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We measure the swimming speed of a cylindrical version of Taylor’s swimming sheet in viscoelastic
fluids, and find that depending on the rheology, the speed can either increase or decrease relative to
the speed in a Newtonian viscous fluid. The swimming stroke of the sheet is a prescribed propagating
wave that travels along the sheet in the azimuthal direction. The measurements are performed with
the sheet immersed in a fluid inside a cylindrical tank under torque-free conditions. Swimming speeds
in the Newtonian case are found to be consistent with calculations using the Stokes equation. A
faster swimming speed is found in a viscoelastic fluid that has a viscosity independent of shear rate.
By contrast, a slower swimming speed is found with more complex shear-thinning viscoelastic fluids
which have multiple relaxation time scales as well. These results are compared with calculations
with Oldroyd-B fluids which find a decreasing swimming speed with Deborah number given by the
product of fluid elastic relaxation time scale and the driving frequency.

PACS numbers: 47.63.Gd, 47.15.G, 47.20.Gv, 83.50.Jf

I. INTRODUCTION

Many examples of microorganisms swimming through
viscoelastic fluids can be found in Nature, including
sperm swimming through cervical mucus and Helicobac-

ter pylori in gastric mucus [1]. Because of their small
size, the Reynolds number is small and inertial effects
are negligible. Net swimming translation typically oc-
curs due to a broken symmetry as in a traveling-wave
deformation of the sperm flagellum or a chiral or helical
motion of some bacteria. Taylor considered the corre-
sponding problem of an infinite planar sheet with a pre-
scribed traveling waveform [2]. He showed that the swim-
ming speed is proportional to the phase velocity and to
the square of the wave amplitude. Extending this work
to viscoelastic fluids, Lauga [3] recently calculated the
speed of a swimmer in an Oldroyd-B model fluid which
has a single relaxation time and a shear-rate independent
viscosity. He found that the ratio vN−N/vN of the swim-
ming speed in the non-Newtonian fluid to the swimming
speed in a Newtonian fluid decreases with Deborah num-
ber De as vN−N/vN = 1/(1 +De2) when the solvent
viscosity is small compared to the polymer contribution
to the viscosity. Here De is the product of the relaxation
time constant of the fluid and the driving frequency. Fu,
Powers and Wolgemuth [4] found a similar relation for
small-amplitude waves on an infinitely-long filament in a
fluid described by Oldroyd-B.

Several issues arise in further developing and com-
paring such calculations with actual swimming speeds
of microorganisms. An organism can change form and
frequency of stroke in response to changes in the fluid
properties making direct comparisons difficult [5]. Fur-
thermore, biological viscoelastic fluids are far more com-
plex with multiple relaxation time scales and shear-

thinning rheology which are highly dependent on concen-
tration, and pH [6]. Numerical simulations with finite-
length sheets in idealized viscoelastic fluids have shown
that swimming speeds and efficiency can be enhanced
at De ≈ 1 for non-sinusoidal large-amplitude undula-
tions, where the amplitude increases from head to tail
of the sheet [7]. Enhanced swimming speeds have also
been observed with a finite-length model helical flagel-
lum in Boger fluids, with the greatest enhancement ob-
served again near De ≈ 1, where the Deborah number is
defined as the product of the relaxation rate and the ro-
tation period [8]. Therefore, the agreement between the
recent observation [9] of swimming speeds of Caenorhab-
ditis elegans in various concentrations of carboxymethyl
cellulose (CMC) and the theoretical calculation by Lauga
is somewhat surprising because of the significant differ-
ences in the geometry and the complexity of the fluids
investigated.

In this paper, we introduce an apparatus based on Tay-
lor’s swimming sheet to investigate the speed of a swim-
mer in various non-Newtonian fluids. We first show that
the system captures the essence of the idealized Taylor
swimming sheet by comparing swimming speed with nu-
merical simulations and analytical calculations using the
Stokes equation in the same geometry. We then discuss
the swimming speed measured with several kinds of vis-
coelastic fluids including a viscoelastic Boger fluid which
has constant viscosity over a range of shear rates, and
more complex shear-thinning viscoelastic fluids. We pro-
vide evidence that the ratio of swimming speeds is not
always less than one, and depends on the viscoelastic na-
ture of the fluid.
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II. CYLINDRICAL TAYLOR SWIMMER

In order to to perform an experiment with a finite-
sized swimming sheet, we consider a cylindrical sheet,
deformed by traveling bending waves and with an aver-
age radius R1 immersed inside a cylindrical tank with
a radius R2. The cylindrical geometry further simpli-
fies the analysis since there are no complicating effects
from free ends. The swimming speed of this cylindri-
cal Taylor swimmer can be calculated using the Stokes
equations and imposing non-slip boundary conditions on
the swimmer. Because of the rotary geometry, torque-
free conditions are imposed on the swimmer instead of
the force-free conditions of the original planar Taylor-
sheet swimmer. The stroke of the swimmer is a traveling
wave that propagates around the cylindrical sheet. It is
simplest to describe the wave in the frame that rotates
with the wave. In this frame the peaks and the troughs
of the wave are stationary, but the material points of
the wave move clockwise, tangentially to the inextensi-
ble sheet with speed v. Our wave has two peaks, so the
shape of the sheet is given in this frame as

R(Θ) = R̂(R1 + b sin 2Θ), (1)

where R and Θ are the polar coordinates in the traveling-
wave frame. To first order in b/R1, the arclength s along
the sheet is related to the angle Θ by

Θ ≈ s/R1 +
b

2R1

[

cos

(

2s

R1

)

− 1

]

. (2)

To get the velocity of the material points in the traveling-
wave frame, we label the points by their arclength coor-
dinate s at t = 0:

R(s, t) = R̂ (Θ(s− vt)) (R1 + b sin [2Θ(s− vt)]) (3)

Differentiating the position R(s, t) with respect to t at
fixed s, and expressing the result in terms of Θ leads to

V(Θ, t) = −v

[

Θ̂+ 2
b

R1

R̂ cos 2Θ

]

(4)

It is simplest to calculate the swimming speed in the
the ‘swimmer frame’, the frame that rotates with the
material points of the sheet. If the sheet makes one rev-
olution in period T, the swimmer frame rotates at an
angular velocity Ωsheet = 2π/T relative to the traveling-
wave frame. For small deformations, the perimeter of
the sheet is unchanged from that of a circle of radius
R1 up to first order in b/R1, so v = ΩsheetR1. The
traveling-wave frame rotates counter-clockwise relative
to the swimmer frame, so that the angle θ measured
from the x-axis of the swimmer frame is related to
the angle Θ measured from the x-axis of the traveling
wave frame by θ = Θ + vt/R1=Θ + Ωsheett. Likewise

R̂(Θ) = r̂(θ), and Θ̂(Θ) = θ̂(θ), and the velocity v of
material points in the swimming frame is related to the

velocity of material points in the traveling-wave frame by
v = V +Ωsheetẑ×R, or

v = −2Ωsheetb cos (2(θ − Ωsheett)) r̂

+Ωsheetb sin (2(θ − Ωsheett)) θ̂. (5)

It is interesting to draw a contrast between this expres-
sion for the velocity of material points on a curved sheet
with small ripples and the corresponding expression used
by Taylor for the flat sheet [2]. For the flat sheet with
small ripples, the condition of inextensibility leads to
horizontal components of the velocity of the wave which
are second-order in amplitude. These components make
a contribution to the swimming velocity that is fourth
order, and therefore may be disregarded at leading or-
der [2]. In contrast, the inextensibility of the cylindrical
sheet leads to azimuthal components that are first or-

der in the amplitude b, and these components must not
be disregarded when calculating the leading-order swim-
ming speed.
Imposing the no-slip boundary conditions on the swim-

mer and the wall, and solving the Stokes equations in
polar coordinates leads to

ΩN
swim = gf Ωsheet, (6)

where gf is a non-dimensional geometric factor which
depends on the amplitude of the wave and the size of the
tank relative to the size of the swimmer, and is given by

gf =
2b2

R2
1

3(1 + 6α2 + α4)

4(1− α2)2
, (7)

to leading order in b/R1, and where α = R1/R2. Thus,
the swimming speed has a similar dependence on ampli-
tude and angular phase velocity as in the original Taylor
swimming sheet, and the effect of the finite size of the
tank is to increase the speed of the swimmer. Such en-
hancement of swimming has been noted previously as
well for a planar sheet swimming near a boundary [10].
In the traveling-wave frame, the geometry of the prob-
lem is constant and thus the Stokes problem can be eas-
ily solved using COMSOL. In this frame, the material
points of the sheet move tangentially to the sheet and so
the no-slip boundary condition is a tangential flow at the
surface of the deformed sheet. For small deformations,
the solutions obtained using COMSOL match the per-
turbation result for gf (Eq.7) to 1.4%. Using COMSOL,
we are also able to investigate large-amplitude deforma-
tions and the effects of geometrical asymmetries in the
experiments; we describe those results in Section IVA in
the context of our experimental observations.
Furthermore, for small amplitudes and for small sol-

vent viscosity, the swimming speed in an Oldroyd-B fluid
for the cylindrical geometry is

ΩN−N
swim =

1

1 +De2
ΩN

swim, (8)

where, the superscript N − N denotes swimming speed
in a non-Newtonian fluid. In this equation, the Deborah
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number is defined as

De = ωτ, (9)

where ω = 2Ωsheet is the oscillation frequency of a ma-
terial point on the belt. This form is again similar to
that for the finite planar Taylor swimming sheet and tells
us that for single-relaxation-time viscoelastic fluids, the
swimming speed is always lower than that in a Newtonian
fluid for the same prescribed traveling waveform.

III. EXPERIMENTAL APPARATUS

A schematic of our experimental apparatus consisting
of the cylindrical swimmer immersed in a circular cylin-
drical glass tank with radius R2 = 10.15 cm is shown
in Fig. 1(a). The swimmer is composed of a polyester
sheet with a coating of rubber on the inner surface
glued to form an elastic circular cylinder with radius
R1 = 5.70 cm. The elastic cylinder is then stretched be-
tween two vertical rollers as shown in Fig. 1(a) resulting
in a swimmer with a cross section shown in Fig. 1(b). An
elliptical cross section can be calculated to result using
elastic theory if a circular sheet is stretched by applying
constant forces along diametrically opposite ends. This
shape is observed to describe the measured cross section,
which has major semi-axis 6.8 cm and minor semi-axis 4.6
cm. Some deviations are also observed caused by seams
and other imperfections in the fabrication of the cylinder.
These deviations lead to a maximum of 2.4% deviation
in the horizontal direction and 2.8% deviation in the ver-
tical direction from the center as the swimmer rotates.
We do not observe deformation of the sheet arising from
fluid stresses.
The rollers are then driven with a stepper motor and

planetary gear system. This allows the rotation speed
of the cylindrical sheet (which equals the phase velocity
Ωsheet = 2π/T , where T is the period) to be set and var-
ied over a wide range. Therefore if one follows a point on
the surface of the sheet, it moves in and away from the
center of the cylinder as it rotates, giving rise to a travel-
ing wave in the azimuthal direction. The tank is placed
on a bearing to impose torque-free boundary conditions
on the swimmer provided the bearing is frictionless. The
frictional coefficient of the bearing is obtained by mea-
suring the decay of the angular speed of the tank set
into motion with an initial speed. The friction is found
to be small and constant over the range used in our ex-
periments and approximately equal to 0.005± 0.0001N-
m. The entire swimmer along with gears and motors are
mounted on a second rotary bearing from the ceiling to
reduce the torques during the initial transient.
Once a traveling wave is imposed on the inner cylinder,

the outer cylinder (the tank) starts to rotate in the same
direction to minimize torque. In the final steady state the
tank rotates with net torque close to zero. Note that the
forces exerted by the gears and motors on the oscillat-
ing sheet are internal forces and maintaining torque-free

(a)

 

 

Cylindrical

Sheet

(deformed)

Tank

Cylindrical

Sheet

(undeformed)

(b)

FIG. 1. (a) Schematic diagram of the cylindrical swimmer
apparatus. (b) The measured shape of the swimmer and error
bars as it rotates over several cycles. The undeformed circular
sheet with R1 = 5.70 cm and the boundary of the tank with
radius R2 = 10.15 cm are also plotted for reference.

boundary conditions at steady state on the tank ensures
that the swimming sheet itself is torque free. The rota-
tion speed of the tank Ωtank is measured by imaging a
marker on the tank. The corresponding swimming speed
of the Taylor swimmer is then obtained by

Ωswim = Ωsheet − Ωtank. (10)

IV. MEASUREMENT OF SWIMMING SPEEDS

A. Newtonian fluids

We first discuss the results with Newtonian fluids in
order to provide a reference to compare with swimming
in viscoelastic fluids. The properties of the fluids used are
noted in Table I. A plot of measured angular speed of
the tank Ωtank versus the phase velocity Ωsheet is plot-
ted in Fig. 2(a) for the various liquids. The Reynolds
number Re varies between 0.15 and 1.47 for the viscous
corn syrup, and Re varies between 0.29 and 2.21 for the
lite corn syrup. We observe that the speeds in the higher
viscosity fluids collapse onto a single line with an inter-
cept close to the origin. The fact that the data can be
described by a line is important validation that we are in



4

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Ω
sheet

 (rad s−1)

Ω
ta

nk
 (

ra
d 

s−
1 )

 

 

Viscous CS
Lite CS (h:l = 2:1)
Lite CS (h:l = 1:1)
Lite CS (h:l = 3:1)

(a)

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

Ω
sheet

 (rad s
−1

)

Ω
sw

im
 (

ra
d

/s
)

 

 

Viscous CS

Lite CS

Glycerine

(b)

FIG. 2. (a) The angular speed of the tank Ωtank versus rota-
tion speed of the inner cylinder Ωsheet. The data corresponds
to lite corn syrup, high fructose corn syrup, and various ratios
of height h of the fluid in the tank to average gap R2 − R1.
The data is observed to fall on a line with an intercept close
to the origin. (b) The angular swimming speed of the Taylor
swimmer versus phase velocity in a viscous fluid is described
by a linear fit. The friction in the bearing leads to a verti-
cal offset in measured Ωswim for glycerine, which has lower
viscosity, but the linear fit has the same slope.

the linear regime in the experiments. The small intercept
with the horizontal axis shown in Fig. 2(a) arises because
the viscous drag of the fluid on the boundary is not suf-
ficient at very low frequencies to overcome the friction
in the bearing on which the tank rotates. Also plot-
ted in Fig. 2(a) are the speeds corresponding to various
heights of the viscous liquids in the tank. The measured
angular speed collapses onto the same line in all cases.
This collapse indicates that the measured speeds are in-
dependent of the height of the sheet immersed in the
fluid and the top and the bottom surfaces of the tank
do not influence the measurements. We further tested
the two-dimensional nature of the fluid flow by using a
horizontal light sheet using a laser to visualize the flow
of small tracer particles. The tracer particles remained
on the cross-section of the fluid illuminated by the laser,
further indicating the two-dimensionality of the system.

As can be noted from Eq. 6, the swimming speed in-
creases linearly with Ωsheet with the slope given by the
geometric factor gf . When the experimentally measured
swimming speed Ωswim is then calculated using Eq. 10,

Label Fluid Kind η (Pa s)

Viscous
CS

Viscous Corn Syrup Newtonian 27

Lite CS Lite Corn Syrup Newtonian 7

Glycerine Glycerine Newtonian 0.5

Boger PAA and Corn Syrup Viscoelastic 37

CMC 2% Carboxymethyl Cellu-
lose 2%

Viscoelastic Shear
thinning

CMC 3% Carboxymethyl Cellu-
lose 3%

Viscoelastic Shear
thinning

Polyox 1% Polyethylene Oxide 1% Viscoelastic Shear
thinning

Polyox 2% Polyethylene Oxide 2% Viscoelastic Shear
thinning

TABLE I. List of fluids used in the experiments and their
properties. The shear rate viscosity of the viscoelastic fluids
are shown in Fig. 4.

and plotted in Fig. 2(b), it is observed to increase lin-
early with Ωsheet consistent with Eq. 6. The data for
viscous corn syrup and lite corn syrup collapse onto the
same line. However, while the line passes close to the ori-
gin, a small intercept with the vertical axis can be noted
due to the systematic effect of the friction of the bear-
ing. We have further investigated this effect by using
glycerine which has relatively lower viscosity and thus a
greater Ωtank has to be applied to overcome the friction
of the bearing. We can note that measured Ωswim for
glycerine can be described by a line with same slope as
for the higher viscosity fluids but with a higher vertical
intercept. Thus, we find that provided the viscosity of
the fluid is large enough, the systematic error introduced
by the friction of the bearing is small. Henceforth, we
discuss swimming speeds for fluids where the effect of
the friction of the bearing on the swimming speed can be
considered negligible.

We compare the measured speeds with those obtained
using calculations using the Stokes equation in terms of
the geometric factor gf in Eq. 6. The linear fit to the
experimental data yields gf(expt) = 0.32. Approximat-
ing the shape of the swimmer with Eq. 1, we calculate
gf = 0.36 from Eq. 7. Eq. 7 is valid for small deforma-
tions given by Eq. 1 from a circular shape, while the ac-
tual belt has large deformations and is close to an ellipse.
Therefore using COMSOL, we calculated the swimming
speed for an ellipse with dimensions matching the belt;
in this case gf = 0.29. Furthermore, as noted in the
discussion of Fig. 1(b), asymmetries are present in the
experimental apparatus. To explore the effect of these
asymmetries in our numerical simulations, we offset the
center of the swimmer by 2.5% of R2, and find using
COMSOL gf in the range 0.29 to 0.31, which is close to
the experimentally measured value. We conclude that
the apparatus shows the main features of an ideal Tay-
lor swimmer including linear dependence with imposed
phase velocity.
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B. Viscoelastic fluids
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FIG. 3. (a) Swimming speed as a function of phase veloc-
ity for Boger fluid in comparison to that of Newtonian corn
syrup. Systematically greater swimming speeds are observed
in the Boger fluid. (b) Swimming speed as a function of phase
velocity for Newtonian and viscoelastic fluids. Systematically
lower speeds are observed with prescribed angular frequency.

We now discuss the swimming speed of the Taylor
swimmer in various fluids which have been typically used
to study viscoelasticity. A list of the fluids used can
in found in Table I. These include two samples of a
Boger fluid prepared by mixing 125 ppm polyacrylamide
(PAA) in 96.5% viscous corn syrup to obtain a fluid with
constant viscosity as a function of shear rate. We also
use more complex fluids such as aqueous solutions of
carboxy-methyl cellulose(CMC) and polyethylene oxide,
which are representative of biological fluids that are of-
ten shear thinning. Sodium CMC was mixed 2% and 3%
by weight to prepare fluids that we label CMC 2% and
CMC 3%, respectively. Polyethylene oxide, commonly
known as Polyox is a water soluble polymer, was mixed
1% and 2% by weight in water. We find the Reynolds
for the viscoelastic fluids used in our experiments varies
from 0.05 to 2Pa s for the liquids in our experiments, a
range that is similar to the range for Newtonian liquids.

The measured angular swimming velocity as a func-
tion of phase velocity is shown in Fig. 3. We observe
that the swimming speeds are systematically faster in
the Boger fluid compared to the Newtonian fluid for the

same phase velocity. Thus, the trend observed appears
to be qualitatively different from that found for Olroyd-
B fluids in Eq. 8 where swimming speeds are always less
than that for the Newtonian fluid. On the other hand,
the swimming speed in viscoelastic fluids which mimic
shear-thinning and have multiple relaxation time con-
stants is found to be systematically lower than in the
case of the Newtonian fluid for the same phase velocity.

C. Rheology

To make a more quantitative comparison between our
experiments and the predictions of theory, we measure
the rheology of the fluids with a TA Instruments AR
2000 rheometer. The shear-dependence of the fluids is
characterized by constant shear-rate measurements. Fig-
ure 4(a) shows the shear viscosities of the fluids over a
wide range of shear rates γ̇, from 100 to 102 s−1. The
Boger fluid here (PAA solution) has a shear-rate inde-
pendent viscosity η = 37.2 ± 0.2 Pa s. The fluid also
exhibits elasticity. The normal stress N is observed to
increase with shear rate γ̇ [see Fig. 4(b)]. The viscoelas-
ticity can thus be characterized by the first normal stress
coefficient Ψ = N/γ̇2 in the limit of vanishing γ̇ [11].
Due to the lack of experimental accuracy at shear rates
less than 1 s−1, we cannot access the regime where Ψ de-
pends quadratically on γ̇. Nevertheless, if we use the val-
ues measured at the low end of our experimental regime
where we can still obtain the normal stress value with ro-
bustness, we find Ψ = 18.43 Pa s2. Based on the viscos-
ity of the Newtonian solvent (96.5% viscous corn syrup),
ηs = 26.9 ± 0.5 Pa s, we can estimate the longest relax-
ation time as τ = Ψ/[2(η − ηs)] = 0.9 s.
In the cases of CMC and Polyox, the viscosities not

only increase with polymer concentration but also de-
crease with shear rate, as shown in Fig. 4(a). Such shear-
thinning feature suggests that these polymeric solutions
are not dilute and can no longer be characterized by sin-
gle relaxation times, as applied to the previous Boger
fluids. In this non-dilute region, these polymer suspen-
sions are likely to develop shear-rate dependent networks,
which are composed of multiple relaxation modes. To
characterize such relaxation modes, we also perform stan-
dard linear rheology measurements with small oscillatory
shear-strain perturbations. The associated shear moduli
are shown in Fig. 5 for a range of oscillation frequency ω
that covers our experimental settings. Here, the storage
modulus G′ gives the component of the response of the
stress that is in phase with the oscillatory strain, and is
associated with the solid-like properties of the material.
On the other hand, G′′ is the loss modulus, which governs
the component of the response of the stress which is in
phase with the strain-rate, and is associated with fluid-
like properties of the material. Using rheology models
including polymer networks [12] [13], we can potentially
estimate the mean relaxation time τ(ω), associated with
few effective relaxation modes at given frequency ω. In
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situ, we find that such relaxation times are not too differ-
ent from those obtained from a much simpler “Maxwell’s
model” approach, as described in the following.
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FIG. 4. (a) Viscosity as a function of shear rate in Boger
fluid, CMC 2%, CMC 3%,Polyox 1%, Polyox 2%. (b) Normal
stress (N) as a function of shear rate in Boger fluid

According to Maxwell’s model for a polymeric liquid
with a single relaxation time, the moduli G′ and G′′ can
be expressed in terms of the oscillation frequency ω as

G′ =
ητω2

(1 + ω2τ2)
(11)

and

G′′ =
ηω

(1 + ω2τ2)
, (12)

where, η is zero frequency viscosity, and τ is the relax-
ation time. Therefore, we can calculate the relaxation
time as

τ =
G′

G′′ω
, (13)

provided the liquid has a clear single relaxation time
scale. If there are multiple modes of relaxation, then
G′ and G′′ are sums of terms as above but with η and τ
replaced by η(k) and τ(k), where k runs over the differ-
ent modes [11]. Because of a lack of a simple scaling in
the plots of G′ and G′′ (shown in Fig. 5) it is difficult to
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FIG. 5. Rheological properties of the fluids used (a) Polyox
and (b) CMC.

perform analysis to extract relaxation time constants for
these fluids.

To have an estimate of the relaxation time scale, we
obtain the relaxation time scale τ from Eq. 13 for that
particular driving frequency. This estimate is also rem-
iniscent of the fact that only few modes of relaxation
are efficient at a given oscillation frequency, which can
be potentially explained by more sophisticated models
including shear-thinning features [12, 13]. Thus we can
calculate the Deborah number De for the range of an-
gular frequencies and relaxation times spanned in the
experiment using Eq. 9. However, in the case of shear-
thinning fluids it is not possible to determine the effective
relaxation time scale using the same method. In order to
have an estimate of the relaxation time scale, we obtain
the relaxation time scale τ from Eq. 13 for that particu-
lar driving frequency. A similar method was adopted by
Shen and Arratia in their report [9] with CMC and there-
fore we present it here in order to draw comparison with
previous work. However, it is important to note that be-
cause G′ and G′′ do not scale according to the Maxwell
model with a single relaxation constant it is difficult to
justify this method in such fluids.

The ratio of swimming velocities of non-Newtonian and
Newtonian fluids is plotted as a function of the Deborah
number in Fig. 6. We observe that the ratio of the speeds
increases with De for the Boger fluid, but decrease for
CMC and Polyox. Thus the behavior partitions along the
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lines of the shear-thinning properties of the fluid. Given
this divergent behavior it is difficult to even conclude
that the overall decrease in swimming speeds observed
with CMC and Polyox are even qualitatively consistent
with calculations performed with Olroyd-B fluids. Note
that although the fluids are shear thinning in nature over
a large range of shear rate, the experimental regime of
frequencies happens to be small, and hence the viscosity
of these fluids in that regime does not seem to vary too
much. Also given that the experiments are performed
in a low Reynolds number regime minimizes chances of
viscosity affecting the swimming speed.
It is further interesting to note that the divergent

trends observed in our experiments are consistent with
the two other reports with the two kinds of fluids used in
our experiments. Liu et al [8] found enhanced swimming
speeds with a Boger fluid in a rotating helical geome-
try, and Shen and Arratia [9] found decreasing swimming
speed for the case of live C. elegans swimming in CMC.
It is possible that the overall behavior is governed by
nontrivial interaction between viscous and elastic com-
ponents that determine swimming speed.

V. CONCLUSIONS

In conclusion, we have designed an apparatus to mea-
sure the speed of a swimmer with a prescribed shape as
a function of phase velocity. The simplicity of our appa-
ratus makes it an attractive system for measuring swim-
ming speed in non-Newtonian fluids and making compar-
isons with the predictions of theory. For the Newtonian
fluids, the measured speeds are found to be in agreement
with calculations using the Stokes equation. However,
the measured speeds in the Boger fluid are in sharp con-
trast with the form calculated for the Oldroyd-Bmodel of
viscoelastic fluids. Interestingly, the swimming speeds in
more complex viscoelastic fluids are observed to decrease
with concentration, and with phase velocity. While this
trend is qualitatively similar to the trend calculated for
Oldroyd-B fluids, the rheology of real non-Newtonian flu-
ids makes it difficult to form a well-defined Deborah num-
ber, and hence prevents us from drawing quantitative
conclusions about these fluids. Furthermore, although
we do not see inertial effects in our Newtonian fluids, we
have not ruled them out in our experiments with the non-
Newtonian fluids. Our results, which show both increas-
ing and decreasing trends in the same apparatus with
the various viscoelastic fluids, point to a pressing need
for a broad series of experiments, theory and numerical
simulations in systems with varieties of geometries be-
fore we can fully understand how microorganisms swim
in viscoelastic fluids.
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