the protocol of
how the external voltage is applied, and that switching
avalanches can occur in memristive ladders. Addition-
ally, a scale invariance of dynamics threshold voltage has
been demonstrated. Most of our results are universal in
the sense that they do not depend on the selected distri-
bution functions (e.g., the acceleration and slowing down
of switching, different final states, existence of switching
avalanches). The results reported in this paper are also
relevant to networks of memcapacitive and meminductive
systems [12], while specific features of switching dynam-
ics with such elements may not coincide. In general, we
expect some of these predictions to be shared by arbi-
trary complex networks with memory.
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