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We study the mechanism of the polydomain-monodomain transition in liquid crystalline elas-
tomers at the molecular scale. A coarse-grained model is proposed in which mesogens are described
as ellipsoidal particles. Molecular dynamics simulations are used to examine the transition from a
polydomain state to a monodomain state in the presence of uniaxial strain. Our model demonstrates
soft elasticity, similar to that exhibited by side-chain elastomers in the literature. By analysing the
growth dynamics of nematic domains during uniaxial extension, we provide direct evidence that
at a molecular level the polydomain—-monodomain transition proceeds through cluster rotation and

domain growth.

Liquid crystalline elastomers (LCEs) combine the elas-
tic properties of conventional rubbers with the optical
properties of liquid crystals (LCs) [1]. This coupling
gives rise to unusual physical properties [2-4] that have
enabled a wide spectrum of applications, ranging from
actuators [5], to artificial muscles [6] and optical-band
materials [7]. Nematogens in LCEs are either crosslinked
to an elastomeric network, resulting in side-chain LCEs
(SCLCES), or they are actually part of the network, re-
sulting in main chain LCEs [1]. Both forms often ex-
hibit a polydomain structure in the nematic and smectic
states [8, 9], characterized by large, independently ori-
ented domains. The absence of a global director ren-
ders these materials opaque. Upon application of suf-
ficiently large uniaxial stress, however, LCEs undergo
a polydomain-to-monodomain (P-M) transition [10, 11]
whereby the domains align, resulting in a transparent
material. After an initial elastic restoring force is over-
come, the stress—strain curve exhibits a distinct plateau,
where a small change to the applied stress induces a
large deformation of the sample. Such a feature is of-
ten indicative of an underlying phase transition. In the
general area of LCEs, this behavior is known as soft elas-
ticity [1, 12, 13]. Upon reaching the monodomain state,
traditional elastic response is restored.

The plateau stress o, is related to by the polymer back-
bone anisotropy ratio, £ /¢, through the relation

oc=p(ly/lL—1), (1)

where (1 is the bulk rubber modulus [14]. The anisotropy
ratio quantifies the polymer radius of gyration parallel
(¢)) and perpendicular (1) to the local nematic direc-
tor [1]. Main-chain LCEs tend to have large anisotropy
ratios due to incorporation of rigid nematogens in the
polymer backbone, giving rise to large plateau stresses.
Conversely, side-chain LCEs yield more easily. As the
anisotropy ratio approaches unity, the critical stress for
the onset of soft elasticity disappears [14]. Experimen-
tal studies of LCEs show that the stress—strain plateau
is strain-rate dependent. The quasi-static or equilibrium
behavior exhibits no initial elastic regime, transitioning

directly from semi-soft to elastic response when domains
align [15].

Several intriguing applications for LCEs, including
their use as artificial muscles [6], rely on an underlying
P—M transition. It has been proposed that this transition
occurs due to domain reorientation toward the direction
of applied stress, rather than by domain growth [16, 17].
This proposition has emerged from a combination of op-
tical microscopy, X-ray scattering, and polarized light
scattering measurements [18]. However, essential details
remain unexplained, including the molecular origins of
polydomain transformation, the effect of strain on size
and orientational distribution of domains, and how in-
dividual domains respond to the application of strain.
Understanding these details could enable design of LCEs
with dynamic and mechanical responses tailored for spe-
cific applications.

Theoretical studies of LCEs have been performed at
the continuum level based on anisotropic rubber elastic-
ity theory [1]. Fridrikh and Terentjev [14] attributed the
polydomain state of LCEs to quenched orientational dis-
order. In their model, crosslinks are not free to rotate
and impart a quenched direction to the material, giving
rise to the polydomain state through a coupling to the
surrounding mesogens. Their model has served to ratio-
nalize a number of experimental observations at the level
of nematic domains. However, in order to understand the
underlying mechanism involved in the P-M transition,
it is of interest to examine the system at the molecular
scale.

Domain-level studies of LCEs have relied on lattice
models and mean-field theory [19] or Monte-Carlo simu-
lations [20, 21]. Off-lattice simulations of main-chain [22]
and side-chain [23] elastomers have also been performed,
but such studies where focused on the isotropic-nematic
transition, and did not resolve the P-M transition. More
specifically, there are no reports on the P-M transition
on the basis of detailed many-particle models. In this
work we therefore begin by proposing a molecular model
that exhibits a polydomain state. The model is based
on a representation of LC molecules as ellipsoidal parti-



(b)

()

FIG. 1. (Color Online) Representative configuration of LCEs
with rigid crosslinkers at various points of a constant strain-
rate simulation with N = 77824 particles. Each particle is
assigned an rgb (grayscale) value (z,y, z) equal to their ori-
entation vector n. (a) Initial configuration, showing a clear
polydomain structure. The average domain size is (V) & 150
particles, with 11 clusters having more than one thousand
particles. (b) Under a strain € = 1.0, domains begin to align
and join. (c) At strain € = 2.5, only small misaligned clusters
remain. The global order parameter for the latter system is
S =0.78.

cles [24, 25]. Experimentally, crosslinking molecules in an
elastomeric network may be either flexible or rigid [26].
Rigid crosslinkers enhance the anisotropy in the LCE and
provide stability to the elastomeric network. Our model
consists of a SCLCE with rigid crosslinkers, whose inter-
actions have been tuned to promote local ordering to the
easy axis of the crosslinker. We find that this model does
exhibit a polydomain to monodomain transition, and we
show that such a transition occurs through the reorienta-
tion of individual domains whose size and orientational
distribution are functions of applied strain.

An atomic-level representation of LCEs is beyond
the reach of current computational resources. Previous
quasi-atomic level descriptions using bead-spring poly-
mers and rods were limited to &~ 2400 mesogens [23].
System sizes must be increased considerably if one is to
capture the P-M transition, thereby necessitating fur-
ther coarse-graining. In experiment, LC molecules are
connected with flexible spacers to form backbone poly-
mer chains. These polymer chains are then crosslinked
to form the elastomeric network of LCEs. We represent
these rigid crosslinking molecules as ellipsoids of the same
size and shape as the model mesogens. Flexible spacers
between LC molecules are described by fluctuating bonds
whose length is based on the distance between the centers
of mass of the LC molecules. Note that this representa-
tion allows the mesogens to rotate freely relative to the
elastomeric network, subject to the steric hindrance of
other particles. We therefore expect the anisotropy ratio
to approach unity (¢ /¢1 ~1).

The ideal elastomeric network considered in this Rapid
Communication consists of tetra-functional crosslinks
and a perfect diamond network topology [27] in order

to avoid introducing directional bias. The network is
entanglement-free, with four or eight unit cells in all
three orthogonal directions. As each unit cell contains
sixteen chains and eight crosslinks, our rigid elastomers
contain up to 73728 LC molecules and 4096 crosslink-
ing sites (for a total of 77824 particles), corresponding
to a crosslinker density of 5.26%. Periodic boundaries
are used to mimic bulk conditions. The role of defects in
the network topology is considered in the Supplementary
Information (SI) [28].

Mesogens interact through a Gay—Berne (GB) po-
tential energy function [24, 25], with parameter values
matching those employed by Gay and Berne in their orig-
inal work [24]. The ellipsoidal aspect ratio is 3, while the
ratio of potential well depths for side-to-side and end-to-
end interactions is 5. The dimensionless parameters pu
and v are set to 2 and 1, respectively. The van der Waals
diameter (oq) interaction strength (g¢), and mass (m) of
mesogens are set to unity. This model is used frequently
to describe LC systems [29], and its phase behavior has
been reported in the literature [30]. Expanded finitely
extensible nonlinear elastic (FENE) bonds [31] are em-
ployed for polymer chains, connecting neighboring meso-
gen centers-of-mass. Backbone bonds having equilibrium
bond length [, = 209 and maximum deviation R = 20
and strength 10ep, while cross-linker—chain bonds having
corresponding parameters for strength 1000gq, I, = o¢
and R = 30p. These parameters are chosen to max-
imize orientational pinning effects due to crosslinking
particles and promote formation of a polydomain state
while accelerating the relaxation of chain-bound meso-
gens. Simulations are performed at constant tempera-
ture T* = kT /eg = 0.7 (where starred quantities hence-
forth denote Lennard-Jones reduced units [32]) using a
Langevin thermostat with pressure controlled via a Nosé-
Hoover barostat. In the absence of an elastic network,
the state point (P*,T*) considered in this work results in
a smectic-B phase. Though monodomain smectics have
different soft-elastic properties than nematics [33], the
mechanical response during the P-M transition is ex-
pected to be unaffected [9]. Details of our sample prepa-
ration procedure are included in the ST [28].

Orientationally ordered mesogen phases are distin-
guished via the scalar order parameter S, which repre-
sents the maximum positive eigenvalue of the Q-tensor

N
1
Qs = 577 ; [Buiauig — dagpl - (2)

Here u;, is the a component of the orientation w; of
particle 4, N is the number of particles, and .5 is the
Kronecker-delta. The corresponding eigenvector n de-
fines domain orientation. Systems with a global value
S =~ 0 are considered isotropic; systems with S > 0.3 are
distinguished as nematic or smectic depending on the de-
gree of positional order.
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FIG. 2. (Color Online) Stress-strain behavior. Upon the ap-
plication of strain, an initial elastic regime is observed for
constant-strain-rate deformations. The strain rate 4 is given
in units of 1/¢*. After an initial stress overshoot, the system
relaxes back to a characteristic plateau, where the stress in-
creases only weakly as a function of strain. Dashed curves
are for an N = 9728 system, while the solid green curve is for
an N = 77824 system at strain rate 4 = 107>, Red symbols
show the equilibrium behavior for N = 9728 (open circles)
and N = 77824 (solid circles) systems. Inset: The nematic
order parameter increases sharply upon reaching a character-
istic stress, which is weakly dependent on strain rate.

To elucidate the molecular mechanism underlying the
P-M transition, we must characterize randomly oriented
nematic domains in the system. This is done by identi-
fying and merging particle clusters. Initial domains are
defined as the largest spherical regions centered at a par-
ticle with nematic order parameter greater than a value
S.. If two spherical domains overlap and have a combined
order parameter higher than S., they are merged into a
single domain. We use S. = 0.6 to ensure constituent
particles have roughly the same orientation across the
merged domain. Particles in the overlap region of two
domains are assigned to their best fit (according to the
value of @; - 1) if the domains are not merged.

Fig. 1a shows a representative configuration of an equi-
librium LCE with rigid crosslinkers in the absence of ex-
ternal stress. Particles are colored according to their lo-
cal molecular orientation. One can observe distinct do-
mains comprising several hundreds to thousands of par-
ticles that assume different orientations; the system is in
a polydomain state. It should be noted that despite the
polydomain structure, a scalar order parameter S > 0.3
is observed in many runs due to the existence of large do-
mains (compared to the simulation box). As a uniaxial
strain is applied, clusters reorient and merge (cf Fig. 1b).
The result is a dominant large cluster interdispersed with
a few smaller domains. Above a threshold strain value, a
single monodomain state is observed (cf Fig. 1c¢). Within
these images, some positional ordering of the mesogens
can be observed—to characterize that ordering, we com-

pute the radial distribution function for particles within
the system (cf Fig. 3c). A distinct set of coordination
layers is evident around each mesogen, suggestive of lo-
cal smectic ordering at zero strain.

The mechanical response of the system is depicted in
Fig. 2, with stress plotted as a function of strain for
five different strain rates. Each of these is averaged
over five independent realizations of the LCE system for
sizes N = 9728 (dashed lines) and N = 77824 (solid
line). After an initial elastic regime [28], these exhibit a
stress overshoot, commonly observed in experiments on
LCEs [1], which relaxes to a plateau that is apparently
independent of strain rate. Comparison to an equilib-
rium curve (red circles—9728 [open] and 77824 [solid]),
obtained by allowing the stress to relax to a constant
value (determined by block averaging) for different step-
strains, indicates the response of the model elastomers
proposed here is analogous to that of the side-chain LCEs
in Ref. [15], where the threshold yield stress decreases
with strain rate. Such side-chain LCEs do not exhibit an
equilibrium plateau stress. Indeed, we observe exactly
this, as the stress—strain response is monotonic, and al-
most linear for e € [0.1,0.9]; beyond that strain the equi-
librium curve merges with those obtained at constant
strain rate. The inset of Fig. 2 shows the order parame-
ter as a function of strain. The initial polydomain state
exhibits a steep jump in order parameter as a threshold
stress is crossed. The value of this stress is only weakly
dependent on the strain rate over the range considered
here. Further, this threshold stress o* ~ 0.5 corresponds
to the onset of a linear restoring force after the soft-elastic
region. This is consistent with the theoretical prediction
of Ref. [14], where a sharp increase in orientational order-
ing was predicted upon the advent of the P-M transition.

Fig. 3a shows the distribution of domain sizes in equi-
librium as a function of step strain. At equilibrium, most
particles form clusters of 100-1000 particles. This dis-
tribution is strongly altered by the application of a step
strain, with small domains disappearing as clusters merge
to form larger domains. Fig. 3b shows the distribution
of domain orientations relative to the axis of extension.
We observe that, at equilibrium, domains are oriented
randomly. Upon application of strain, however, these
reorient in a manner that better accommodates the lo-
cal strain. As a result, domains begin aligning with the
stretching direction, evidenced by the enhancement in
probability for small . Taken together, these observa-
tions suggest the P-M transition of SCLCEs proceeds
through a combination of domain rotation and subse-
quent growth, rather than the pure domain reorientation
mechanism proposed from experiments on main-chain
LCEs [18]. Note that spatial structure is largely un-
changed by strain. Fig. 3c shows the radial distribution
of mesogens (of both chain and crosslink varieties) varies
only near contact, with contact probability decreasing for
chain mesogens and marginally increasing for crosslinks.
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FIG. 3. (Color Online) Equilibrium structures within large
(N = 77824) model LCEs. (a) Probability of finding a meso-
gen in a cluster of size N after equilibration at different step
strains, averaged over five independent realizations of the sys-
tem. Initially, most particles are in clusters of size 10%-10%.
Clusters merge as the strain is increased, shifting the size dis-
tribution. Eventually, all particles are observed to be part of
a single cluster with S > 0.6. (b) Orientation distribution
of nematic domains, normalized by an isotropic distribution
(P(0) x sinf). Nematic directors rotate as step strains are
applied, and align with the direction of strain (0 = 0). (c)
Radial distribution function for mesogens within the system.
Layering, indicative of smectic ordering, is observed between
mesogens attached to the polymer backbone. Liquid-like,
isotropic correlations are observed between crosslinker par-
ticles. Solid lines (connecting solid symbols) show the meso-
gen distribution under equilibrium conditions, while dashed
lines (connecting open symbols) show the mesogen distribu-
tion after uniaxial strain at 4 = 0.001 to € = 5. The spatial
distribution of particles is largely unaffected.

The dynamics of individual clusters within a sample
are examined as a function of time at constant strain
rate 4 = 1073¢* !, Fig. 4 shows the evolution of several
domains. For clarity, only 3 domains are shown: one with
a director parallel to the strain direction (X), one with
a director perpendicular to x, and a third corresponding
to the largest domain in the system. We observe fluctua-
tions in the individual domain sizes as the simulation pro-
gresses, with most particles aggregating into a single large
cluster after 1000t* (¢ = 2.0). Interestingly, each domain
begins with a high degree of local order, S > 0.8, which
decays as misaligned particles become incorporated. Fur-
ther, large domains which are nearly perpendicular to the
nematic director persist until € ~ 0.15, which coincides
with the onset of soft elasticity (or the stress plateau), af-
ter which point they gradually rotate and merge with the
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FIG. 4. (Color Online) Domain dynamics at constant strain
rate for a representative system. Depicted are the largest clus-
ter (solid red line), the cluster best aligned with the direction
of strain (dashed green line) and the cluster most perpendic-
ular to the direction of strain (dash-dotted blue line). (a)
The component of the nematic director along the strain axis.
(b) The order parameter of each cluster. (¢) The size of each
cluster. The strain rate is 4 = 1073¢* 1.

largest domain. This result further validates our conclu-
sion that the P-M transition in our model system occurs
via domain reorientation and growth.

In conclusion, a coarse-grained molecular model of LC
elastomers has been proposed and has been shown to
reproduce the experimentally observed soft elasticity be-
havior, upon which a small applied stress can lead to a
large deformation. The observed soft elasticity is shown
to correspond to a polydomain-to-monodomain transi-
tion of the LCE material, and is accompanied by a sud-
den increase of the nematic scalar order parameter. Our
model and simulations are the first to reproducibly pro-
duce well-defined polydomain states at zero stress and,
more importantly, provide direct evidence that when
stress is applied to a polydomain material, the domains
rotate and merge, thereby leading to a stress plateau
and a macroscopic deformation. Past experimental re-
ports [16] had proposed that domain rotation is respon-
sible for the stress plateau in LCEs; our computational
results support such a view and indicate that nucleation
of large domains from the initial polydomain state is also
an important mechanism in the transition. While the
results presented here have been generated on the basis
of a simple coarse grained model, they serve to provide
a first molecular-level demonstration of a polydomain—



monodomain transition, and offer a starting point for the
investigation of the influence of molecular details on the
stress response of LCEs.
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