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Abstract

We introduce a new approach to represent a two-body direct correlation function (DCF) in order

to alleviate the computational demand of classical density functional theory (CDFT), and enhance

the predictive capability of the phase-field crystal (PFC) method. The approach utilizes a rational

function fit (RFF) to approximate the two-body DCF in Fourier space. We use the RFF to show

that short-wavelength contributions of the two-body DCF play an important role in determining

the thermodynamic properties of materials. We further show that using the RFF to empirically

parameterize the two-body DCF allows us to obtain the thermodynamic properties of solids and

liquids that agree with the results of CDFT simulations with the full two-body DCF without

incurring significant computational costs. In addition, the RFF can also be used to improve the

representation of the two-body DCF in the PFC method. Lastly, the RFF allows for a real-space

reformulation of the CDFT and PFC method, which enables descriptions of nonperiodic systems

and the use of non-uniform/adaptive grids.
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I. INTRODUCTION

Materials modeling is challenging due to the vast length and time scales that are involved.

For example, in a study of the deformation of polycrystalline metals, atomistic resolution is

required for an accurate description of dislocation energetics and dynamics; therefore, models

having atomistic resolution such as molecular dynamics (MD) are suitable for simulating such

processes. However, MD requires a time step small enough to resolve atomic vibrations,

which limits MD simulations to very short time scales. For example, high strain rates are

often used, making it difficult to perform direct comparisons with experiments [1]. On the

other hand, mesoscale models, such as phase-field methods, are used extensively to study

diffusive transport phenomena such as grain growth [2–6] on experimentally relevant time

scales. However, the phase-field methods lack descriptions of atomistic phenomena, which

limit the predictive capability of the models without additional auxiliary field variables such

as those that describe grain orientations [7–12] and dislocations [13–16]. Furthermore, when

the physical problem involves multiple phenomena, it becomes challenging to incorporate

many auxiliary field variables in a thermodynamically self-consistent manner.

Two approaches that address these issues are classical density functional theory (CDFT)

[17–19] and the phase-field crystal (PFC) method [20–22]. A common feature of these ap-

proaches is the description of a system via the free energy functional of an atomic density

field that is minimized not only by a uniform field (representing liquid) but also by a pe-

riodic field (representing solid). The periodic field represents atomic arrangements, and

thus it allows for an atomic-scale description of materials [20, 21, 23, 24]. The evolution of

the density field can be described by dissipative dynamics [20, 25–27], which bypasses the

lattice-vibration time scale and enables consideration of diffusive times scales while retaining

atomistic resolution. However, the origins of these two methods are different. The CDFT

is a reformulation of statistical mechanics and attempts to predict material properties by

employing a correlation function that contains structural information at the atomistic scale.

On the other hand, the original form of the PFC method is derived from the Swift-Hohenberg

model of pattern formation [28] and is intended to provide phenomenological descriptions

of material behavior. Nevertheless, the link between the CDFT and PFC method was es-

tablished by Elder and co-workers [29], and the PFC method can thus be considered a

simplified form of the CDFT of freezing [23], with a computational efficiency afforded by a
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lower spatial-resolution requirement than that of CDFT.

While the approximation to obtain the PFC method alleviates the high computational

cost of CDFT, it affects predictive capabilities of the formulation. Therefore, the goal of this

work is to develop numerical techniques that increase the computational efficiency of CDFT

and improve the accuracy of the PFC method. In particular, we propose a rational function

fit, a ratio of polynomials, to approximate the Fourier-space two-body direct correlation

function (DCF) that is typically used in the CDFT of freezing. We henceforth refer to this

approach as the rational function fit (RFF) method. Additionally, the RFF method allows a

real-space reformulation of the governing equations when the rational function is expressed

as a summation of partial fractions, enabling the use of non-uniform/adaptive grids and

descriptions of nonperiodic systems.

We use the RFF method to examine the importance of short-wavelength contributions

in the two-body DCF that is used in CDFT. Our studies on iron (Fe) show that the short-

wavelength contributions influence the thermodynamic properties not only quantitatively,

but also qualitatively. For example, the phase stability of the face-centered-cubic (FCC)

structure has a strong dependence on the short-wavelength contributions in the DCF, which

is typically not accurately accounted for in PFC studies. We also show that, within the

framework of the RFF method, it is possible to empirically parameterize the two-body

DCF to increase computational efficiency of CDFT while retaining the accuracy of most

predictions of the thermodynamic properties in comparison to those of CDFT with the full

two-body DCF. We also demonstrate that the RFF can be used to improve the representation

of the two-body DCF in the PFC model.

In this paper, we only focus on improving the predictive capability of CDFT and the

PFC method for thermodynamic properties of a solid-liquid system such as solid-liquid

interfacial free energies and solid/liquid densities at solid-liquid coexistence. We have chosen

not to address mechanical properties such as bulk moduli (as in Ref. [30]) since we have

recently discovered that there are inconsistencies in calculating elastic constants using the

PFC method [31]. Specifically, the conventional procedure for calculating elastic constants

in the PFC method is not equivalent to those defined from the theory of thermoelasticity of

stressed materials [32–34]. Therefore, the applicability of the RFF to improve the prediction

of mechanical properties and of mechanical phenomena (such as deformation at a finite strain

rate [35, 36]) will be deferred to future investigations.
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In the following, we briefly review the CDFT and PFC formulations in Sections II A and

II B, respectively. We propose the RFF method in Section III. The importance of the short-

wavelength contributions is examined in Section IV, and the empirical parameterization of

the DCF is discussed in Section V. The RFF method is then applied to the PFC formulation

in Section VI, followed by a discussion of the real-space reformulation of the RFF method

in Section VII. In Section VIII, we compare Fourier-space and real-space implementations.

Lastly, we conclude the paper with a summary.

II. BACKGROUND

A. Classical density function theory of freezing

Here, we provide a brief description of CDFT; for a more comprehensive discussion, we

refer readers to Ref. [18]. The CDFT is a reformulation of statistical mechanics where

a one-to-one correspondence exists between the equilibrium atomic one-body probability

density, ρ(r), and the external potential, Vext(r). This one-to-one correspondence enables

a formulation of the intrinsic Helmholtz free energy, F
(
ρ(r)

)
, which is a unique functional

of ρ(r). Furthermore, the functional derivative of F
(
ρ(r)

)
with respect to ρ(r) gives the

intrinsic chemical potential, ψ(r):

δF
(
ρ(r)

)
δρ(r)

= ψ(r) = µ− Vext(r). (1)

The intrinsic chemical potential is related to the chemical potential, µ, via

µ = ψ(r) + Vext(r). (2)

In the absence of an external potential, which is the focus of the present work, ψ(r) = µ.

The functional F
(
ρ(r)

)
can be written in the form:

F
(
ρ(r)

)
= Fid

(
ρ(r)

)
+ Fex

(
ρ(r)

)
. (3)

The first term on the right-hand side of the above equation corresponds to the ideal-gas

contribution given by

Fid
(
ρ(r)

)
= kBT

∫
drρ(r)

(
ln[ρ(r)λ3T ]− 1

)
, (4)
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where λT is the de Broglie wavelength and kB is the Boltzmann constant. The second term

is an excess contribution that contains structural information of the system through the

n-body DCF given by

c(n)(r1, ..., rn; [ρ]) = −β δnFex
(
ρ(r)

)
δρ(r1)...δρ(rn)

, (5)

where β = 1/kBT . The explicit functional form of Fex
(
ρ(r)

)
is not known to date, and

numerous techniques have been proposed to approximate this quantity [18]. In the context

of freezing, a commonly used approach is to approximate Fex
(
ρ(r)

)
by a functional Taylor

expansion up to second order around a uniform density, ρ0, that corresponds to the reference

liquid phase density. Combined with Fid
(
ρ(r)

)
, the free energy expression becomes [23]

βF
(
ρ(r)

)
= βF(ρ0) + βµ0

∫
dr∆ρ(r) +

∫
dr

{
ρ(r) ln

[
ρ(r)

ρ0

]
−∆ρ(r)

}
−1

2

∫ ∫
dr1dr2∆ρ(r1)c

(2)(r1, r2; [ρ0])∆ρ(r2), (6)

where µ0 is the chemical potential of the reference state, ∆ρ(r) = ρ(r)−ρ0, and the function

c(2)(r1, r2; [ρ0]) is the two-body DCF of the reference uniform density state. We note that

the formation of a solid phase occurs when the equilibrium density profile is a periodic

non-uniform function with symmetry corresponding to a crystal lattice.

In order to compare the above CDFT free energy functional with that of the PFC method,

we introduce a dimensionless one-body density,

n(r) =
ρ(r)− ρ0

ρ0
, (7)

and write the scaled dimensionless energy as

∆F̃CDFT
(
n(r)

)
=
F
(
ρ(r)

)
−F(ρ0)

kBTρ0
=

∫
dr {[1 + n(r)] ln[1 + n(r)]− n(r)}

−ρ0
2

∫
dr

∫
dr′
{
n(r)c(2)(|r− r′|)n(r′)

}
, (8)

where we set the chemical potential of the reference state to be zero. It is further assumed

that c(2) is isotropic.

The form of the two-body DCF plays an important role in determining the equilibrium

density profile and, in turn, the numerical efficiency of the model. To illustrate, let us

consider a two-body DCF in Fourier space, ĉ(2)(k), where k is the magnitude of the Fourier-

space vector, k = |k|. The equilibrium profile, n(r), can be expressed as a summation of
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density waves:

n(r) = n̄

(
1 +

∑
j

uje
iGj ·r

)
, (9)

where n̄ is the average density, Gj is a linear combination of the primitive reciprocal lattice

vectors, and uj is the corresponding density wave amplitude. The jth term in the above

expansion will decrease the excess contribution to the free energy if ĉ(2)(|Gj|) is positive

(indicating correlation); in such a case, the density wave mode with the wave vector Gj is

enhanced. On the other hand, the jth term in the expansion above will increase the excess

contribution to the free energy if ĉ(2)(|Gj|) is negative (indicating anti-correlation), which

would lead to suppression of the density wave mode.

Typical two-body DCFs in Fourier space have oscillations that contain positive values

even at large k, which imply the presence of short-wavelength correlations in these systems.

While these effects decrease with increasing k, they are nevertheless important. These

short-wavelength correlations give rise to sharp peaks in the atomic probability density,

which require a large number of basis functions or a very fine computational grid to at-

tain a sufficiently accurate numerical representation. These computational limitations are

alleviated in the PFC method, which is discussed below.

B. Phase-field crystal method

The PFC method was initially developed as a reformulation of the Swift-Hohenberg

model of pattern formation [28]. However, the connection between Eq. (8) and the free

energy functional of the PFC method was later established by Elder and co-workers [29]

through approximations to the CDFT free energy. First, the ideal contribution in Eq. (8) is

approximated by its Taylor expansion:

(1 + n(r)) ln(1 + n(r))− n(r) ≈ 1

2
n(r)2 − at

6
n(r)3 +

bt
12
n(r)4 , (10)

with at = bt = 1 in the original formulation of the PFC method. However, in later works

[30], at and bt have been used as empirical parameters to fit specific properties of liquid and

solid. The second approximation constitutes a fourth-order fit (4P) of the two-body DCF

in Fourier space as

Ĉ
(2)
4P (k) ≡ ρ0ĉ

(2)
4P (k) = C0 + C2k2 + C4k4 , (11)
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where the constants C0, C2, and C4 are fitting coefficients. These approximations yield the

PFC free energy functional of the form:

∆F̃4P

(
n(r)

)
=

∫
dr

[
n(r)

1− C0 + C2∇2 − C4∇4

2
n(r)− at

6
n(r)3 +

bt
12
n(r)4

]
. (12)

Recently, an expansion up to the eighth order was proposed in order to better approximate

the two-body DCF [30]:

Ĉ
(2)
8P (k) ≡ ρ0ĉ

(2)
8P (k) = Cm − Γ

(
k2m − k2
k2m

)2

− EB
(
k2m − k2
k2m

)4

, (13)

where

Γ = −k
2
mCc
8

, EB = Cm − C0 − Γ, (14)

and km, C0, Cm, and Cc are fitting constants. We denote this approximation as the eighth-

order fit (8P). The corresponding free energy is

∆F̃8P

(
n(r)

)
=

∫
dr

[
n(r)

2

(
1− Cm + Γ

(
k2m +∇2

k2m

)2

+ EB

(
k2m +∇2

k2m

)4
)
n(r)

−at
6
n(r)3 +

bt
12
n(r)4

]
. (15)

The fitting parameters in Eqs. (11) and (13) are chosen so that these fits accurately describe

the two-body DCF up to the first peak [30, 37], and are employed in the present work.

Compared to the 4P, the 8P in Eq. (13) provides an additional fitting parameter to better

fit the DCF. Beyond the first peak, the values of the fits for both 4P and 8P become

increasingly negative as k increases. These large anti-correlations at short wavelengths

results in the high-frequency density waves being energetically unfavorable, thus resulting

in nonlocalized, smooth equilibrium density profiles and in turn improved computational

efficiency.

The dynamics of the PFC method is given by:

∂n(r, τ)

∂τ
= ∇2 δ∆F̃PFC [n(r, τ)]

δn(r, τ)
, (16)

where the subscript PFC denotes the free energy given in Eq. (12) or Eq. (15). This

equation can be obtained from mass conservation where the flux is driven by the gradient of

the chemical potential [20], which is a variational derivative of the free energy with respect

to the atomic density.
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A polynomial approximation of the two-body DCF is limited in the ability to represent

the DCF accurately beyond the first peak. In order to improve the predictive capability of

the PFC method relative to CDFT, it may be important to consider the short-wavelength

correlations beyond the first peak. To this end, we propose an alternative method for repre-

senting the two-body DCF using a ratio of polynomials in the next section. We subsequently

demonstrate that such an approach addresses the limitation in the predictive capability of

the PFC method and the computational demand of CDFT, as well as enables a real-space

reformulation of these methods.

III. RATIONAL FUNCTION FIT

In order to address the aforementioned issues, we introduce a new method in which a

rational function—a ratio of polynomials—is used to fit the two-body DCF in Fourier space.

The resulting rational function can be decomposed into a summation of partial fractions as

Ĉ
(2)
RFF (k) ≡ ρ0ĉ

(2)
RFF (k) =

∑
j

[
Aj

k2 + αj
+

A∗j
k2 + α∗j

]
, (17)

where Aj and αj are fitting coefficients which are generally complex numbers and the asterisk

denotes a complex conjugate. We refer to this approach as the rational function fit (RFF)

method, and denote mT-RFF as the rational function fit comprising of m partial fraction

terms. The above fit accurately captures the oscillatory behavior of the two-body DCF and

satisfies the short-wavelength limit, i.e., Ĉ
(2)
RFF (k) = 0 as k → ∞. The coefficients Aj and

αj can be determined from curve fitting algorithms, and we use the Curve Fitting Toolbox

(version 2.2) in the Matlab software (version 7.10.0.499) in the present work. We find that

odd numbers of partial fractions, which results in one pair of coefficients, Aj and αj, being

real values, are better suited for the given problem. Therefore, we present only these cases.

In Sections IV, V and VI, we demonstrate how the RFF can be used to address the issues

of high computational cost in CDFT and limited predictive capability of the PFC method.

To this end, we consider the two-body DCF of Fe, which is shown as a solid line in Fig.

1. This data, provided by Wu [38], was obtained from embedded-atom-method molecular

dynamics (EAM-MD) simulations described in Ref. [39]. We will subsequently denote this

data as ĉ
(2)
MD(k), or Ĉ

(2)
MD(k) ≡ ρ0ĉ

(2)
MD(k). This data was obtained from a simulation at a

temperature of T = 1772 K and a density of ρ0 = 0.0801 Å−3, which is used as the reference
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density for normalizing the governing equations. Since MD simulations cannot provide the

long-wavelength limit of the two-body DCF due to the restricted size of simulation domains,

this limit was approximated from experimental data to be Ĉ
(2)
MD(0) ≈ −49 [30].

IV. EXAMINING THE ROLE OF SHORT-WAVELENGTH CONTRIBUTIONS

OF THE TWO-BODY DIRECT CORRELATION FUNCTION

In this section, we examine the importance of the short-wavelength contributions in the

two-body DCF to the thermodynamic properties computed using CDFT. We employ the

RFF method that enables us to systematically control the short-wavelength contributions.

We first describe various fits of Ĉ
(2)
MD(k) employed in this work followed by the procedure used

to calculate the relevant thermodynamic quantities. We subsequently present the results of

the calculations and discuss our findings.

A. The rational function fits of the two-body direct correlation function of Fe

We show the various fits of Ĉ
(2)
MD(k) using the RFFs in Figs. 1(a) and 1(b). Figure 1(a)

shows that all 4 RFFs satisfy the following two limits: Ĉ
(2)
RFF (0) = −49 and Ĉ

(2)
RFF (∞)→ 0.

The difference between these 4 RFFs is the number of the partial fraction terms in the RFF,

which determines the number of peaks of Ĉ
(2)
MD(k) that are captured (see Fig. 1(b)). The

3-term RFF (the RFF that can be decomposed into three partial fraction terms), denoted

by 3R, captures Ĉ
(2)
MD(k) accurately up to the first peak, while the 5R captures up to the

second peak. The 7R and 9R capture up to the third and fourth peaks, respectively. In

this manner, we systematically improve the accuracy of the representation of the short-

wavelength contributions in the two-body DCF, making it possible to study their effect on

the thermodynamic properties.

In Fig. 1(c), we show the plots of the 8P and 4P, whose coefficients are chosen to describe

Ĉ
(2)
MD(k) up to its first peak [30, 37]. Both fits become increasingly negative beyond the

first peak, approaching negative infinity as k → ∞. We further note that an additional

fitting parameter in the 8P (compared with that of the 4P) allows the 8P to capture the

desired long-wavelength limit, Ĉ
(2)
8P (0) = −49, whereas the 4P does not. To make consistent

comparisons with RFF results, we will only use the thermodynamic properties computed
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from using the 8P of Ĉ
(2)
MD(k).

B. Procedures to calculate solid-liquid properties

We consider the following thermodynamic properties: phase stability of body-centered-

cubic (BCC) and face-centered-cubic (FCC) solids; solid-liquid coexisting densities; and

solid-liquid interfacial free energies. These properties are obtained from analyzing equilib-

rium free energies of bulk solid, bulk liquid, and coexisting solid-liquid phase. The free

energy of the bulk liquid can be calculated analytically due to the uniformity of the bulk

liquid-density profile, while the free energies of the other systems are obtained from numer-

ical calculations of the equilibrium density profiles.

We use two methods to determine the equilibrium density profile. The first method

is a numerical relaxation based on a globally conserved dynamics [40], also known as the

conserved Allen-Cahn dynamics:

∂n(r, τ)

∂τ
= −δ∆F̃CDFT

(
n(r, τ)

)
δn(r, τ)

+
1

V

∫
dr
δ∆F̃CDFT

(
n(r, τ)

)
δn(r, τ)

, (18)

where V is the volume of the system. This method is used in all cases except for the calcula-

tions of the phase stability of the FCC solid. The second method is a semi-analytical method

where we approximate the equilibrium density profile constructed from non-overlapping

Gaussian functions centered at the lattice sites. We then minimize the free energy with

respect to parameters that control the Gaussian peak height/width and unit-cell size. The

details of the Gaussian approximation are discussed in Appendix A. This relaxation method

is employed for the FCC solid as the density profiles are sharply peaked around the lattice

sites, making full numerical relaxation too expensive.

Following the procedure in Ref. [30], we determine the solid-liquid coexisting region from

a common-tangent construction of the free energy density curves [41]. The solid-liquid

interfacial free energy, γ, is evaluated by constructing a long slab whose size is one unit-

cell in the plane of the interface and 64 unit-cell long in the direction perpendicular to the

interface. One half of the slab is initialized as the bulk solid at the solid density at solid-

liquid coexistence and the other half is initialized as the bulk liquid at the liquid density

at the solid-liquid coexistence. The slab is then relaxed numerically using Eq. (18) with

periodic boundary conditions, and γ is calculated by subtracting out free energies of the
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bulk phases.

C. Results and discussions

The resulting thermodynamic properties from the CDFT simulations with the different

fits to Ĉ
(2)
MD(k) are shown in Table II. Figure 2 shows the free energy density curves of

the liquid and the BCC solids, which are used to calculate the densities at the solid-liquid

coexistence and volume expansion during melting. The integrated density profiles per unit

area along the direction normal to (110) plane are shown in Fig. 3 and the density profiles

on the (100) crystal plane of the BCC solids at the solid-liquid coexistence are shown in Fig.

4.

Table II also shows the stability of the FCC solid (bottom row) from the simulations using

the RFFs and 8P. The stable behavior (denoted by “S” in Table II) of the FCC solid is shown

in Fig. 5(a) for the Ĉ
(2)
MD(k) CDFT simulation, where the FCC solid attains stability at large

densities. This behavior is captured by the 7R and 9R CDFT simulations (see Figs. 5(c)

and 5(b), respectively). However, the 5R CDFT simulation shows a metastable behavior

(denoted by “MS” in Table II) of the FCC phase, where the FCC phase has energy minima

that are higher than the energy minima of the BCC phase. This metastable behavior can

be seen from the free energy curves of the FCC and BCC solids shown in Fig. 5(d). We

further note that the FCC phase is not stable (denoted by “NS” in Table II) for the 3R and

8P of the two-body DCF.

Comparing results from the 3R CDFT simulations with those of the 8P, we do not find

a significant difference in the solid and liquid properties as well as in the density profiles.

We note that these two fits capture the correlations accurately up to the first peak in the

two-body DCF, but do not account for the shorter wavelength correlations. The more

accurate asymptotic behavior of the 3R does not substantially improve the accuracy of the

computed thermodynamic properties in comparison to the 8P. However, the 5R to 9R CDFT

simulations show progressively improved accuracies in the predictions (see Table II), with

the most significant improvement between the 3R and 5R. We note that the 5R accurately

represents the correlations up to the second peak in the two-body DCF. Further, the 7R

and 9R accurately represent the correlations up to the third and fourth peaks, respectively.

Although the accuracy of the thermodynamic properties improves between the 7R and 9R,
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the extent of the improvement is not as significant as that seen between the 3R to 5R, and

the 5R to 7R. We attribute this observation to the fact that the amplitude of the correlations

in the two-body DCF asymptotically decays, and therefore the role of increasingly shorter

wavelength correlations to the thermodynamic properties is progressively less significant.

Nevertheless, the 5R does not predict the stability of the FCC phase, suggesting that the

correlations up to the third peak in the two-body DCF appear to be important for phase

stability. Finally, by noting that the prediction of the 3R does not significantly differ from

that of the 8P, we believe that the thermodynamic properties are relatively insensitive to

the anti-correlations beyond the first peak.

In this section, the short-wavelength correlations are shown to be important even for a

qualitative prediction of thermodynamic properties. Therefore, the computational demand

of CDFT, arising from the sharp localized peaks in the density profiles, cannot be alleviated

by simply suppressing the short-wavelength correlations (as done in most PFC methods)

without sacrificing the predictive capability of the model considerably. We now propose

an empirical parameterization of the two-body DCF as a RFF, which seeks to improve the

predictive capability using fewer terms in the RFF.

V. EMPIRICAL PARAMETRIZATION OF THE TWO-BODY DIRECT CORRE-

LATION FUNCTION

As seen in the previous study, there is a significant improvement in the accuracy of the

predicted thermodynamic properties upon resolving the second peak in the two-body DCF

(as seen in the differences between the 3R and 5R CDFT results). Thus, we seek to construct

a parameterization of the two-body DCF that yields the accurate thermodynamic properties

of the liquid and solid phases, while providing smoother atomic density profiles, by using

a RFF that represents the correlations up to the second peak. We begin with the 5R and

systematically vary the value of the function at both peaks, keeping the curvature values

and the locations of the peaks similar to those from Ĉ
(2)
MD(k). The locations of the peaks

are fixed to maintain the lattice constants of the solid crystal, and the curvature values of

the peaks are held constant to retain the interfacial properties of the liquid-solid interface,

as suggested by Ref. [39].

In terms of implementation, an analytical expression of the modified 5R, M5R, is manually
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constructed from a spline interpolation of discrete data points. We then employ the semi-

analytical method to determine the fit that yields similar solid free energies to the simulations

using Ĉ
(2)
MD at the solid density at the solid-liquid coexistence; this procedure allows us to

quickly experiment with a large number of fits. Subsequently, we fit the data with the RFF

and use the numerical method to verify the fit.

The M5R, shown in Fig. 6(a), is similar to the 5R except for a slightly higher value of

the function at the second peak. The corresponding free energy of the BCC solid from the

M5R CDFT simulations, shown in Fig. 6(b), is in good agreement with those of Ĉ
(2)
MD(k).

The slightly higher value at the second peak results in the density profile from the M5R

CDFT simulations being more localized than those from the 5R. This is apparent from the

higher amplitudes of density peaks at the BCC lattice sites shown in Fig. 4, and from the

integrated density profile per unit area shown in Fig. 3. The liquid and solid properties of the

BCC phase from the M5R CDFT simulations are tabulated in Table III, and are in good

agreement with the results from the CDFT simulations using Ĉ
(2)
MD(k). Further, we note

that most of the thermodynamic properties computed from the M5R CDFT simulations are

more accurate than those computed from the 9R. However, the stability of the FCC phase

is not predicted by the M5R, further emphasizing the role of correlations corresponding to

the third peak in determining the FCC phase stability of Fe.

As demonstrated from the results, the M5R predicts most thermodynamic properties with

greater accuracy than the 9R. As seen in Fig. 4, the density profiles from the M5R CDFT

simulations are considerably smoother than those of the 9R, which leads to the improved

computational efficiency of the CDFT simulations.

VI. APPLICATION OF RFF TO THE PFC METHOD

As discussed in Section II B, it has been shown that the PFC method can be derived from

the CDFT of freezing by two approximations [29]: (i) a fourth-order polynomial approxi-

mation of the ideal contribution; (ii) a polynomial approximation to the two-body DCF in

Fourier space. To date, the polynomial approximations of the two-body DCF in the PFC

formulations have at most considered resolving the first two peaks [42]. It has been demon-

strated in Sections IV and V that the RFF method can be used to accurately describe the

two-body DCF up to the fourth peak, and possibly beyond. Thus, we seek to apply the
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RFF to the PFC method to enhance its predictive capability.

It is important to note that the RFF cannot be directly used in the PFC free energy func-

tional because the evolution equation can potentially yield a discontinuous density profile as

shown in Fig. 7(b). The reason for this is demonstrated by considering the approximation

of the ideal contribution in Eq. (10). For instance, by taking at = 0.6917 and bt = 0.0854

from Ref. [30], the approximation of the ideal contribution yields a double-well function as

opposed to a single-well function, as shown in Fig. 7(a). This double-well behavior ener-

getically favors the value of n(r) to be separated into values corresponding to the densities

associated with the minima, and potentially leads to a discontinuous profile. In the PFC

formulations such as those using the 4P and the 8P, the large anti-correlations at short-

wavelengths in these fits prevent such discontinuity from forming. The asymptotic behavior

of the RFFs at large k, on the other hand, does not pose sufficient energy penalty to prevent

such discontinuity from forming. To illustrate this, we use the approximation to the ideal

contribution in Eq. (10) along with the 3R, and evolve the density profile using the equilib-

rium density from the 3R CDFT simulation as the initial condition. After a few iterations,

the resulting density profile yields discontinuities as shown in Fig. 7(b). The values of n(r)

at the peaks and troughs are around 0 and 9, which are close to the densities corresponding

to the minima of the double-well function in Fig. 7(a).

In order to circumvent this issue, we propose an approximation to the two-body DCF of

the following form:

Ĉ
(2)
RP (k) =

∑
j=1

[
Aj

k2 + αj
+

A∗j
k2 + α∗j

]
+

p∑
l=0

Clk2l , (19)

where the subscript RP denotes the combined RFF and polynomial fit, and Aj, αj and Cl
are fitting coefficients. By setting Cp (the coefficient of the highest-order polynomial term) to

be negative, we can control Ĉ
(2)
RP (k) to approach negative infinity as k →∞, thus increasing

the energy penalty for short-wavelength density waves. Figure 8 shows the resulting fits

using 3, 5, and 7 partial-fraction terms, respectively. For each number of partial-fraction

terms, we consider p = 1 and p = 2, which corresponds to including polynomial terms up to

second and fourth order, respectively.

Jaatinen and coworkers have shown that the PFC free energy can predict a stable BCC

phase of Fe whose properties are in agreement with those from experiments and MD sim-

ulations [30]. This is achieved by fitting the 8P to Ĉ
(2)
MD(k) so that the fit matches the
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value of Ĉ
(2)
MD(0), the k-value of the first peak, km, and the curvature at the first peak,

d2/dk2
[
Ĉ

(2)
MD(km)

]
, as shown in Fig. 1(c). We demonstrate that the combined RFF and

polynomial fit can capture similar features of Ĉ
(2)
MD(k) by using three terms in RFF and

including up to the second-order polynomial term (p = 1). The resulting fit is shown in Fig.

9(a) where our fit is termed 3R2P. The 3R2P fit is almost identical to the 8P up to the first

peak and begins to deviate from the 8P for higher k. Nevertheless, we show in Table I that

the 3R2P fit captures almost the same features of the Ĉ
(2)
MD(k) as the 8P does. By using

at = 0.6917 and bt = 0.0854 for the ideal contribution in PFC, the resulting equilibrium

BCC density profile from the 3R2P fit at n̄ = 0.1 is shown in Fig. 9(b). This density profile

is very similar to the equilibrium density profile from the 8P at the same density (see Figs.

9(c) and 9(d)).

VII. REAL-SPACE IMPLEMENTATION

In this section, we discuss numerical techniques for evaluating the convolution integral

from Eq. (8) in real space. The partial fraction decomposition allows the convolution integral

to be evaluated by solving a set of inhomogeneous Helmholtz equations. The convolution

integral in consideration is in the following form:

Ic(r) =

∫
C(2)(|r− r′|)n(r′)dr′. (20)

Using C
(2)
RFF (|r− r′|), we can rewrite the convolution integral as

Ic(r) =
∑
j

[
Lj(r) + L∗j(r)

]
, (21)

where Lj and L∗j can be obtained from solving the inhomogeneous Helmholtz equations:

−∇2Lj(r) + αjLj(r) = Ajn(r)

−∇2L∗j(r) + α∗jL
∗
j(r) = A∗jn(r) . (22)

We note that Lj(r) and L∗j(r) can also be computed from the following integral equations:

Lj(r) = Aj

∫ (
e−
√
αj |r−r′|

4π|r− r′|

)
n(r′)dr′

L∗j(r) = A∗j

∫ (
e−
√
α∗j |r−r

′|

4π|r− r′|

)
n(r′)dr′, (23)

15



where the kernels are the three-dimensional Green’s functions of the Helmholtz equation.

The free energy in Eq. (8) becomes

∆F̃CDFT
(
n(r)

)
=

∫
dr {[1 + n(r)] ln[1 + n(r)]− n(r)} − 1

2

∫
dr

{
n(r)

∑
j

[
Lj(r) + L∗j(r)

]}
(24)

and the same approach can be used to compute the PFC free energy that employs C
(2)
RP (|r−

r′|). The free energy in the above form provides a real-space formulation of the CDFT and

PFC method, where the quantities Lj(r) and L∗j(r) can be evaluated by direct methods

such as LU factorization [43] or Krylov [44, 45] and classical pointwise iterative methods

[46]. For direct solves, efficient parallel direct-solver libraries are widely available (MUMPS

[47, 48], PARDISO [49, 50], SuperLU [51]) and are much faster than iterative methods when

the factorization matrices of the discretization matrix can be stored and reused. However,

the storage requirement rapidly increases with problem size, which becomes a limitation for

large three-dimensional simulations. Iterative solvers, on the other hand, do not require the

storage of the entire matrix and, therefore, are more suitable for large-scale simulations.

However, we note that the discretization matrix of the Helmholtz equations in Eq. (22) are

indefinite when the real part of αj is negative. As a result, the computation of Lj(r) and

L∗j(r) using the iterative methods requires special treatments [52]. Many efforts over the

past few decades have been devoted to the development of numerically efficient solvers for

the Helmholtz equation that leads to an indefinite matrix, and we refer to a recent review

article [53] and the references therein for a comprehensive overview of this field.

In this work, we use a point-wise iterative method to demonstrate our real-space for-

mulation. We employ a two-step complex iterative Jacobi (CIJ) method [54] to solve the

indefinite Helmholtz equation. When the discretization matrix of the Helmholtz equation is

not indefinite [55], a standard iterative Jacobi (SIJ) method [46] is used. We note that the

CIJ/SIJ method is chosen for its low memory requirement and simplicity in parallelization.

Better convergence speeds are expected from more advanced methods such as the generalized

minimal residual (GMRES) method [56] with appropriate preconditioners [52].

We compute the free energy densities of the BCC solid from the M5R CDFT simulations

using the CIJ/SIJ methods at different grid spacings: ∆h = aBCC/16, aBCC/32, aBCC/64,

and aBCC/128, where aBCC(= 2.95) is the normalized lattice spacing of the BCC solid. We

then compare the results with the solid free energy density from the simulation using the
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Fourier spectral method at a smaller grid spacing of ∆h = aBCC/256, for which numerical

convergence has been verified. The results are shown in Fig. 10(a) where the difference (as

a measure of the numerical error) reduces as the grid spacing becomes smaller. In addition,

we use the CIJ/SIJ method to simulate the interface between the liquid and BCC solid of

the M5R CDFT simulation, as shown in Fig. 10(b).

VIII. COMPARISON OF FOURIER-SPACE AND REAL-SPACE IMPLEMENTA-

TIONS

In this section, we compare the Fourier spectral method and real-space methods (CIJ/SIJ

and LU factorization methods) for evaluating the convolution integral in Eq. (20). In a

situation where the density profile is relatively uniform and the periodic boundary conditions

are appropriate, the Fourier spectral method is a method of choice due to two advantages.

First, the Fourier transform of the convolution integral in Eq. (20) can be written explicitly

as

Îc(k) = Ĉ(2)(|k|)n̂(k), (25)

where n̂(k) is the Fourier transforms of n(r). Thus, the calculation of Ic(r) involves only

simple pointwise operations (multiplication) and the Fourier transform operations, which

can be efficiently performed by a fast Fourier transform (FFT). Examples of open-source

and commercial libraries/packages for FFT are FFTW [57] (employed in this work), IBM

PESSL [58] and, more recently, P3DFFT [59]. To illustrate the advantage resulting from the

expression in Eq. (25), we evaluate the convolution integral in Eq. (20) where the two-body

DCF is 5R and density profile is the equilibrium BCC-solid density profile from the 5R

CDFT simulation (an average scaled density of 0.18) with the size of 323 grid points. The

calculation using the Fourier spectral method took 4.6 × 10−3 s whereas the calculations

using the CIJ/SIJ and direct-solve methods using the MUMPS library took 2.9 s and 0.6 s,

respectively (see also a footnote [60]), all of which are performed on two Quad-Core AMD

Opteron 2356 Processors, with a total of eight processors.

The second advantage is that the Fourier spectral method allows for easy implementation

of an implicit time stepping scheme in numerical integration. We note that there are other

more sophisticated numerical algorithms developed for evolving PFC equations (see, for
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example, Refs. [61–65]). However, we consider the backward Euler time stepping scheme for

simplicity. The backward Euler time stepping scheme can be written as

n̂u+1(k) =
1

1 + ∆τ |k|2(1− Ĉ(2)(|k|))

[
n̂u(k)−∆τ |k|2

(
−at

2
FT
[
n2
u

]
+
bt
3
FT
[
n3
u

])]
,

(26)

where ∆τ is the time step size, u and u+ 1 denote the current and next time steps, and FT

denotes the Fourier transform operation. Here, the nonlinear terms, n2 and n3, are treated

explicitly; i.e., they are evaluated at the time u, not u+ 1.

As an example, we calculate the maximum time step using the the backward Euler time

stepping scheme for 8P and 3R2P. The maximum time step is determined by a conver-

gence test where the convergence values, Vw and Vn, for the energy and the density profile,

respectively, are defined by

Vw =

√ 〈
(w̃s − w̃r)2

〉〈
(w̃r − 〈w̃r〉)2

〉 × 100, (27)

and

Vn =

√ 〈
(ns − nr)2

〉〈
(nr − 〈nr〉)2

〉 × 100, (28)

where the subscript s denotes the quantity calculated from the simulation using ∆τ = s and

the subscript r denotes the reference quantity which is taken to be that calculated using

∆τ = 10−7. The notation 〈x〉 denotes the arithmetic mean of x and the quantity w̃ ≡ w̃(r̃)

is the position-dependent scaled energy density:

w̃(r̃) =
1

2
n(r̃)2 − at

6
n(r̃)3 +

bt
12
n(r̃)4 − n(r̃)

2

∫
C(2)(|r̃− r̃′|)n(r̃′)dr̃′, (29)

where r̃ and r̃′ denote the scaled spatial coordinates. The initial density profile is the

equilibrium BCC-solid density profile from the 5R CDFT simulations (size of 323 grid points)

as shown in Fig. 4(d) and the simulation parameters are given by at = 0.6917, bt = 0.0854,

and the grid spacing of 0.093. We calculate the convergence values at τ = 0.2 and tabulate

the results in Table IV. For the convergence values less than 0.01%, the largest time step

sizes are on the order of 10−4.

However, when the density profile is nonperiodic and/or highly non-uniform, a real-space

implementation can be advantageous. First, the real-space formulation allows reduction

of the degrees of freedom through the use of adaptive mesh refinement (AMR) in finite
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element methods and finite difference methods. AMR can be useful in a situation where

a portion of the domain is liquid, which is represented by a uniform density, as in the

early stage of solidification, as well as in CDFT simulations in which the density is highly

concentrated only near the lattice positions and is nearly uniform elsewhere. In such cases, a

finely spaced mesh can be placed where the atomic density changes rapidly, while a coarser

mesh can be used elsewhere. Therefore, we expect that the adaptivity of the mesh can

play an important role in increasing numerical efficiency. Another potential advantage is

the flexibility in implementing different basis functions. For example, for the CDFT case, a

Gaussian basis may yield better convergence and further reduction in the degree of freedom.

Such an approach has been applied to quantum density functional theory calculations [66].

Lastly, the real-space formulation also allows for the development of multi-scale techniques

such as the quasicontinuum reduction of field theories [67, 68] (proposed originally in the

context of electronic structure calculations [67]), which can potentially enable large-scale

CDFT and PFC simulations.

IX. SUMMARY AND DISCUSSIONS

We proposed a rational function fit (RFF) to describe the two-body DCF in Fourier space

in order to alleviate the computational demand of the CDFT and enhance the predictive

capability of the PFC method.

• We used the RFFs to show that the short-wavelength contributions of the two-body

DCF play an important role in determining the thermodynamic properties of materials.

Our studies demonstrate that an inaccurate representation of the correlations in the

two-body DCF in favor of more computationally efficient density profiles may result

in inaccurate predictions. In particular, we find that the correlations up to the third

peak of the Fe DCF are important.

• We showed that it is possible to empirically parameterize the two-body DCF such that

most of the predicted thermodynamic properties are in agreement with the CDFT

simulation using the full two-body DCF without incurring significant computational

costs.

• A combined RFF and polynomial fit was shown to provide an improved representation
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of the two-body DCF in the PFC method.

• The RFF method allows the convolution integral to be numerically evaluated in real

space by solving a set of inhomogeneous Helmholtz equations. Such a real-space formu-

lation enables descriptions of nonperiodic systems and the use of non-uniform/adaptive

grids.

We note that another method of constructing the two-body DCF in Fourier space was

recently proposed using Gaussian peaks and was applied to the PFC method to study

phase transformations [69, 70]. The use of Gaussian functions is a convenient choice for

constructing a kernel corresponding to the DCF that results in various stable equilibrium

crystal structures because it allows one to control the location and the width of the peaks

precisely. However, the RFF is an appropriate choice when the two-body DCF obtained

from experiments or MD simulations needs to be accurately described; it is difficult to use

the Gaussian function to describe the oscillatory behavior of two-body DCFs. Furthermore,

the RFF allows for a real-space formulation via the solution of Helmholtz equations, and

provides the framework for development of multiscale methods, which is a topic for future

investigation.
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Appendix A: GAUSSIAN APPROXIMATION OF DENSITY PROFILES

We present a method to construct an approximate density profile using a Gaussian func-

tion. We assume that the atomic probability density around each lattice site located at Ri

is represented by a Gaussian function of the form:

G(r,Ri) =
(αg
π

)3/2
exp

(
−αg|r−Ri|2

)
, (A1)

where the parameter αg controls the peak width. We can construct the approximate density

profile, ρg(r), with an average density of ρ from a summation of the individual Gaussian
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peaks:

ρg(r) =
ρ

Gavg

∑
i

G(r,Ri), (A2)

where

Gave =
1

V

∫
V

∑
i

G(r,Ri)dr. (A3)

The semi-analytical method utilized in this work minimizes the free energy as a function of

ρ with respect to αg and the lattice spacing.
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[64] G. Tegze, G. Bansel, G. I. Tóth, T. Pusztai, Z. Fan, and L. Gránásy, Journal of Computational

Physics 228, 1612 (2009).

[65] C. Wang and S. M. Wise, Siam Journal on Numerical Analysis 49, 945 (2011).

[66] S. Yamakawa and S.-A. Hyodo, Physical Review B 71, 035113 (2005).

[67] V. Gavini, K. Bhattacharya, and M. Ortiz, Journal of the Mechanics and Physics of Solids

55, 697 (2007).

[68] M. Iyer and V. Gavini, Journal of the Mechanics and Physics of Solids 59, 1506 (2011).

[69] M. Greenwood, N. Provatas, and J. Rottler, Physical Review Letters 105, 045702 (2010).

[70] M. Greenwood, J. Rottler, and N. Provatas, Physical Review E 83, 031601 (2011).

24



Quantity 8P 3R2P

Ĉ(2)(0) -49.0 -49.0

km 2.99 2.98

d2/dk2
[
Ĉ(2)(km)

]
-10.4 -10.4

TABLE I. Comparison of the long-wavelength limit, Ĉ(2)(0), location, km, and curvature,

d2/dk2
[
Ĉ(2)(km)

]
, of the first peak of from the 8P and the 3R2P fit.

Quantity Ĉ
(2)
MD 9R 7R 5R 3R 8P

CDFT CDFT CDFT CDFT CDFT CDFT

Liquid-coexistent density (Å
−3

) 0.0877 0.0896 0.0909 0.0923 0.109 0.109

(% Difference from Ĉ
(2)
MD CDFT) (2.1%) (3.6%) (5.2%) (24%) (24%)

Solid-coexistent density (Å
−3

) 0.0902 0.0918 0.0930 0.0940 0.110 0.109

(% Difference from Ĉ
(2)
MD CDFT) (1.9%) (3.1%) (4.3%) (22%) (21%)

Expansion in melting (Å
3
/atom) 0.304 0.271 0.249 0.198 0.0373 0.0211

γ100 (erg/cm2) 88.7 84.3 81.3 67.4 13.7 6.53

γ110 (erg/cm2) 86.6 81.9 79.0 65.5 13.5 6.37

FCC crystal S S S MS NS NS

TABLE II. The comparison of the liquid and solid properties computed from the CDFT simulations

using different fits of the EAM-MD data, Ĉ
(2)
MD(k). The abbreviations S, MS, and NS denote

“stable”, “metastable”, and “not stable”, respectively (see text). The data are rounded to three

significant digits.
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Quantity Ĉ
(2)
MD M5R 9R 5R

CDFT CDFT CDFT CDFT

Liquid-coexistent density (Å
−3

) 0.0877 0.0879 0.0896 0.0923

(% Difference from Ĉ
(2)
MD CDFT) (0.19%) (2.1%) (5.2%)

Solid-coexistent density (Å
−3

) 0.0902 0.0901 0.0918 0.0940

(% Difference from Ĉ
(2)
MD CDFT) -- a (1.9%) (4.3%)

Expansion in melting (Å
3
/atom) 0.304 0.279 0.271 0.198

γ100 (erg/cm2) 88.7 86.5 84.3 67.4

γ110 (erg/cm2) 86.6 83.9 81.9 65.5

FCC crystal S MS S MS

a The difference is less than the uncertainty of the calculations.

TABLE III. The liquid and solid properties computed from the M5R CDFT simulations, along

with the 5R and 9R CDFT simulation results from Table II.

8P 3R2P

∆τ Vw (%) Vn (%) Vw (%) Vn (%)

10−1 60 32 60 33

10−2 3.2 3.7 3.2 3.8

10−3 3.1× 10−1 3.6× 10−1 2.9× 10−1 3.4× 10−1

10−4 2.9× 10−2 3.4× 10−2 2.5× 10−2 2.9× 10−2

10−5 2.7× 10−3 3.0× 10−3 2.3× 10−3 2.7× 10−3

10−6 7.4× 10−4 2.6× 10−4 2.1× 10−4 2.4× 10−4

TABLE IV. The comparison of the convergence values at different time step sizes using the back-

ward Euler time stepping scheme. These values are evaluated at τ = 0.2.
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FIG. 1. (Color online) The different fits to the embedded-atom-method molecular dynamics (EAM-

MD) data, Ĉ
(2)
MD [38]. (a) The rational function fits (RFFs) with different number of terms. (b) A

magnified section of (a). (c) The fourth-order fit (4P) and the eighth-order fit (8P) [30, 37].
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FIG. 2. (Color online) The normalized free energies per unit volume of the BCC solid corresponding

to different fits of the EAM-MD data. The blue-solid line denotes the liquid free energy density

curve. (a) Free energies of the BCC solid from the CDFT simulations using the EAM-MD data,

9R, 7R and 5R. The cross signs at the solid curves denote the solid densities at the solid-liquid

coexistence. (b) Free energies of the BCC solid from the CDFT simulations using the 8P and 3R.

The two cross signs show the solid densities at the solid-liquid coexistence.
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FIG. 3. (Color) The BCC solid-liquid density profiles along the direction normal to the (110) plane

(z-axis), where aBCC is the lattice spacing. Here, 〈n〉 = A−1
∫ ∫

n(x, y, z)dxdy, where A is the

surface area and nl is the normalized liquid density at the solid-liquid coexistence. The arrows

indicate the amplitude of the fluctuation in the bulk solid region of the density profiles.
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FIG. 4. (Color online) The density profiles on the (100) crystal plane of the BCC solids at the

solid-liquid coexistence, where aBCC is the lattice spacing. It should be noted that the vertical

scales of (e) and (f) are different from the others.
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Ĉ
(2)
MD CDFT (BCC)

Ĉ
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FIG. 5. (Color online) The normalized free energies per unit volume of the BCC and FCC solids

from the CDFT simulations using the EAM-MD data, 9R, 7R, and 5R. The 5R-BCC and 5R-FCC

curves do not intersect. The solid free energies are evaluated from the semi-analytical method

described in Section IV B. The blue solid curves denote the liquid free energy.
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FIG. 6. (Color online) (a) The comparison between the 5R and M5R. The two fits are similar

except for the second peak of the M5R being slightly higher. The solid line denotes the EAM-MD

data. (b) The comparison between the normalized BCC solid free energy density from the CDFT

simulations using the EAM-MD data, 9R, and M5R. The cross signs indicate the solid-coexistent

densities. The cross signs on the M5R and EAM-MD free energy curves nearly coincide at the

current graphical scale.
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FIG. 7. (Color online) The ideal contribution to the free energy as a function of the normalized

density. The solid line denotes the ideal contribution from Eq. (8) while the dash line denotes the

approximation from Eq. (10), where at = 0.6917 and bt = 0.0854 [30]. (b) The density profile on the

(100) crystal plane of the BCC solid from the simulation using the 3R and the ideal contribution

represented by the dash line in (a).
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FIG. 8. (Color online) The different fits to the EAM-MD data (solid line) using the combined

rational and polynomial functions. From the label, “2nd Order Poly.” denotes the fits that include

up to k2 in Fourier space and “4th Order Poly.” denotes those including k2 and k4 terms. The

label “Terms” refers to the number of partial fraction terms in Eq. (19).
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Ĉ
(2)
MD

8P

3R2P

0
1

2

0
1

2

0

5

10

x/aBCCy/aBCC

1
+

n
(x

,y
,0

)

(a) (b)

0
1

2

0
1

2

0

5

10

x/aBCCy/aBCC

1
+

n
(x

,y
,0

)

0
1

2

0
1

2

0
0.05

0.1
0.15

0.2

x/aBCCy/aBCC

1
+

n
(x

,y
,0

)

(c) (d)

FIG. 9. (Color online) (a) The comparison between the 8P and the 3R2P. The solid line denotes

the EAM-MD data. (b)-(c) The density profiles on the (100) crystal plane of the BCC solid at

the solid-liquid coexistence from the PFC simulations using the 3R2P (b) and the 8P (c). (d) The

difference between the density profiles of the 3R2P and 8P PFC simulations, where the profile of

8P PFC is subtracted from that of 3R2P PFC.
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FIG. 10. (Color online) (a) The difference between the solid free energy densities calculated from

the M5R CDFT simulations using the CIJ/SIJ method and the numerically converged reference

value. The reference value is calculated from the M5R CDFT simulation using the Fourier spectral

method at a fine grid spacing of ∆h = aBCC/256. (b) The plot of n(r) showing the interface

between liquid and BCC solid from the M5R CDFT simulation using the CIJ/SIJ method.
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