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Electronic and ionic structures of warm and hot dense matter
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The results of a numerical implementation of the recent average atom model including ion-ion
correlations of Starrett and Saumon, Phys. Rev. E, 85, 026403 (2012), are presented. The solution
is obtained by coupling an average atom model to a two-component plasma model of electrons and
ions. The two models are solved self-consistently and results are given in the form of pair distribution
functions. Ion-ion pair distribution functions for hydrogen, carbon, aluminum and iron are compared
to quantum and Thomas-Fermi molecular dynamics simulations as well as path-integral Monte Carlo
calculations, and good agreement is found for a wide variety of plasma conditions in the warm and
hot dense matter regime.

PACS numbers: 52.27.Aj, 52.25.Jm, 52.27.Gr, 61.20.Gy

I. INTRODUCTION

Accurate modeling of hot and warm dense matter is important for understanding the cores of giant planets [1],
inertial confinement fusion [2], dense stars [3], and for simulating recent experiments in X-ray absorption near-edge
spectroscopy (XANES) [4–6], X-ray Thompson scattering (XRTS) [7, 8] and Ionization Potential Depression (IPD)
[9]. The most powerful methods to model warm dense matter are based on ab initio computer simulations such
as quantum and orbital-free (or Thomas-Fermi) molecular dynamics (MD), which are based on density functional
theory (see for example [10–13]). The quantum MD method is typically limited to low temperatures (but see [14]
for some exceptions to this rule) due to increasingly prohibitive computational demands at higher temperatures. The
orbital-free MD method can be used at high temperatures, but is still computationally expensive and is inaccurate
at low temperatures. A drawback of orbital-free methods is that electronic wave functions are not available for the
calculation of electronic transport properties [14]. Another simulation method is path-integral Monte Carlo (PIMC)
[15], which is also computational expensive and is so far limited to high temperatures and low-Z elements such as H,
He and C [16].
Among more approximate methods to model dense ionized matter, average atom models have been quite popular.

They have proved to be accurate enough to be useful while being computationally much more expedient. This last
point is their central advantage over ab initio methods as they can be used to create large tables of material properties
over a wide range of plasma conditions. This computational economy is principally the result of the assumption that
the plasma is spherically symmetric about a central, fixed nucleus, which allows the angular integrals to be carried
out analytically. There are however many different average atom models that exploit this approximation. Perhaps
the most popular and successful are the Thomas-Fermi cell model [17–19] and its quantum mechanical counterpart
[20, 21]. Both consider an average atom at the center of a spherical cavity whose radius is the ion-sphere radius.
Recently, an average atom model was formalized using density functional theory and the integral equations of fluid

theory [22], going beyond the concept of an atom in a spherical cavity by determining the ion-ion pair distribution
function self-consistently, and solving for the electronic response in the field created by the fixed central nucleus
and the spherically averaged distribution of surrounding ions. In [22] it was suggested that the nucleus centered
system could be solved by coupling it to an ion-centered system, which allows the electron-ion and ion-ion local field
corrections to be determined. However, numerical experiments have revealed that this method is accurate only for
very weakly coupled systems. In the present paper an alternative method for determining the local field corrections
is presented. The nucleus centered system (the average atom model) is coupled to a two-component plasma model,
consisting of classical ions and quantum electrons. By defining a neutral pseudo-atom [23–25] within the average
atom model, the quantum Ornstein-Zernike relations [26] for the two-component plasma model (TCP) are closed.
This approach has proved to be much more successful. The TCP model is a generalization of the well studied one-
component plasma model (OCP) (see, for example [27–29]). In the TCP model classical ions interact with each
other and with a responding quantum electron fluid that screens the interactions between the ions and makes the
plasma electrically neutral. This is in contrast to the OCP model where classical ions interact with each other in a
neutralizing, rigid (non-responsive) background of electrons. Numerical comparisons between this TCP and the OCP
are presented here.
The main goals of this paper are to present the coupling of the average atom model to the two-component plasma

model and to compare numerical results in the form of ion-ion pair distribution functions to those from ab initio
simulations. Results are presented for several elements over a wide range of plasma densities and temperatures. The
inputs to the model are the nuclear charge Z, the temperature of the plasma T = 1/β and the ion particle density n0

I .
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The ion-ion pair distribution function of warm dense matter (and the closely related structure factor) has been
the subject of much interest recently in the context of XRTS experiments where it plays an essential role in the
interpretation of the scattered line spectrum [8, 30]. A variety of approximations to the structure factor are in
use, including hyper-netted chain approximation of fluid theory with interaction potentials that are not determined
consistently within the model [31], or that are based on the linear response formalism coupled to charged hard spheres
[30], or even based on simple fits [32]. The model presented here should prove useful in the design and analysis of
XRTS experiments. Moreover, the ion-ion interaction potential found within this model can be used to calculate
thermal and DC conductivities [33], which are of interest for inertial confinement fusion experiments [34], as well as
diffusion coefficients.
In section II the general theory of the average atom model is reviewed. This is unchanged from that of [22].

However, the notation can now be simplified because the ion centered system is no longer considered, and the theory
is developed using the free energy as well as the intrinsic free energy. In section III the two-component plasma model
is presented and its coupling to the average atom model is shown for both quantum mechanical and semi-classical
treatment of electrons. In section IV calculations are presented for hydrogen, carbon, aluminum and iron in the hot
and warm dense matter regimes and compared to quantum and orbital-free MD simulations, PIMC simulations, and
the OCP model as well. A summary and conclusions are presented in section V. Three important issues are presented
in appendices. The first discusses the mapping of the two-component plasma quantum Ornstein-Zernike equations to
an effective one component system which is used in the numerical implementation of the model. The second defines a
simplified version of the model based on the ion sphere with a fixed step-function pair distribution function, and the
third describes a method to estimate the broadening of bound states due to dense plasma effects. Unless otherwise
stated, atomic units are used throughout (h̄ = me = e = 1).

II. DERIVATION OF THE AVERAGE ATOM MODEL

For a mixture of classical ions and quantum mechanical electrons in a large volume V , the grand potential Ω is
related to the free energy F by

Ω = F − µeNe − µINI , (1)

where µe and µI are the electronic and ionic chemical potentials, respectively, Ne and NI are the number of electrons
and ions in the plasma respectively. The free energy can be separated into three components

F = F id + F el + F xc (2)

where F id is the ideal, non-interacting part, F el includes all electrostatic interactions and F xc is the exchange and
correlation part. Another way to write the grand potential is in terms of the intrinsic free energy F [22]

Ω = F − µeNe − µINI +

∫

V

drVe(r)ne(r) +

∫

V

drVI(r)nI(r) (3)

where Ve is the external potential that couples to the electrons in the plasma with particle density ne(r), and similarly
VI is the external potential that couples to the ions with particle density nI(r). The intrinsic free energy can be written
in two components

F = F id + Fex (4)

where Fex is the excess, which includes all but the non-interacting contributions. With these definitions,

F = F +

∫

V

dr[Ve(r)ne(r) + VI(r)nI(r)] (5)

and

Fex = F el + F xc −
∫

V

dr[Ve(r)ne(r) + VI(r)nI(r)]. (6)

The ideal free energy can be further separated into electron and ion terms

F id = F id
e + F id

I . (7)
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A. Ideal ion free energy

For a system of volume V , average ion density n0
I and temperature T = 1/β the ideal free energy of the classical

ions is

F id
I [nI(r)] =

1

β

∫

V

dr nI(r)
(
ln |Λ3nI(r)| − 1

)
(8)

where Λ is the thermal de Broglie wavelength of an ion of mass M

Λ =

(
2πβ

M

) 1

2

. (9)

The ion chemical potential is

µI = µid
I + µex

I =
1

β
ln |Λ3n0

I |+ µex
I , (10)

and the ion particle density is

nI(r) = n0
I exp[−βV eff

I (r)], (11)

where V eff
I (r) is the effective potential in which the ions move, which will be specified later.

B. Ideal non-relativistic quantum mechanical electron free energy

Non-relativistic quantum mechanical electrons can be described with an effective one-electron Schrödinger equation
with an effective potential V eff

e (r)
[
T̂ + V eff

e (r)
]
ψi(r) = ǫiψi(r), (12)

where ǫi are the eigenenergies, ψi(r) are one-electron wave functions (properly normalized according to the boundary

conditions imposed; see [22] for the average atom normalization), and T̂ = − 1
2∇2 is the kinetic energy operator. The

ideal part of the free energy is

F id
e [ne(r)] = 2

∫

V

dr
∑

s∈B

[
gsψ

⋆
s (r)T̂ ψs(r)− TS(gs)|ψs(r)|2

]

+2

∫

V

dr
1

(2π)3

∫
dk
[
gk

(
ψ⋆
k(r)T̂ψk(r)

)
− TS(gk)|ψk(r)|2

]
, (13)

where the mean field entropy is a function of the state occupation factor

S(g) = − [g ln g + (1− g) ln(1 − g)] (14)

The first term in (13) is the contribution from bound states (B), the second term is the contribution from continuum
states. The states are occupied according to Fermi-Dirac occupation factors

gi =
1

exp(β(ǫi − µid
e )) + 1

(15)

where i = s, k and µid
e is the ideal part of the electron chemical potential. The electronic density is given by

ne(r) = 2
∑

s∈B

gs|ψs(r)|2 +
2

(2π)3

∫
dk gk|ψk(r)|2. (16)

For average atom models in which the potential V eff
e (r) is spherically symmetric and short-ranged, this electron

density is written in a form more useful for numerical evaluation by separating the electron density into bound and
continuum densities [35],

ne(r) = nb
e(r) + nc

e(r) (17)
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where

nb
e(r) =

∑

n,l∈B

gn
2(2l+ 1)

4π

∣∣∣∣
yn,l(r)

r

∣∣∣∣
2

(18)

and

nc
e(r) =

∞∫

0

dǫ gk

∞∑

l=0

2(2l+ 1)

4π

∣∣∣∣
yk,l(r)

r

∣∣∣∣
2

, (19)

where the wave functions ψi have been expanded in a complete set of spherical harmonics and the angular integrals
evaluated analytically. yi(r) is the radial wave function and n and l are the principal and orbital angular momentum
quantum numbers, respectively.

C. Ideal semi-classical Thomas-Fermi electron free energy

If the electrons are treated in the semi-classical Thomas-Fermi approximation, the ideal free energy is

F id
e [ne(r)] = 2

∫

V

dr
1

(2π)3

∫
dk
[
ǫkg

TF
k (r)− TS(gTF

k (r))
]

(20)

where

gTF
k (r) =

1

exp(β(ǫk + V eff
e (r)− µid

e )) + 1
, (21)

and ǫk = k2/2. For numerical evaluation it is useful to write (20) as [36]

F id
e [ne(r)] =

∫

V

[
ne(r)

Φ(r)

β
− 2

3 β
cTF I3/2(Φ(r))

]
dr (22)

where

cTF ≡
√
2

π2β3/2
. (23)

The electronic density is then given by

ne(r) = cTF I1/2(Φ(r)), (24)

where Ij are Fermi integrals,

Ij(x) =

∞∫

0

yj dy

exp(y − x) + 1
. (25)

For average atom models where the interaction potential is spherically symmetric and goes to zero far from the origin
the function Φ(r) can be written

Φ(r) = β(µid
e − V eff

e (r)) (26)

D. The average atom model

Up to now the formulation is valid for any given external potential. The average atom model is defined by letting
the external potential be created by a nucleus of charge Z fixed at the origin. Then the grand potential (3) becomes

Ω = F − µeNe − µINI +

∫

V

dr V C
Ne(r)ne(r) +

∫

V

dr V C
NI(r)nI(r) (27)



5

where V C
Ne(r) = −Z/r and V C

NI(r) = ZZ⋆/r are the Coulomb interactions between the nucleus and the electrons, and
between the nucleus and ions of charge Z⋆, respectively.
The excess intrinsic free energy Fex can be expanded in a functional Taylor series about a reference state, chosen

to be an interacting plasma of ions and electrons, where the external potentials are zero, and the uniform electron
and ion densities are n0

e and n0
I respectively. To second order in the densities, the expansion is [22]

Fex =

∫

V

fex
[
n0
e, n

0
I

]
dr + µex

e

∫

V

∆ne(r)dr + µex
I

∫

V

∆nI(r)dr

− 1

β

∫

V

∫

V

CIe(| r − r
′ |)∆ne(r)∆nI (r

′)drdr′

− 1

2β

∫

V

∫

V

CII(| r − r
′ |)∆nI(r)∆nI(r

′)drdr′

− 1

2β

∫

V

∫

V

Cee(| r − r
′ |)∆ne(r)∆ne(r

′)drdr′ (28)

where fex is the excess free energy density of the reference state,

µex
j ≡ δFex

δnj(r)

∣∣∣∣
Vj=0

=
∂fex

∂n0
j

(29)

and

∆nj(r) = nj(r)− n0
j (30)

for j = e, I. Neglecting higher order terms in (28) amounts to the hyper-netted chain (HNC) approximation, where
bridge functions are neglected. The Cij are direct correlation functions and are properties of the reference state. They
are defined by

−1

β
Cij(| r − r

′ |) ≡ δ2Fex

δni(r)δnj(r′)

∣∣∣∣
Vi=0

(31)

and can be written in terms of a Coulomb interaction V C
ij (r) and an exchange and correlation interaction (in Fourier-

space)

Cij(k) = −βV C
ij (k) + C̃ij(k) (32)

where

C̃ij(k) = βV C
ij (k)Gij(k) (33)

which defines the local field corrections (LFC) Gij(k). Using (32), (28) and (27) the grand potential and free energy
can be written in the alternative form of (1) and (2), where the purely Coulombic free energy is

F el =

∫

V

drV C
Ne(r)ne(r) +

∫

V

drV C
NI(r)nI(r)

+

∫

V

∫

V

V C
Ie(| r − r

′ |)ne(r)nI(r
′)drdr′

+
1

2

∫

V

∫

V

V C
II (| r − r

′ |)nI(r)nI(r
′)dr′dr

+
1

2

∫

V

∫

V

V C
ee (| r − r

′ |)ne(r)ne(r
′)dr′dr (34)

and the exchange-correlation term is

F xc = − 1

β

∫

V

∫

V

C̃Ie(| r − r
′ |)
(
∆ne(r) − nion

e (r)
)
∆nI(r

′)dr′dr

− 1

2β

∫

V

∫

V

C̃II(| r − r
′ |)∆nI(r)∆nI(r

′)dr′dr

+F xc
ee [ne(r)] + F c

Ie[n
0
e, n

0
I ] + F c

II [n
0
I ]. (35)
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The LFC of electron-electron exchange and correlations are evaluated within the local density approximation. Also,
as in [22], electron-ion correlations for ion core states (with electron density nion

e (r)) have been explicitly set to zero
by removing these states in equation (35). Note that equation (34) is written in terms of nj(r) (j = e, I) rather than
∆nj(r). This is a more intuitive form for the electrostatic energy, however it is easy to show that both forms are
equal.
Global neutrality requires that the total charge of the system be zero, then

Z =

∫

V

(ne(r)− Z⋆nI(r)) dr. (36)

Since the interaction of the nucleus with the surrounding electrons and ions is screened, it will be short-ranged. The
electronic and ionic densities will therefore go to their free particle limits far from the origin,

lim
r→∞

ne(r) = n0
e (37)

lim
r→∞

nI(r) = n0
I (38)

therefore the AA ion charge is

Z⋆ =
n0
e

n0
I

(39)

Note that this does not determine Z⋆ since n0
e is also unknown a priori. The latter is related to the ideal part of the

electron chemical potential µid
e [22] by setting V eff

e (r) = 0 in equation (23):

n0
e = cTF I1/2(βµ

id
e ). (40)

For the calculations presented here µid
e is calculated with a model presented in appendix B. In principle µid

e can be
determined within the full model, either using an additional neutrality condition [37] or through a variational principle
[22]. This will be addressed in a future publication.

E. Minimization of the grand potential

Given the above approximation to the grand potential Ω, we follow the principles of density functional theory by
minimizing Ω with respect the to particle densities:

δΩ

δne(r)
= 0 (41)

and

δΩ

δnI(r)
= 0. (42)

Differentiating the various contributions to Ω, we have

δF id
e

δne(r)
= µid

e − V eff
Ne (r) (43)

which is correct for both the quantum and semi-classical formulas (13) and (20),

δF id
I

δnI(r)
= µid

I − V eff
NI (r), (44)

and

δF el

δne(r)
= V el

Ne(r) (45)

δF el

δnI(r)
= V el

NI(r) = −Z⋆V el
Ne(r) (46)



7

where

V el
Ne(r) = V C

Ne(r) +

∫
dr′

(ne(r
′)− Z⋆nI(r

′))

| r − r′ | , (47)

and

δF xc

δne(r)
= V xc

ee [ne(r)] + V e,c
Ie [nI(r)], (48)

δF xc

δnI(r)
= V c

II [nI(r)] + V I,c
Ie [ne(r)], (49)

where

V xc
ee [ne(r)] ≡ δF xc

ee

δne(r)
, (50)

V e,c
Ie [nI(r)] ≡ − 1

β

∫
C̃Ie(| r − r

′ |)∆nI(r
′)dr′, (51)

V I,c
Ie [ne(r)] ≡ − 1

β

∫
C̃Ie(| r − r

′ |)
(
∆ne(r

′)− nion
e (r′)

)
dr′ (52)

and

V c
II [nI(r)] ≡ − 1

β

∫
C̃II(| r − r

′ |)∆nI(r
′)dr′. (53)

Applying the variational principle (41), the effective electron-nucleus potential is found to be

V eff
Ne (r) = V el

Ne(r) + V xc
ee [ne(r)] − V xc

ee [n0
e] + V e,c

Ie [nI(r)] (54)

and (42) yields the effective ion-nucleus potential

V eff
NI (r) = −Z⋆V el

Ne(r) + V c
II [nI(r)] + V I,c

Ie [ne(r)]. (55)

This defines the average atom model. Equations (54) and (55) are solved together with equations (11) and (17) (or

equation (24) for semi-classical electrons) with V eff
I (r) = V eff

NI (r) and V eff
e (r) = V eff

Ne (r). The inputs are Z, n0
I and

β (with µid
e given by the corresponding ion-sphere model defined in appendix B). Approximations are also required for

the electron exchange and correlation potential V xc
ee (equation (50)) and for the LFC that appear in the correlations

potentials V e,c
Ie , V I,c

Ie , and V c
II . V xc

ee is chosen to be the zero-temperature Dirac exchange functional [38] which is
sufficient for the present purposes. Although more sophisticated approximations are available, a systematic study of
the quantitative effect of the exchange-correlation functional on the model is beyond the scope of this paper. The
ion-ion and ion-electron LFC’s are found by coupling this average atom model to a two-component plasma model,
which is described in the next section.

III. THE TWO COMPONENT PLASMA MODEL

The electron-ion and ion-ion LFC’s (GIe and GII , respectively) that appear in the correlation potentials (51),
(52) and (53) are evaluated in the framework of the integral equation theory of interacting fluids. The quantum
Ornstein-Zernike (QOZ) equations [22, 26, 39] are solved for a system of classical ions or nuclei of average density n0

I
and quantum electrons of average density n̄0

e. The reason for introducing a different electron density n̄0
e will become

clear below. In Fourier space

hII(k) = CII(k) + n0
ICII(k)hII(k) + n̄0

eCIe(k)hIe(k) (56)

hIe(k) = −χ
0
ee(k)

n̄0
eβ

[
CIe(k) + n0

ICIe(k)hII(k) + n̄0
eCee(k)hIe(k)

]
. (57)
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The hij(r)’s are pair correlation functions and the hij(k) their Fourier transform:

hij(k) =
4π

k

∫
∞

0

rhij(r) sin kr dr. (58)

The quantum nature of the electrons is embodied in χ0
ee(k), which is the response function for a homogeneous, non-

interacting quantum mechanical electron fluid. In the classical limit χ0
ee(k) = −n̄0

eβ, and the classical Ornstein-Zernike
equations for a binary mixture are recovered [40]. At zero temperature χ0

ee is the well-known Lindhard function [41]
which has also been extended to finite temperatures [42].
This system of ions and electrons is a different model for the plasma than the average atom model. Here a system

of identical point ions with an accompanying cloud of screening electrons interact with each other. In the average
atom model a single nucleus is surrounded by a spherically averaged system of interacting electrons and ions. It is
assumed that the LFC’s obtained by solving the QOZ relations are the correct LFC’s for the average atom model.
This is a reasonable assumption since both approaches model the same plasma under the same conditions and, as will
be shown below, they are coupled in a single model.
The QOZ system can be thought of as a two component (electrons and ions) generalization of the well studied one-

component plasma (OCP) model (see for example [27–29]). The OCP is an idealized plasma model where classical
ions interact with each other with a Coulomb potential, in a rigid (non-responding) background of negative charge
that neutralizes the system. In the two component plasma model (TCP), the classical ions interact with the quantum
mechanical (or semi-classical) electrons which in turn respond to the presence of the ions. The TCP model based
on the QOZ equations (56) and (57) recovers the OCP formulation in terms of integral equations by setting the
electron-ion interaction to zero (CIe = 0).
The QOZ’s (56) and (57) constitute two equations with five unknowns (hII , hIe, CII , CIe and Cee). Three additional

relations are required to solve for the structure of the TCP model. For the calculations presented in this paper the
direct correlation function Cee is obtained from the jellium model [39]. This approximation greatly simplifies the
general problem at the cost of introducing a new difficulty. Since the jellium is a model for an interacting quantum
fluid of electrons in a uniform, neutralizing positive background charge, it is a poor approximation for a system where
electrons can form bound states with nuclei and thus correlate very strongly with the positions of the nuclei. Therefore,
the jellium model approximation for Cee is not appropriate in the QOZ relations for a mixture of nuclei and electrons,
since in general this would involve the formation of highly correlated bound states. This forces the consideration of
different TCP model that consists of a mixture of ions and screening electrons, where the most strongly correlated
(e.g. bound) electrons are incorporated in the ion (to be defined) and the direct correlation function of the remaining
electrons, Cee can be approximated with that of the jellium. [58].
A second expression is provided by the so-called closure relation for the ions

gII(r) ≡ hII(r) + 1 = exp(−βV eff
II (r)) (59)

where

−βV eff
II (r) = −βV C

II (r) + hII(r) − CII(r) +BII(r), (60)

gII(r) is the ion-ion pair distribution function and BII(r) is the ion-ion bridge function, which includes all ion-ion
correlations beyond two-particle correlations. The exact bridge function is unknown in general but can be approxi-
mated in several ways [40, 43–46]. For point ions of charge Z̄ = n̄0

e/n
0
I , V

C
II (r) = Z̄2/r is the Coulomb interaction.

For the calculations presented here, the bridge function should not be too important and it is set to BII(r) = 0. This
is the hyper-netted chain (HNC) approximation. The bridge function will become important as ion-ion correlations
become very strong at lower temperatures (T ∼< 1 eV), such as in liquid metals.
The final relation (the ion-electron closure relation) is provided by coupling the QOZ relations to the average atom

model. There are several ways to achieve this. The method proposed in [22] relies upon calculating the electron
distribution around a point ion, whose charge is given by the average atom ion charge Z⋆, which is then used to
give hIe. This turns out to be a poor approximation except for very weakly coupled, fully ionized cases. Indeed, for
cases where bound states are present, it is often impossible to find a solution using that method. It fails because
the electron distribution around a point ion is in general a poor approximation to the electron distribution around
a nucleus with bound states which constitutes the ion. Moreover, the constraint that the AA ion charge Z⋆ be the
same as the TCP ion charge Z̄ is both unnecessary and generally unjustified on physical grounds. The electron-ion
closure relation used in [26] does take into account the effect of the bound states and nucleus which constitute the
ion on hIe, but again over-constrains the model by imposing Z⋆ = Z̄. However, there is a much better approximation
which we now describe.
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The QOZ’s can be rewritten [47]

SII(k) = 1 + n0
IhII(k) =

1 + χ0
ee(k)Cee(k)/β

D(k)
(61)

SIe(k) =
√
n̄0
en

0
IhIe(k) = −

√
n0
I

n̄0
e

χ0
ee(k)

CIe(k)

βD(k)
(62)

χee(k) = χ0
ee(k)

(1− n0
ICII(k))

D(k)
(63)

where

D(k) ≡ (1− n0
ICII(k))(1 + χ0

ee(k)Cee(k)/β) + n0
Iχ

0
ee(k)|CIe(k)|2/β (64)

and χee(k) is the response function of the interacting electrons. The Sij are the static structure factors [39], which
are related to the pair correlation functions

Sij(k) = δij +
√
n0
i n

0
jhij(k). (65)

From (61) and (62)

SIe(k) =

√
n0
I

n̄0
e

SII(k)n
scr
e (k) (66)

which defines an electron density

nscr
e (k) ≡ −χ0

ee(k)CIe(k)/β

1 + χ0
ee(k)Cee(k)/β

(67)

Rewriting (66) in real space and in terms of pair distribution functions gij(r) ≡ hij(r) + 1,

n̄0
egIe(r) = nscr

e (r) + n0
I

∫
dr′gII(|r − r

′|)nscr
e (r′) (68)

and

n̄0
egIe(r) = n̄e(r) (69)

n0
IgII(r) = n̄I(r) (70)

where n̄e(r) is the electron density of all screening electrons (for all ions), and n̄I(r) is the ionic density, it is seen that
nscr
e can be interpreted as the screening cloud of electrons that surrounds each ion in the plasma [26]. New symbols

for the ion and electron densities in the TCP model distinguish them from those of the average atom system. Using
the Percus trick [48], the latter are given by

ne(r) = n0
IZgNe(r) (71)

nI(r) = n0
IgNI(r). (72)

Equation (71) defines gNe(r) from the electron density ne(r) obtained by (17). These densities minimize the grand
potential (equations (41) and (42)). In general gNI(r) 6= gII(r) and gNe(r) 6= gIe(r). The electron density n̄e(r) includes
all electrons surrounding all ions in the plasma, whereas in the average atom system ne(r) includes the electrons
surrounding the central nucleus as well as the free electrons which surround the ions. This is a key distinction: n̄e(r)
represents electrons in the weaker field due to the ions, while ne(r) includes electrons in the stronger field surrounding
the central nucleus and field-free electrons surrounding the ions. The consequence is that n̄0

e 6= n0
e in general. n̄0

e is
given by

∫
dr nscr

e (r) =
n̄0
e

n0
I

= Z̄. (73)

As already noted, this distinction was not exploited in [22] or in [26].
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It is now necessary to define what constitutes an ion in the AA and TCP models, which is to a certain extent
arbitrary. We use the neutral pseudo-atom approach [23–25] in which a pseudo-atom electron density npa

e (r) is found
by solving for the electronic density in the full average atom system, with some distribution of ions, and removing from
it the electron density for a system with the same distribution of ions, but no central nucleus, next

e (r) (see appendix
B.)

npa
e (r) = ne(r) − next

e (r). (74)

Note that by definition

∫
dr npa

e (r) = Z. (75)

The screening cloud of electrons is defined by removing the electron density due to the ion bound states nion
e (r) from

npa
e (r)

nscr
e (r) = npa

e (r) − nion
e (r) (76)

The problem is now to define nion
e (r). For the Thomas-Fermi treatment of the electrons we have used the definition

of [49]

nion
e (r) = cTF

(
I1/2[β(µ

id
e − V eff

Ne (r))] − J1/2[β(µ
id
e − V eff

Ne (r)),−βV eff
Ne (r))]

)
for r < R0

= 0 for r > R0 (77)

where R0 is the first zero of V eff
Ne (r) and J1/2 is the incomplete Fermi integral

J1/2(x, a) =

∞∫

a

y1/2 dy

exp(y − x) + 1
. (78)

Thus, nion
e (r) includes all electrons with negative energy that are within r ≤ R0. Electrons with negative energy and

r > R0 are attributed to the other ions in the system. For the quantum case the electron density of an ion is defined
as

nion
e (r) = 2

∑

s∈B

gs|ψs(r)|2M(ǫs) f
cut(r), (79)

where f cut(r) is a radial cut-off function [23]

f cut(r) =
1 + e−1/c

1 + e(r−R)/(cR)
(80)

and R the ion sphere radius and c is a constant which is taken to be c = 0.05. The purpose of this cut-off function
is to remove long range tails in the bound state electron density from the screening cloud nscr

e . As discussed in [23],
these long range tails should be attributed to the non-central ions. This is effectively the same physical idea as the
cut-off radius R0 in the definition of the TF ion density (77). M(ǫ) is a level occupation fraction introduced to ensure
a continuous definition for nion

e (r) when a bound state ionizes or re-combines. In the AA model bound states are
discrete eigenvalue states. In a real plasma bound states are broadened in energy as they move closer to the continuum
of electrons, the broadening is caused by dense plasma effects: the overlap of wave functions and the non-spherical
symmetry of the plasma around an ion, both of which are missing from the AA model. This effect can be emulated
in a simple way by giving each bound state of eigenenergy ǫ < 0 a weight 0 ≤ M(ǫ) ≤ 1 that gives the probability
that the state has moved into the continuum (ǫ ≥ 0) and that is implicitly a function of density and temperature.
Assuming that the broadening takes a Gaussian shape with a FWHM of γ, the broadening width γ is estimated from
the average collision time of electron scattering states (appendix C). The weight M(ǫ) is then defined as the fraction
of the broadened Gaussian profile that is still “bound”, i.e. with ǫ < 0:

M(ǫ) ≡ erf

(
−2

√
ln 2ǫ

γ

)
(81)
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T=2 eV 15 eV

state ǫ M(ǫ) ǫ M(ǫ)

1s −54.6 1.00 −54.9 1.00

2s −3.41 1.00 −3.60 1.00

2p −2.04 1.00 −2.23 1.00

3s −0.0125 0.134

γ 0.0698 0.174

TABLE I: Eigenvalues ǫ, weighting factors M(ǫ), and broadening widths γ for Al at 2.7 g/cm3 and two temperatures. The 3s
state is not bound at T = 2 eV. ǫ and γ are in Hartree.

where erf is the error function. For a deeply bound state, −ǫ >> γ and M → 1 and the broadening has no effect. For
a state that just entered the continuum, M(ǫ = 0) = 0 and it no longer contributes to nion

e (r). The electron density of
an ion defined by equation (79) is a continuous function of density and temperature as bound states gradually move
into the continuum or recombine with the ion. These corrections to nion

e (r) only affect the results under conditions
where a state crosses into the continuum. Examples for eigenvalues, broadening widths and the corresponding state
occupation factor for solid density aluminum are given in table I. At temperatures of 2 eV and 15 eV the core states
1s, 2s, and 2p, are deeply bound and the corresponding occupation factor M(ǫ) = 1. These states fully contribute to
nion
e (r). However, at 2 eV the 3s state is unbound, whereas it is weakly bound at 15 eV with γ >> |ǫ|. Correspondingly
M(ǫ3s) < 1 and the state is partially bound.
The screening densities nscr

e (r) for these two cases are shown in figure 1, for both the quantum-mechanical and
semi-classical treatments of the electrons. The oscillations seen in the quantum calculations near the origin arise from
the orthogonality of the free states contributing to nscr

e (r) to the bound states in nion
e (r). The small bump at r ∼ 1.1R

in the 15 eV calculation is a consequence of the weakly bound 3s state (Table I). The Friedel oscillations that are
clearly seen at 2 eV in the quantum case disappear at 15 eV, as expected. Friedel oscillations do not appear in the
semi-classical calculations. While the semi-classical nscr

e (r) is a poor approximation of the quantum result at 2 eV, it
becomes a more reliable approximation at higher temperature.

IV. RESULTS

In summary, an average atom (AA) model in which the distribution of ions is calculated self-consistently with the
electron distribution has been derived. The AA model requires local field corrections (LFC’s) which describe the
correlations between the electrons and ions and between the ions and ions. These LFC are obtained by coupling
the AA model to a two component plasma (TCP) model. The AA model provides a closure relation for the TCP
model. In turn the TCP model provides the LFC’s for the AA model. The equations for the two models are solved
self-consistently by numerical iteration until convergence is achieved. The numerical solution of this set of coupled,
highly non-linear equations is a non-trivial exercise; details will be given in a future publication. The system of
equations was solved for a wide range of densities, temperatures and elements, treating the electrons both quantum
mechanically and semi-classically. The results are presented in terms of the ion-ion pair distribution function gII(r)
that can be readily compared to those obtained from ab initio simulations.
In figure 2, gII(r) for aluminum at solid density is shown for T = 2−15 eV. Results obtained with the quantum two-

component plasma model (Q-TCP) should be compared to the quantum molecular dynamics simulations (Q-MD) [50].
For all temperatures the agreement between these models is very good. As expected, the TCP model with Thomas-
Fermi electrons (TF-TCP) agrees with the quantum mechanical calculations at the higher temperatures (T ≥ 10 eV),
but is progressively worse at lower temperatures. It is well known that the TF approximation smooths the electronic
shell structure of bound states. The latter becomes important for the lower temperature cases presented in figure
2, as demonstrated in figure 1. It is interesting that the 3s state, which is weakly bound and partially occupied at
T = 15 eV (see table I) does not detrimentally affect the agreement of gII(r) for the quantum cases, indicating that
the definitions of the occupation fraction (81) and cut off function (80) are reasonable. The 3s state is also partially
bound at 10 eV (M(ǫ3s) = 0.097) where a good agreement is also found.
The one-component plasma (OCP) is a well-studied, limiting model for dense plasmas whose structure factor is

often used as an approximation for more complex ionized fluids. The pair distribution function gII(r) for the OCP
(figure 2) was computed in the HNC approximation (as are the Q-TCP calculations) using the method of [27]. The
OCP is characterized by a single parameter, the plasma coupling parameter, defined as the ratio of the electrostatic
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FIG. 1: (Color online) Screening electron density nscr

e (r) for Al at solid density (2.7 g/cm3) and two temperatures. Solid lines:
quantum-mechanical electrons; dashed lines: semi-classical (Thomas-Fermi) electrons. R = 2.99 a.u. is the ion sphere radius.

potential energy of two neighboring ions of charge Z to their kinetic energy

ΓOCP =
Z2

RkT
, (82)

where R is the ion sphere radius. The OCP calculations presented here use the ion charge Z = Z̄ from the Q-TCP
calculation (equation (73)) given in table II. This allows us to isolate the effect of electron screening, present in
the TCP model but not in the OCP model. In comparison with the Q-TCP, the first peak of the OCP gII(r) is
systematically higher and shifted to a larger radius. The ion-ion interaction in the OCP models is purely Coulombic

which is everywhere more repulsive than the screened V eff
II (r) of the Q-TCP model. Defining a TCP coupling

parameter in analogy with equation (82)

ΓTCP =
V eff
II (r = R)

kT
, (83)

the relative magnitude in ΓTCP to ΓOCP gives an indication of the importance of screening effects. The values of these
coupling parameters are given in table II for the cases presented in figure 2. At 2eV ΓOCP /ΓTCP = 8.12, while at
15eV ΓOCP /ΓTCP = 4.57, indicating that screening is more significant at lower T , as expected. However the change in
this ratio with temperature is relatively weak, and so the error in neglecting electron screening in the OCP is roughly
constant, this explains why the shift seen in the OCP gII(r) relative to the TCP gII(r) does not change significantly
over the temperature range seen.
The nucleus-ion pair distribution function gNI(r) (equation (72)) of the average atom model with quantum me-

chanical electrons (Q-AA) is also shown in figure 2. As expected, it is not identical to gII(r), but similar. Typically it
shows less correlation (peak heights are suppressed) than the corresponding Q-TCP calculation, and becomes closer
to gII(r) for higher temperatures. Both effects are explained by the fact that, as seen in table II, the average atom
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T (eV) Z⋆ Z̄ ΓOCP ΓTCP

2 1.98 3.00 41.0 5.05

6 2.11 3.00 13.6 2.04

10 2.24 3.00 8.14 1.60

15 2.51 3.18 6.12 1.34

TABLE II: Parameters corresponding to the calculations shown in figure 2 for Al at 2.7g/cm3 (n0

I = 8.93 × 10−3).

ion charge is less than the TCP ion charge (Z⋆ < Z̄), and that for higher temperatures the two ionic charges become
more similar (table II). These two ionic charges are not expected to be the same as they correspond to different
electronic densities, as discussed in section III. Moreover, the Q-AA pair distribution gNI(r) is not expected to be
the same as the Q-TCP or Q-MD gII(r) as they represent distribution functions around a nucleus and around an ion,
respectively. This distinction is highlighted in figure 3, where differences in pair distribution functions are plotted for
aluminum at solid density and two temperatures. The top panel show the difference between the Q-TCP gII(r) and
the Q-AA gNI(r). The difference decreases with temperature, and is largest in the region in and around the first peak
of gII(r). The bottom panel is the difference in the fully self-consistent Q-TCP gII and the initial guess using the
screening density from the quantum version of the ion sphere model (appendix B). In all the cases studied here, this
simplified model provides a very good guess for gII(r) to initialize the iterative solution of the full Q-TCP model.
Finally for aluminum, ion-ion and nucleus-electron pair distribution functions from the quantum model are shown

in figure 4. For the Q-TCP an all-electron nucleus-electron pair distribution function can be defined as

Zn0
IgNe(r) = npa

e (r) + n0
I

∫
dr′gII(|r − r

′|)npa
e (r′). (84)

This definition of gNe(r) should be compared to gIe(r) (68), which only includes the screening electrons nscr
e (r). For

small radius the Q-TCP gNe(r) becomes large due to the presence of bound states. Oscillations are more pronounced
for the lower temperatures, and are damped for higher temperatures, echoing the behavior of gII(r). Also shown
is the nucleus-electron pair distribution function gNe(r) from the quantum average atom (Q-AA) model (equation
(71)) which highlights the differences with the Q-TCP model. The Q-AA gNe(r) does not asymptotically go to 1, as
the real physically quantity should. While the Q-AA calculation is all electron in the sense that it accounts for Z
electrons around the central nucleus, the electrons belonging to the non-central ions are not explicitly included in the
electron density ne(r). As noted in equation (37) the Q-AA electron density goes asymptotically to the free electron
constant n0

e = Z⋆n0
I 6= Zn0

I and gNe → Z⋆/Z ≤ 1. This is because there are no field-free electrons in the plasma
since far from the central nucleus, electrons move in the field of other ions, as is properly described by the Q-TCP
model. Well inside the ion sphere radius, deeply bound states are not affected by the surrounding plasma and the
two nucleus-electron distribution functions are identical, with significant differences only for r >∼ 2 a.u.
In figure 5, ion-ion pair distribution functions for several density-temperature points along the principal Hugoniot

of iron are compared to Thomas-Fermi molecular dynamics (TF-MD) simulations [13]. These TF-MD calculations
do not include electron-electron exchange and correlation except for the 10 eV case [50]. The TF-TCP results, which
all include exchange and correlations, agree very well with the TF-MD for all cases. In particular, when exchange
and correlations are included for TF-MD (10 eV) the agreement becomes excellent. The Q-TCP results are in good
agreement with the TF-TCP and TF-MD calculations for all cases shown. Only at 10 eV does some difference appear.
Note that Q-MD simulations become computationally prohibitive and impractical for the three highest temperatures
shown.
The gII(r) from the OCP model, with the ion charge taken from the TF-TCP model, is in good agreement with

the other calculations for 1000 eV and 5000 eV. At 100 eV some difference is seen, and for the 10 eV the OCP model
does rather poorly. This is consistent with the results for Al. The agreement of the OCP and TF-TCP models could
be improved by reducing the ion charge in the OCP model, which highlights the role of the rather arbitrary choice of
the ion charge when applying an OCP model to partially ionized warm and hot dense matter where electron screening
is significant. The average atom nucleus-ion pair distribution function gNI(r) with the Thomas-Fermi model of the
electrons (TF-AA) is close to the TF-TCP result for the 1000 eV and 5000 eV cases. For 10 eV and 100 eV a reduction
in correlations in seen.
Calculations for dense hydrogen are shown in figure 6 with the corresponding parameters given in Table IV. The

agreement between the Q-TCP, TF-TCP and Q-MD results is good but not perfect. The relatively small differences
are difficult to explain since this is a relatively simple case where for the quantum case no bound states are present
(nion

e (r) = 0, equation (79)). The OCP agrees well with the Q-MD simulations and, as in the case of Al, the gNI(r)
from the Q-AA model shows slightly weaker correlations than gII(r) in the Q-TCP model. Since hydrogen is fully
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FIG. 2: (Color online) Pair distribution functions gII(r) for Al at solid density (2.7 g/cm3) and T = 2 − 15 eV. The curves
labeled Q-AA shows gNI(r) from the average atom model. The gII(r) of the TF-TCP and Q-TCP are essentially identical at
10 and 15 eV. The Q-MD results are from [50]. R is the ion sphere radius (2.99 a.u.).
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ρ (g/cm3) n0

I T (eV) Z⋆ Z̄ ΓOCP ΓTCP

22.5 0.0360 10 5.85 8.78 112 14.3

34.5 0.0551 100 9.54 11.6 22.4 4.85

39.65 0.0634 1000 20.4 21.7 8.22 3.32

34.37 0.0549 5000 25.1 25.5 2.18 1.35

TABLE III: Parameters corresponding to the calculations shown in figure 5 for Fe along the principal Hugoniot.

ionized at both temperatures, the TF-TCP and Q-TCP models give very nearly identical results. In figure 7 the
corresponding nucleus electron pair distribution functions are shown. Since there are no bound states, gNe(r) does
not rise sharply near the origin but still shows significant screening of the protons by the electrons.
Finally, in figure 8 the Q-TCP and TF-TCP pair distribution functions for carbon are compared to PIMC and

Q-MD calculations [16]. The TF and Q-TCP give nearly identical results. Both the PIMC and Q-MD simulations
show stronger correlations than the Q-TCP model. However, the pair distribution function of the PIMC simulation

T(eV ) Z⋆ Z̄ ΓOCP ΓTCP

5 0.915 1.00 16.85 7.01

172 0.931 1.00 0.490 0.217

TABLE IV: Parameters corresponding to the calculations in figures 6 and 7 for H at 80 g/cm3 (n0

I =7.08).
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FIG. 4: (Color online) Pair distribution functions for aluminum at solid density (2.7 g/cm3). Black (dashed) line: Q-TCP gII(r);
red (solid) line: Q-TCP gNe(r) (equation (84)); green (dash-dot) line Q-AA gNe(r). The ion sphere radius is R = 2.99 a.u.

does not seem to trend asymptotically to 1 at the larger radii shown. It was noted in [16] that these PIMC and Q-MD
simulations use a small number of particles (N = 24) and gII(r) is accurate to <10%, which is enough to explain the
differences seen.

V. CONCLUSIONS

Using the formalism set out in [22], a model for warm and hot dense matter in which the electronic and ionic
structures are calculated self-consistently has been solved numerically. The model couples an average atom (AA)
model for a central ion to a two-component plasma (TCP) model of ions and electrons. The local field corrections
required by the AA model are provided by the TCP model. In turn, the TCP model is closed with electron densities
obtained within the AA model. This method of obtaining the local field corrections is an improvement over the
method proposed in [22]. The coupled equations of the AA and TCP models are solved simultaneously. The inputs to
the model are the nuclear charge Z, the temperature T and the ion particle density n0

I ; there are no free parameters.
The ions are treated classically while the electrons can be treated either semi-classically (Thomas-Fermi model) or
quantum mechanically (with the Schrödinger equation).
The TCP model is relatively easy to understand from a physical point of view, being a mixture of identical, spheri-

cally symmetric ions immersed in a responding quantum electron gas. On the other hand, the average atom model is
defined by a central nucleus surrounded by spherically averaged electron and ion distributions. The surrounding ions
in the average atom model are not the same ions that appear in the TCP model, and have in general a different net
charge and charge distribution. The average atom ions should not be confused with the usual physical picture of an
ion as a nucleus with bound states, surrounded by an interacting cloud of screening electrons. Hence the distinction
between the ion charge in the average atom (Z⋆) and in the TCP (Z̄) models. The recognition of this point lifts
unnecessary restrictions found in earlier models (e.g. [26]) and greatly expands the model’s range of validity. In a
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FIG. 6: (Color online) Ion-ion pair distribution functions gII(r) for hydrogen at 80 g/cm3 and T = 5 eV and 172 eV. The curves
labeled Q-AA shows gNI(r) from the average atom model. The Q-MD data are from [51].

previous attempt to solve a combination of the TF model of an ion with ion-ion correlations (similar in spirit to the
present TF-TCP model) [49], solutions could only be found for weakly coupled plasmas. This contrasts with the
present method where solutions are found even in the strongly coupled regime, and agree very well with TF molecular
dynamics simulations.
Numerical results are presented in the form of ion-ion pair distribution functions. Comparisons to Thomas-Fermi and

quantum molecular dynamics simulations, as well as path-integral Monte Carlo calculations, show good to excellent
agreement for hydrogen, carbon, aluminum and iron over a wide range of conditions in the warm and hot dense matter
regimes. The introduction of an ion-ion bridge function to go beyond the HNC approximation [44] used here should
further improve the agreement and extend the validity of the model to simple liquid metals, where ion-ion correlations
are very strong.
The main advantage of the present model of warm and hot dense matter over ab initio simulations is its relatively

low computational cost. Depending on the physical regime, the solution of the model equations for a single density-
temperature point is 2-3 orders of magnitude faster than quantum MD. At higher temperatures, Q-MD simulations
become computationally impractical while the Q-TCP model remains computationally tractable. The Q-TCP model
can be applied at high temperatures where it recovers the TF-TCP model. Furthermore, the Q-TCP model is an
all-electron model that does not require the calculation of a pseudo-potential, and it is not subject to the statistical
noise inherent to simulations (e.g. figure 8).
The present model is useful for generating pair distribution functions and effective pair potentials which have many

uses, including the analysis of X-ray Thomson scattering experiments [8] and the calculation of resistivities [33], as
well as for fundamental understanding of the behavior of warm and hot dense matter. This model can form the basis
of equation of state calculations and can also be extended to mixtures of ions.
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FIG. 7: (Color online) Ion-ion and nucleus-electron pair distribution functions for hydrogen at 80 g/cm3.
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Appendix A: Reduction to an effective one-component system

Rather than solving the two-component QOZ relations (equations (56) and (57)) in the TCP model directly, the
system is reduced to an effective one-component system [39]. Let us assume that there exists a one-component system
with pair distribution function g(r) identical to that of the full two component system gII(r) and that the two systems
have the same average density n0

I ,

g(r) = gII(r). (A1)

By definition

g(r) = exp(−βV eff (r)) (A2)

and

gII(r) = exp(−βV eff
II (r)) (A3)

where

−βV eff (r) = −βV (r) + h(r)− C(r) +B(r) (A4)

and

−βV eff
II (r) = −βV C

II (r) + hII(r) − CII(r) +BII(r). (A5)

B(r) and BII(r) are bridge functions and h(r) = g(r) − 1 = hII(r). Assuming that

BII(r) = B(r), (A6)

it follows that

βV (r) = βV C
II (r)− C(r) + CII(r). (A7)

The Ornstein-Zernike equation for a one component system is

C(k) + n0
IC(k)h(k) = h(k) (A8)

and for the two component system

CII(k) + n0
ICII(k)hII(k) + n̄0

eCIe(k)hIe(k) = hII(k). (A9)

Since h(r) = hII(r),

C(k)− CII(k) = − χ0
ee(k)CIe(k)

2/β

1 + χ0
ee(k)Cee(k)/β

(A10)

= nscr
e (k)CIe(k) (A11)

where

nscr
e (k) = − χ0

ee(k)CIe(k)/β

1 + χ0
ee(k)Cee(k)/β

(A12)

and

βV (k) = βV C
II (k)− nscr

e (k)CIe(k) (A13)
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This completes the mapping to an effective one-component system. Equation (A13) clearly illustrates the physics of
the ion-ion interaction which is seen to be the sum of the direct Coulomb interaction of point ions and of a screening
potential provided by the electron gas. This last term has the form of a linear response of the electron fluid to an
external potential βCIe(k), which can also be seen as a electron-ion pseudo-potential. It is important to note, however,
that the electron response that is embodied in nscr

e and CIe(k) is computed from the solution of the Schrödinger (or
Thomas-Fermi) equation and is thus highly non-linear. The linear response formalism in a model such as the screened
one-component plasma [42] can be recovered readily from the present model.
The one-component Ornstein-Zernike equation (A8) and the closure relation (equation (A2)) are solved with this

effective one-component potential for the pair correlation function h(r) and the direct correlation function C(r), which
gives hII(r) by (A1) and the ion density nI(r) with equation (70). The only approximation involved in this mapping
is the equality of the bridge functions of the two systems (equation (A6)).

Appendix B: Ion sphere model

The ideal electron chemical potential (equations (15), (21), (40)) is evaluated within a simplified version of the
average atom model presented above where the ion distribution is chosen to be

nI(r) = n0
IΘ(r −R), (B1)

where Θ is the Heaviside step function. In the context of the coupled average atom and two-component models with
ion correlations, this simpler model provides an approximate µid

e (equation (40)), and a surprisingly good guess for
nscr
e (r) to initialize the numerical solution of the problem. A more rigorous determination of µid

e will be the subject
of a future publication.
The electronic density ne(r) is obtained by solving the Thomas-Fermi (24) or the Schrödinger equation (17) with

the effective potential

V eff
Ne (r) = −Z

r
+

∫ [
ne(r

′)− n0
eΘ(r′ −R)

]
dr′

| r − r′ | + V xc
ee [ne(r)] − V xc

ee [n
0
e] (B2)

where global neutrality of the plasma has been imposed. A second neutrality condition

Z =

∫

r<R

ne(r)dr (B3)

(i.e. neutrality of the ion sphere) gives the electron chemical potential µid
e (equation (16)). In contrast to equation

(54), the potential (B2) does not involve the local field corrections since the surrounding ions are no longer correlated,
given (B1). The electron exchange and correlation potential V xc

ee is approximated using the simple Dirac exchange
functional [38], as it is for all calculations presented here. This model is similar to the INFERNO model [20], and
identical to the NWS model of [52] provided that the same exchange treatment is used. In its Thomas-Fermi version,
this model is identical to [19].
As described in section III, the electron density attributed to the external plasma next

e (r) (equation (74)) is obtained
by solving the Schrödinger (or Thomas-Fermi) equation with the same effective potential as in (B2) but without the
central nucleus (with the same µid

e , however)

V eff,ext
e (r) =

∫ [
next
e (r′)− n0

eΘ(r′ −R)
]
dr′

| r − r′ | + V xc
ee [n

ext
e (r)] − V xc

ee [n
0
e] (B4)

This allows nscr
e to be determined, providing an initial guess for the local field corrections (equation (67)). As reported

in section IV, this initial estimate works rather well (figure 3). The models of [4, 23] as well as the jellium vacancy
model of [53] are similar to this model.

Appendix C: Broadening of bound states

In [54] it was proposed that the inverse of the average relaxation time (1/τ) for the scattering electron states could
give a reasonable estimate of the observed broadening of bound-bound transitions in spectra by accounting for dense
plasma effects. This hypothesis has been confirmed numerically [55, 56]. This estimate of the state broadening in
dense matter is used to obtain a definition of an ion for the quantum mechanical case that is continuous as a function
of density and temperature (equation (79)). The level broadening in (81) is set to γ = 1/τ for all bound states.
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Following [57], the average relaxation time τ is related to the DC conductivity σDC via the Drude formula

τ =
σDC

n0
e

(C1)

where n0
e is calculated from the electron chemical potential µid

e (equation (40)). The DC conductivity can be calculated
from the momentum-dependent relaxation time τ(k) from the Ziman formula

σDC =
2

3

∫
dk

(2π)3

(
−∂gk
∂ǫ

)
v2τ(k) (C2)

where gk is the Fermi occupation factor (equation (15)), v =
√
2ǫ is the electron velocity and τ(k) is related to the

momentum transport cross section σTR,

τ(k) =
σTR(k)

n0
Iv

. (C3)

Finally, σTR is found from the average atom phase shifts δl,

σTR(k) =
4π

k2

∞∑

l=0

(l + 1) (sin(δl+1 − δl))
2

(C4)

and l is the orbital angular momentum quantum number. In practice only a small number of terms are required as
the summation converges rapidly.
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