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An intrinsic localized mode (ILM) represents a localized vibrational excitation in a nonlinear
lattice. Such a mode will stay in resonance as the driver frequency is changed adiabatically until a
bifurcation point is reached, at which point the ILM switches and disappears. The dynamics behind
switching in such a many body system is examined here through experimental measurements and
numerical simulations. Linear response spectra of a driven micromechanical array containing an
ILM were measured in the frequency region between two fundamentally different kinds of bifurcation
points that separate the large amplitude ILM state from the two low amplitude vibrational states.
Just as a natural frequency can be associated with a driven harmonic oscillator, a similar natural
frequency has been found for a driven ILM via the beat frequency between it and a weak, tunable
probe. This finding has been confirmed using numerical simulations. The behavior of this nonlinear
natural frequency plays important but different roles as the two bifurcation points are approached.
At the upper transition its frequency coalesces with the driver and the resulting bifurcation is very
similar to the saddle-node bifurcation of a single driven Duffing oscillator, which is treated in an
appendix. The lower transition occurs when the four-wave mixing partner of the natural frequency
of the ILM intersects the top most extended band mode of the same symmetry. The properties of
linear local modes associated with the driven ILM are also identified experimentally for the first
time and numerically but play no role in these transitions.

PACS numbers: 05.45.-a, 85.85.+j, 63.22.-m, 63.20.Pw

I. INTRODUCTION

A useful advance in the theory of nonlinear excitations
in discrete lattices in the late 80fs and early 90fs was
the discovery that some localized vibrations in perfectly
periodic but nonintegrable lattices can be stabilized by
lattice discreteness, that is, the presence of nonlinear-
ity plus discreteness provides a natural habitat for vi-
brational localization.[1–4] This realization has lead to a
variety of studies of the features associated with such in-
trinsic localization.[5–8] In the literature these localized
excitations are called either gintrinsic localized modesh
(ILMs) with the emphasis on the fact that they can oc-
cur in any dimension and involve no disorder or gdiscrete
breatherh (DBs) with the emphasis on their similarity to
the exact 1-D breather soliton. These unusual modes can
occur at any lattice site and may be stationary or move
slowly through the lattice. One key element for realis-
tic lattices is the existence of gapped dispersion curves.
These nonlinear localized modes have attracted atten-
tion both because of fundamental interest[9–18] and also
because of possible practical applications.[19–28]
A driven 1-D micromechanical cantilever array pro-

vides a straightforward way in which to examine such
localized excitations for systems that have many degrees
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of freedom.[13] Experimentally, a stationary ILM can
be maintained in steady state using a driver to com-
pensate for damping.[9, 11, 29] Given sufficient starting
amplitude it will stay in resonance as the driving fre-
quency is changed adiabatically. In the resultant auto-
resonant (AR) state the driver frequency controls the
ILM amplitude.[30–35] This AR-ILM is stable between
two bifurcation frequencies when the driver frequency
is the control parameter.[22, 26] Only a low amplitude
state exists outside this frequency range. With the
driver tuned to the top most frequency of the linear reso-
nance band the excitation pattern changes with increas-
ing driver frequency as follows: a uniform excitation pat-
tern of the top mode of the band, chaotic moving ILMs,
a low amplitude state, the AR-ILM state of interest, and
finally a low amplitude state. The AR state is achieved
only when the driver frequency is chirped up with suffi-
cient speed from the top of the band frequency to pass
the low energy state separating the linear resonance fre-
quency regime from the AR state, which is bounded by
the upper bifurcation point. When the driver frequency
is decreased from inside the AR state, the ILM disap-
pears into a low amplitude state at the lower bifurcation
frequency. As yet the properties and dynamics of ILMs
near the bifurcation points have only been described in
a brief report.[26]
Although the ILM’s shape changes with the driver fre-

quency, one of the switching results for such a driven
many body system seems intriguingly similar to that pre-
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viously observed for the transition of a Duffing oscillator
in the AR state (a single degree of freedom). Studies of
a single driven nonlinear oscillator that obeys the Duff-
ing equation have a long history and reveal a variety of
phenomena from a linear-like resonance to chaos,[36] de-
pending on the driving condition. The most well known
effect is hysteresis that accompanies a sudden change of
amplitude when the driver is swept up or down over a cer-
tain frequency range. Because the Duffing resonator is
the simplest nonlinear oscillator with these phenomena,
this model system has been used for a variety of theo-
retical studies,[37–41] for developing new ideas,[31, 42]
and for applications.[43–45] A stochastic resonance when
the Duffing resonator is at a kinetic phase transition,
where the system is simultaneously in 50% high and 50
% low amplitude states, is one example.[46, 47] Another
example is a bifurcation amplifier, which uses the sudden
change at the bifurcation to amplify a signal.[43]

Prediction of the bifurcation point for a single non-
linear Duffing oscillator has been studied in some detail
since such a catastrophic change in oscillator behavior is
important from an applications point of view. To forecast
a sudden rise of a vibration amplitude of a single driven
Duffing resonator from a low amplitude state[36, 48] a
beat frequency between a driver and a phase mode was
observed to decrease when the bifurcation point was ap-
proached. A natural question to ask is how similar is the
many body AR-ILM bifurcation property to that of the
single AR oscillator? A related question is how different
could it be?

The spectrum of local modes associated with a large
amplitude ILM have now been examined in some detail.
A variety of linear resonances have been observed and
interpreted. They include the natural frequency (NF) of
the ILM, this NF is for an ILM with the same amplitude
pattern but no driver nor damping, and even and odd
linear localized modes (LLMs)[15, 49] are also present.
What role do these resonances play in the bifurcation
transition?

In order to determine how similar the dynamics of the
upper bifurcation point of the ILM is to the single Duff-
ing oscillator result the next section of this paper focuses
on the large amplitude behavior and the NF property of
a driven damped Duffing resonator. To see this linear
mode a second variable frequency driver called a probe is
introduced so that the NF can be observed in the pres-
ence of damping. The NF peak and its four-wave partner
appear as distinct structures in the response spectrum.
Section III describes the experimental setup for the ILM
study in a 1-D micromechanical cantilever array. The
probe is very weak with respect to the driver locked to
the ILM, and hence does not perturb the ILM, but is
still strong enough to see linear localized features pro-
duced by it. The experimental probe spectra results are
presented in Section IV. A variety of linear resonances
have been observed and interpreted. They include the
natural frequency(NF) of the ILM, an even linear local-
ized mode (LLM)[15, 49] of the ILM, and also the top

most extended band modes. The simulations, described
in Section V, are used to confirm the sources of some of
the resonant features near the bifurcation points. Section
VI considers the resemblance between the driven ILM
and the single driven Duffing resonator at the upper bi-
furcation point and described the more complex behavior
at the lower bifurcation point. By examining their dif-
ferent behaviors near the bifurcation points, experimen-
tally and through numerical simulations, and by com-
paring the results with those found for a single Duffing
oscillator, the bifurcation dynamics of ILMs have been
quantitatively characterized. Some possible applications
of linear probe spectroscopy to nonlinear systems are also
discussed. The conclusions emphasize the importance of
the NF to understanding the bifurcation dynamics. An
appendix quantifying the analytical NF spectrum results
of the singe Duffing resonator follows.

II. BACKGROUND

Since the natural frequency (NF) of the ILM will play
an important role in the understanding of its bifurca-
tion transitions first we describe how one can observe
the NF of the simplest nonlinear system, namely, the
single Duffing resonator. It is well known that the gen-
eral solution for a driven harmonic oscillator with NF =
ω0 and driver frequency Ω and no damping is the sum
of two contributions.[50] One is the general solution of
the homogeneous equation while the other is a particular
integral of the inhomogeneous equation. For the case of
small oscillations near the NF ω0 the resulting signature
appears in the form of beats with frequency ωb = |ω0−Ω|.
As the driver approaches NF the beat frequency goes to
zero, ωb → 0, a transition to the resonant state occurs
and the small signal method is no longer valid. When
damping is included and the driven oscillator inspected
after a sufficiently long time only the particular solution
of the inhomogeneous equation with driver frequency Ω
remains in this steady state. To recover the beat signal a
second (weak) source with tunable frequency ω, usually
called the probe is introduced. The maximum amplitude
for the beat now occurs when ω = ω0, giving the same
NF condition as before. Once again as the driver and NF
approach each other the amplitude at the NF grows.
The corresponding natural frequency (NF) of a nonlin-

ear oscillator can be identified in terms of its asymptotic
limit as the driver and damping simultaneously go to zero
(so that its amplitude remains fixed) then the resonance
plays the same role as the NF for a driven harmonic oscil-
lator without damping. To be more quantitative consider
the single Duffing oscillator given by

ẍ+
1

τ
ẋ+ ω2

0x+ εx3 = αd cosΩt+ αp cosωt, (1)

where τ is the relaxation time, ω2
0 is square of the linear

resonance frequency and ǫ > 0 is a hard nonlinear con-
stant, αd and αp are the acceleration amplitudes for the
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driver and probe, and Ω and ω are the driver and probe
frequencies, respectively. A high amplitude state of the
Duffing oscillator is obtained by driving it at a frequency
Ω slightly above ω0. Next, with the driver frequency
fixed, a weak probe oscillator is initiated at a frequency
nearby, where ω ∼ Ω. The analytical form for the am-
plitude response curve can be obtained by assuming the
displacement has three frequency components so that

x =
1

2
Ãe−iΩt +

1

2
ãe−iωt +

1

2
b̃e−iω′t + c.c. (2)

Here ω′ = 2Ω − ω is the four wave mixing frequency,
Ã is the large oscillation driver response, ã is the probe
response, and b̃ is the four-component response. (The
term four wave mixing is used in analogy with optics ter-
minology to describe the nonlinear process generated by
the cubic term in Eq. (1).) Weak vibration components,

such as that at 2ω − Ω, proportional to |ã|2Ã, are omit-
ted because they are much smaller than those that very
like |Ã|2ã vibrating at ω′ = 2Ω− ω. The probe response
function χ̃(ω) can be calculated from Eq. (2):

Re
[

χ̃ (ω) e−iωt
]

= Re [ã/αp] cosωt+ Im [ã/αp] sinωt.
(3)

The details of the probe response function calculation for
this Duffing oscillator, which results in four resonances,
are given in the appendix. As mentioned there the re-
sponse function can also be calculated as a fluctuation
spectrum.[46, 51] As to be expected from the fluctuation-
dissipation theorem the response function and the fluc-
tuation spectrum give the same information.
From Eq. A3 in Appendix A the response function

resonances are at

ωn = Ω±

√

√

√

√

Ω2 + ω2
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√
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∣
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where the bare nonlinear NF is ω2
nl = ω2

0 +
3
2ε

∣

∣

∣
Ã
∣

∣

∣

2

. The

positive sign under the radical in Eq. (4) gives two so-
lutions far from the driver frequency at ω ≈ −Ω and
3Ω. The solutions of interest are those near the driver
frequency Ω and equidistant from it. The imaginary
part of this response function has a positive peak above
the driver frequency, and a negative peak symmetrically
placed below it at a high amplitude state. The negative
peak becomes comparable in amplitude to the positive
one when the oscillating amplitude |Ã| is large. As ex-

pected, as |Ã| → 0, the positive peak approaches the lin-
ear NF ω0, and the negative response peak disappears.
For these two symmetrical resonances about the driver,
the upper one is the nonlinear NF because of its remain-
ing activity as |Ã| → 0 and because of its positive sign,
while the lower negative one is its nonlinear mixing part-
ner from the cubic term in Eq. (1) because of its disap-

pearance as |Ã| → 0. If either resonance is driven by
the probe oscillator, the other sideband is generated by
nonlinear mixing.
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FIG. 1. (a) The Duffing resonator amplitude as a function
of the driver frequency Ω/2π. (b) Imaginary part of the lin-
ear response curve at driver frequencies indicated by letters
in (a). Vertical dashed line indicates the linear resonance fre-
quency ω0/2π. Solid circles indicate driver frequency for each
spectrum. When the vibration amplitude is low as case ”A”,
the response curve has one peak at the dashed line. When the
driver frequency decreases from ”A”, it amplitude suddenly
jumps at the bifurcation point ”C”. During this approach, the
peak shifts towards the driver frequency. After the bifurca-
tion ”D”, there are two peaks one is positive above the driver
and the other is negative and below the driver. As decreasing
the driver frequency further ”E”, the negative peak becomes
smaller. When the driver frequency is very low as ”F”, there
is only one positive peak at the linear resonance frequency.
When the driver frequency increased from ”F” to ”H”, the
positive peak is always above the driver frequency till the
driver reaches to the other bifurcation, ”H”. The difference
frequency between the positive peak and the driver frequency
becomes small and the peak height diverges at the bifurcation
point ”H”. The curve for ”H” is reduced to 1/3. Parameters
are ω0/2π = 100 kHz,ǫ = 1 × 1020(1/m2s2), τ = 0.02(s) and
αd = 80(m/s2).

Figure 1 provides a general overview of the probe re-
sponse for the Duffing oscillator both in and out of the
AR states. The parameters used are similar to those
that apply to measurements associated with the AR-ILM
state. Figure 1(a) is the familiar amplitude versus fre-
quency curves. When the driver frequency is decreased
from above the previous bifurcation frequency toward
the linear resonance frequency the amplitude can sud-
denly jump from a low to large value. This is the case
studied in Ref. [48]. The results are also presented by
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Thompson and Stewart.[36] The imaginary part of probe
response curves for driver frequencies ”A”, ”B” and ”C”
in Fig. 1(b) correspond to these cases. Note that the NF
is lower than the driver frequency. The bifurcation takes
place when the beat frequency goes to zero so that the
nonlinear NF is suddenly in resonance. After the bifur-
cation, the positive peak for the NF appears above the
driver while a negative peak is observed below as shown
in the curve ”D” of Fig. 1(b). This is caused by to the
nonlinear mixing between the driver and the NF. When
the driver frequency is decreased further, only the NF
positive peak appears at the linear resonance frequency
ω0.

Conversely when the driver frequency increases from
”F” to above the linear resonance frequency ω0, the am-
plitude increases till the driver frequency reaches a bi-
furcation frequency ”H” where the amplitude drops sud-
denly to a small value. Here, we describe the sudden
drop at the high frequency bifurcation point in terms of
the NF. In the autoresonant state the NF = ωn is slightly
larger than the driver frequency. Note that the positive
peaks in the curves ”F” to ”H” are all higher than the
driver frequency. As the driver frequency increases the
NF increases but at a slower rate so that the beat fre-
quency decreases. At the bifurcation point, ωn − Ω = 0
and the amplitude of the NF frequency resonance takes
its maximum value. Its phase is shifted by -90 degree;
the same behavior as observed for a damped, linear res-
onator. Beyond this point the oscillator uncouples from
the driver, and the amplitude drops suddenly.

Another point of view considers the sidebands as
Stokes and Anti-Stokes lines.[51] However for this lat-
tice system, some positive peaks appear below the driver
frequency in the spectra because of the many degree of
systems, as we will see below. Thus, identifying them
in terms of the sign of the imaginary response is more
relevant than signifying them in terms of their relative
frequency position with respect to the driver. By dis-
tinguishing the positive peaks as resonances all the im-
portant resonant modes, including extended band modes
can be identified for the lattice system. These features
can be continued down to smaller amplitudes where pos-
itive response is found for the linear state. From this
perspective, all negative peaks are four-wave mixing (cu-
bic in the equation of motion) partners of corresponding
positive ones.

These two oppositely directed amplitude transitions
are often described as saddle-node bifurcations. When
approaching such a bifurcation point by changing the
driver frequency, an unstable solution approaches the sta-
ble solution; hence, the decrease in the beat frequency is
the signal of an approaching unstable solution. The van
der Pol plane[52] is a suitable way to consider the large
amplitude driver response and the small amplitude NF
in phase space, because this frame rotates with the driver
frequency. Figure 2(a) shows a typical phase plane for the
large amplitude driver response of a Duffing resonator.
It shows three fixed points; a stable high amplitude node

represented by the distance from the origin to the solid
dot, a stable low amplitude node near the origin and
an unstable saddle point. The high amplitude node and
unstable saddle approach each other at the top of this
figure with increasing driver frequency, the result is pair
annihilate at the bifurcation point. An elliptical curve in
Fig. 2(b) describes the orbit of the large amplitude driver
response, when it is perturbed by the probe at the nearby
NF frequency. The (period)−1 is the difference frequency
between NF and the driver, i.e., the beat frequency. The
orbit shape is elliptic due to the local dynamic prop-
erty around the fixed point. In Fig. 2(b), a relatively
large probe perturbation is applied to magnify the effect;
however, the perturbation actually is very small so that
a linear response function χ(ω) applies. The approach
of the unstable solution modifies the local environment
around the stable point. Since an orbit near the saddle
moves slowly, the rotation period of the ellipse becomes
longer when the driver frequency is closer to the bifurca-
tion point, i.e., the beat frequency decreases. Thus, the
NF intersecting the driver in frequency space and the
saddle-node bifurcation picture in the van der Pol phase
space provide complementary views of same transition.

III. EXPERIMENTAL SETUP

With the pump-probe experiments described here the
properties of a driven ILM near its bifurcation points
have been measured. Figure 3(a) shows the experimen-
tal setup. The driven micromechanical array contains 152
cantilevers coupled together by a common overhang. Be-
cause of the positive nonlinearity of the cantilever array,
the ILM is generated above the top of the linear disper-
sion curve. We designed a di-element array so that it
is possible to excite the highest frequency normal plane
wave mode with a uniform driver. Uniform excitation
is achieved easily by shaking the entire sample up and
down with a PZT(piezoelectric transducer) attached to
the sample bottom. Because of the mass difference be-
tween the short and long cantilevers in a unit cell uni-
form acceleration produces a different force on each. A
cw driver oscillator with frequency F feeds energy to the
array maintaining the ILM in the large amplitude AR
state. For linear response measurements an additional
weak probe oscillator with frequency f is used to per-
turb the array. The output of the probe oscillator is
combined with the strong driver and connected to the
PZT so the perturbation is applied uniformly across the
lattice. With an ILM present the motion of a nearby
single cantilever is monitored using a diode laser and a
position sensitive detector (PSD, Hamamatsu Photon-
ics). A lock-in amplifier or a digitizer is used to selec-
tively analyze the cantilever motion that is caused by
the probe oscillating at a given frequency. A response
spectrum is measured by scanning the probe frequency,
while the driver frequency is held fixed. By then chang-
ing the driver frequency in a stepwise fashion, the linear
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FIG. 2. (Color online)(a) Paths in the van der Pol phase
plane of the Duffing oscillator. Gray curves indicate paths at
a fixed driver frequency. The distance from the origin to the
open and closed circles show the amplitudes for the unstable
(saddle) and high amplitude stable (node) fixed points. A low
amplitude stable point is near the origin. Solid and dashed
curves with gray arrows illustrate movement of the high am-
plitude stable point and unstable point with increasing driver
frequency and merge at the top of this figure where saddle-
node bifurcation takes place. (b) An ellipse represents the
amplitude path of the driven excitation when the natural fre-
quency (NF) is excited by a weak probe. A series of magnified
elliptical paths are shown, each around the appropriate stable
point for a specific driver frequency. The driver frequency is
increased from 100 kHz to 100.4 kHz at 40 Hz step. Open and
closed circles are the unstable point and stable point in panel
(a) for a 100.24 kHz driver frequency. As the saddle-node bi-
furcation is approached the aspect ratio of the ellipse grows.
Parameters in Eq. (1) are ω0 = 105 × 2πs−1, τ = 0.01s,
ǫ = 1.97 × 1020s−2m−2, αd = 300m/s2, αp = 5m/s2 and
Ω = 1.000 to 1.040 × 105 × 2πs−1.

mode properties can be monitored as a bifurcation point
is approached.
With fixed boundary conditions, or via symmetry

breaking by the AR ILM state, all linear modes can be
classified into odd and even symmetries in terms of the
vibrating spatial pattern and appear alternatively when
ordered by their mode frequency. For example, the ILM
shown in Fig. 3(b) is odd and the linear localized mode
[LLM, in Ref. [15]] is even. In the absence of impurities
our method measures only odd modes, i.e., a vibration

PZT

F

cantilever
 array

LD

PSD
lockin amp.

beam splitter

f

reference

(a)

digitizer

(b)

ILM

even-LLM

FIG. 3. (a) Experimental set up for the linear response mea-
surement of the autoresonant (AR) state by the uniform probe
perturbation. Array is composed of alternating 50 and 55 µm
length cantilevers. The driver at frequency F and probe sig-
nal at frequency f are added and used to excite the array
uniformly by the thin piezoelectric transducer (PZT). A laser
diode (LD) illuminates a cantilever nearby the ILM and the
reflected beam is detected by a position sensitive detector
(PSD). The displacement signal is recorded by a digitizer or,
analyzed by a lock-in amplifier. A typical driver amplitude is
14V, while the probe amplitude is 12 mV. (b) Spatial pattern
of a large amplitude ILM and a small amplitude (magnified)
even mode LLM at a particular cantilever site.

pattern (... -0.4, 1, -0.4, ...) that have a finite coupling to
the uniform acceleration driver with the di-element mass
pattern. Even modes are not recorded in these spectra;
however, if impurities exist to one side of the ILM, the
broken symmetry makes the local gevenh mode observ-
able.

Observing a small probe signal near the frequency of
the ILM, which produces about 1000 times larger signal,
is a problem. In addition, any perturbation could cause a
drastic change in the vibration spectrum, such as broad
band chaotic noise, since the ILM is a nonlinear phe-
nomenon. For these reasons, we first examined the FFT
spectrum from the digitizer (12 bit) of the PSD signal.
Because of the limited bit width of the digitizer, we used
a slightly larger probe amplitude for this case. The FFT
spectrum of the ILM at a fixed probe frequency f and
driver frequency F is shown in Fig. 4(a). The large peak
at the center is the ILM vibration at the driver frequency.
The center peak height is normalized to 1 and the or-
dinate is magnified to see the weak structure produced
by the probe perturbation. The upper frequency nar-
row peak is the response of the probe. There is another
peak symmetric to the driver on the lower frequency side,
which is the four-wave mixing signal at 2F−f . By chang-
ing the probe frequency in a stepwise fashion, we obtain
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the spectral map as shown in Fig. 4(b). The two crossing
patterns connecting opposite corners identify fFFT = f
and fFFT = 2F − f , and they are due to the probe re-
sponse signal and four-wave mixing signal, respectively.
There are no other signals except the ILM. Figure 4(c)
shows the spectra deduced from the map of the signals
on the crossing lines. Two broad resonance structures
are seen: the upper one is the NF and the lower one is
its nonlinear mixing partner.
Figures 4(b-c) demonstrate that the probe causes a

small perturbation producing only two clean signals. The
signal on the line fFFT = f is the probe response spec-
trum. More importantly, Figs. 4(a-c) show that the
broad resonant structure in Fig. 4(c) is not due to the
spectral width of the driving oscillators used in these ex-
periments or by some nonlinear process, but due to a
real feature that should be assigned to the NF resonance.
Hereafter, a lock-in amplifier (ITHACO-NF 3961B) was
used instead of the digitizer and the measured signal at
the probe frequency was obtained with a combination
of two digital multi-meters connected to the cosine and
sine outputs. The internal AD converters of the lockin
amplifier cannot be used, because a small gain setting
of the amplifier is required to avoid saturation by the
ILM signal, and because the probe signal is too small for
the internal AD converters at such settings. However,
measurements with the external multi-meters presents no
problem since their ranges can be set independently. A
probe spectrum was taken at a fixed driver frequency.
We compared spectra taken by these two methods and
made sure that the lockin amplifier method produced the
same spectrum, then reduced the probe driver amplitude
to a small value consistent with a good signal to noise
ratio. The driver frequency is changed stepwise, and this
process is repeated over entire AR state.

IV. EXPERIMENTAL RESULTS

The AR ILM amplitude as a function of the driver
frequency F is shown in Fig. 5. The amplitude was mea-
sured using the setup in Fig. 3(a), with the reference
signal of the lock-in amplifier connected to the driver.
Generation of an ILM is made by chirping up the driver
frequency from the top of the optic band to middle of
the AR region. Because of the irreversible nature of the
AR state beyond the transition points, a measurement
sequence is initiated from the middle frequency region
(open circle), and the driver frequency is then step incre-
mented slowly up or down. The lower abscissa in Fig. 5
is the driver frequency normalized to the top of the linear
optic band frequency. The upper abscissa is the differ-
ence frequency between the driver F and the linear op-
tic mode frequency fT normalized by the optical band
width fBW . (This ratio provides a general measure of
the strength of the nonlinearity for this driven system.)
To reach the high amplitude state the driver frequency
must increase at a sufficient rate to cross over from the
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FIG. 4. (a) The ILM vibration spectra by FFT. Abscissa is
the difference frequency of the FFT frequency and the driver
frequency normalized by the bandwidth of the linear normal
mode. The center peak is the ILM. The spectrum is nor-
malized by its peak height, and magnified to see the small
structures. The probe perturbation is applied at a frequency
indicated by the arrow. There is four-wave mixing signal at
opposite side of the center peak. Two other peaks nearby the
center are spurious from the driver oscillator. (b) A probe re-
sponse map made from step scanned FFT spectra. Abscissa
is the driver-difference FFT frequency, and the ordinate is
the driver-difference probe frequency. The probe frequency
is changed stepwise, and FFT spectrum is obtained at each
step. This figure is made from 500 FFT spectra. The dark
vertical center structure is the ILM signal at the driver fre-
quency. There are signals on two lines crossing at the center.
The signal on fFFT = f is the probe response signal, and
the signal on the other straight line fFFT = 2F − f is by the
four-wave mixing. (c) Probe response spectrum (solid line)
and four-wave mixing signal (dashed line) as a function of the
probe frequency. These are calculated from the map.

low amplitude state, through the chaotic state to the AR
state.[53] With a slow scan of the driver frequency, the
AR state cannot be reached, as shown by the bottom
trace in Fig. 5. The middle trace is the result of scan-
ning down from above the upper bifurcation frequency,
showing that the AR state is a metastable state.

The measured linear response spectra for the AR state
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FIG. 5. Experimentally observed AR amplitude as a function
of the driver frequency F . Lower abscissa: driver frequency
normalized to the top of the optic branch. Upper abscissa:
difference frequency between the driver and the top of the
optic branch (fT = 140.0 kHz) normalized by the band width
(3.1 kHz). The stable AR region indicated by ”AR” is 140.46
kHz to 144.85 kHz, or 0.148 to 1.57 by the normalized differ-
ence frequency. First, the AR-ILM was generated by rapidly
chirping up the driver frequency from top of the band. Open
circle indicates the end frequency of the chirping, and it is
starting point of the measurement. From this point, the driver
frequency was either scanned down or scanned up. Lower two
curves are the results for scanning down or up from outside
of the AR state. The noisy amplitude in the low frequency
region is due to chaotic traveling ILMs. Curves are shifted
for clarity.

at different driver frequencies are presented in Fig. 6,
which show resonance peaks near the driver frequency
and also extended band modes. Movement of the res-
onance peaks towards the upper or lower bifurcation
points provide dynamical evidence for the bifurcation
mechanisms. The two strong sidebands shown in Fig. 6
are due to the NF of the AR state. (See simulations
in Section V for confirmation.) The probe spectra are
displayed with the driver frequency varying from 140.50
kHz to 144.85 kHz in 50 Hz intervals from bottom to
top. This range corresponds to 0.161-1.56 in terms of
the difference frequency normalized by the band width.
The higher frequency sideband is the NF while the lower
frequency one is its four wave mixing partner. The two
driver frequency limits shown are close to the upper and
lower bifurcation frequencies, and so the frequency range
essentially corresponds to the entire stable region of the
AR state. Note that the difference frequency of the side-
bands to the driver (the beat frequency) decrease and
the response grows as the driver frequency approaches
the upper bifurcation point. One of the weak satellite
features that appears near the low frequency transition
is an extended wave in the optic branch.

The NF beat frequency and its peak height are summa-
rized in Fig. 7(b)-(c) for the AR amplitude as a function
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FIG. 6. Experimental response spectra for the AR state as a
function of the normalized difference frequency. The gap fre-
quency of the large sideband peaks (beat frequency) decreases
and the response grows as the driver frequency approaches the
upper bifurcation point. Observed sidebands are produced by
a natural frequency (NF) of the ILM oscillation. Spectra are
aligned from 140.5 kHz to 144.85 kHz with 50 Hz step from
bottom to top (0.161 to 1.56 by the normalized difference
frequency (F − fT )/fBW ). The upper and lower frequency
limits are near the two bifurcation frequencies. Abscissa is
normalized by the bandwidth of the optic branch.

of the driver frequency shown in Fig. 7(a). The beat fre-
quency (solid) first increases, then decreases as the upper
bifurcation point is approached, as shown in Fig. 7(b).
The resonance amplitude first increases with driver fre-
quency, next decreases and finally increases rapidly as
the upper bifurcation point is approached. The decrease
in the middle region may be due to an experimental er-
ror because of the large oscillation amplitude of the ILM,
and because of suppressed gain of the middle stage of the
equipment affected by the large ILM signal. From this
figure, it is clear that the beat frequency decreases and
the amplitude diverges as the upper bifurcation point is
approached. On the other hand, there is no similar sig-
nature with regard to the bifurcation mechanism for the
lower bifurcation point in this figure.

By plotting the imaginary part of the linear response
spectrum as a function of the probe frequency for fixed
driver in Fig. 8 the results can be used to explore the
lower bifurcation point. The large symmetrically located
positive and negative peaks are due to the NF and its
mixing partner. There are several small resonant struc-
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FIG. 7. (a) AR amplitude of the ILM as a function of the
driver frequency. (b) The NF (solid) and the even LLM
(dashed) beat frequencies as a function of the driver fre-
quency. The data show that the NF approaches the driver
frequency at the upper bifurcation point while the LLM fre-
quency does not. (c) NF peak height as a function of the
driver frequency. It diverges at the upper bifurcaiton point.
The peak height doesn’t increase monotonically over part of
the region due to an experimental problem giving a lower sen-
sitivity of the probe amplitude at the larger ILM condition.

tures below its lower sideband peak. As the lower bi-
furcation point is approached, one of them crosses the
lower sideband peak of the NF. By comparsion with sim-
ulations (below), we identify this mode as an even-LLM,
while the other mode, relatively far from the lower NF, is
an extended band mode. The even mode is not activated
by the unifrom driver so it cannot be measured normally
with this technique; however, it may be activated by an
impurity or imperfection. The probe laser can be a source
of such an impurtiy, since it is sharply forcused to one
side of the ILM. The dashed curve in Fig. 7(b) shows
the driver frequency dependence of the even LLM. From
experiments shown in Fig. 8 the lower bifurcation takes
place when the lower NF reaches the band mode.
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FIG. 8. Experimental imaginary part of the response as a
function of the normalized difference probe frequency. Spec-
tra near by the lower bifurcation are ordered by the driver
frequency from 0.355 to 0.161 at 0.016 steps. The large peak
at the center is the ILM signal. ”NF” denotes natural fre-
quency peak, and letters inside parentheses are for their four-
wave mixing partners. The lower bifurcation takes place at
0.148. The even LLM is identified between the band mode
and the lower (NF). It is activated weakly by an asymmetry
caused by the probe laser heating or an impurity. The even
LLM crosses with the lower NF. Band modes are seen as a
sequence of small peaks and the mark ”band” is placed at the
highest frequency mode. The lower bifurcation takes place
when the lower (NF) coalesces with the band mode.

V. SIMULATIONS

A lumped element model of the cantilever array is used
for simulations with equations of motion of the form:

mi
d2xi

dt2
+ mi

τ
dxi

dt
+ k2Oixi + k4Ox

3
i

+
∑

j

k
(j)
2I (2xi − xi+j − xi−j)

+k4I

{

(xi − xi+1)
3
+ (xi − xi−1)

3
}

= miαd cosΩt+miαp cosωt

(5)

where i is the site number of the cantilever, mi is the
mass, τ is the relaxation time, k2Oi and k4O are har-

monic and quartic onsite spring constant, k
(j)
2I is the har-

monic spring constant for the intersite connection up to
6-th neighbor, and k4I is the quartic spring constant for
the intersite connection. The right hand side is the driv-
ing term. Here to match experiment αd = 1000m/s2

is the driver acceleration and Ω is the driver frequency.
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FIG. 9. (a) Simulated AR-ILM amplitude as a function of the
driver frequency with driver appropriate to the experimen-
tal level. AR region is identifyied between two transitions at
edges. The stable frequency region is 137.56 to 146.54 kHz, or
0.102 to 2.29 by the normalized difference frequency. (b) Am-
plitude vs. driver frequency for different chirping or starting
conditions.Top trace: fast frequency rate required to reach the
AR-ILM state. Bottom two traces: slow up and down scan-
ning, no AR state occurs. The top of the band frequency is
137.14 kHz and the band width is 4.1kHz. Curves are shifted
down for clarity.

The second term is for the probe at frequency ω and
acceleration amplitude αp = 0.01m/s2. Fixed boundary
conditions are used and the total number of cantilevers is
100. The specific lattice parameters, listed in Table I, are
determined by experimental observation and comparison
with simulations.
Figure 9(a) shows the calculated amplitude of the AR-

ILM as a function of the driver frequency. It is obtained
by decreasing or increasing the driver frequency from the
middle of the AR-ILM frequency region. Below the lower
bifurcation frequency exists the low amplitude, no ILM
state. On the other hand, Fig. 9(b) presents results of
simulation starting from the no-ILM, low amplitude state
while changing the driver frequency either up or down.
The AR-ILM state is achieved only when the driver fre-
quency is chirped up rapidly to pass through the low am-
plitude state. At a slow speed of scanning, the end result
is no ILM as shown by bottom traces in Fig. 9(b). When
the driver frequency decreases from above the upper bi-
furcation frequency, the low amplitude state is main-
tained through the AR frequency region. The small am-
plitude at the bottom curve in Fig. 9(b) illustrates where
chaotic traveling ILMs can be realized.
The calculation of the response spectrum is carried out

in a manner similar to the experiments. First, the ILM
is generated. Then, the uniform probe is applied. Dis-

placement at the center site of the ILM is multiplied by
cosine and sine functions vibrating with the probe fre-
quency. Two set of simulations with opposite phases of
the probe driver are made, then by subtracting one from
the other the large oscillation component produced by
the ILM can be eliminated. The long time average of the
cosine and sine multiplied displacements gives the real
and imaginary parts of response functions and then by
changing the probe frequency slowly, the response spec-
tra are calculated.

Figure 10 presents the magnitude of the linear response
spectra as a function of the normalized beat frequency
between the driver and the probe. The traces are for
different driver frequencies throughout the entire stable
AR region. As the upper bifurcation point is approached
at the top of the figure, the two symmetric peaks, the
NF and its mixing partner, move toward the driver fre-
quency, at the center, and their amplitudes increase. As
the lower bifurcation point is approached at the bottom
of the figure the mixing partner of the NF moves toward
and finally intersects the top most band mode of the ar-
ray. The band modes are magnified by 20 fold to make
them visible on this plot.

The driver frequency dependences of two different
kinds of beats are shown in Fig. 11. In these plots the
abscissa presents the driver frequency with respect to the
top of the band mode spectrum normalized by the band-
width of the optic branch. This provides a normalized
measure of the nonlinearity. In Fig. 11(a) the amplitude
of the center of the ILM for two different driving acceler-
ations, αd = 300m/s2 and αd = 1000m/s2 are displayed,
defining the corresponding AR state. In Fig. 11(b) the
normalized beat frequency of the NF (solid) and LLM
(dashed) are shown for αd = 1000m/s2. Note that
the NF beat decreases as the upper bifurcation is ap-
proached. The peak height displayed in Fig. 11(c) di-
verges as the beat frequency decreases. (Note there is
a small sudden rise of the beat frequency and the peak
height in Figs. 11(b) and (c) at the lower bifurcation
point.)

With no clear evidence of the lower bifurcation in
Fig. 11, and because of experimental evidence of the in-
teraction between the band mode and the NF in Fig. 8,
the imaginary part of linear response spectrum is plot-
ted in Fig. 12 for all modes. Different from the spectra
shown in Fig. 10, the probe perturbation is now applied
to one lattice point (site 47) that is the next short can-
tilever site to the center of the ILM (site 49). With this
one lattice point driving, all modes are excited including
the even LLM. The vibration at the perturbation site is
analyzed to calculate the response spectra. The spectra
are aligned from high to low normalized driver difference
frequency (F −fT )/fBW , numbers from the top, and the
spectrum at the bottom is very close to the lower bifur-
cation point. Initially the even LLM is outside of the NF
partner peak. When decreasing the driver frequency, this
even LLM crosses the NF partner peak. Dashed curves
are magnified band mode spectra that appear below the
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TABLE I. Parameters used in simulations. Values are the same as in Ref. [24].

symbol mi k2Oi k
(j)
2I τ k4O k4I

(kg)a (N/m)a (N/m)b (s) (N/m3) (N/m3)
value 7.67 × 10−13 0.142277 0.0828453 8.75× 10−3 1.0× 108 4.0× 1010

6.98 × 10−13 0.168389 0.0308231
0.010831

0.00404721
0.00249521
0.000823741

a Upper row is for the longer cantilever, lower is for the shorter cantilever.
b Listed from nearest neighbor to 6th nearest.
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FIG. 10. (Color online)Linear response spectra of the AR
state as a function of the probe frequency. These are aligned
by the driver frequency from bottom to top. The entire sta-
ble frequency region of the driver frequency is shown, i.e.,
137.6kHz to 146.4kHz, or 0.112 to 2.26 by the normalized
difference frequency (F − fT )/fBW . The uniform probe per-
turbation is applied in simulations. At the upper bifurcation
point, the natural resonance beat frequency softens and its
peak height diverges. At the lower bifurcation point, the
lower natural resonance peak overlaps with the top of the
band modes, shown as small peaks near the bottom of the fig-
ure. The AR transition occurs when this linear mode overlaps
via 4-wave mixing. The band mode response near the lower
bifurcation region are magnified 20 times. αd = 1000m/s2.

lower NF partner. The lower bifurcation point occurs
when the lower NF partner coalesces with the top most
band mode.

Vibration eigenvectors of the ILM, the NF, and the
even LLM are shown in Fig. 13 for two driver frequen-
cies, one of them is very close to the lower bifurcation
point and the other is very close to the upper bifurcation
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FIG. 11. (a) ILM center amplitude as a function of the driver
frequency relative to the top most band mode frequency nor-
malized by the optical bandwidth. For αd = 1000m/s2 two
different bifurcation points are identified by the sudden drops
in amplitude. For αd = 300m/s2 no sudden drop of the am-
plitude at the lower AR side. (b) Normalized beat frequency
between the driver and the NF (solid) and the even LLM
(dashed) forαd = 1000m/s2. (c) The peak height of NF beat
for the case αd = 1000m/s2. It diverges as the upper bifurca-
tion frequency is approached. (d) NF (solid) and even LLM
(dashed) beat frequencies forαd = 300m/s2. In this case, the
even LLM soften before the lower NF beat intersects the top
band mode at the lower bifurcation point.
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FIG. 12. (Color online)Imaginary part of the response spec-
tra near the lower bifurcation point as function of the probe
frequency. From top to bottom, the driver frequency is de-
creased toward the lower bifurcation point. The lower bi-
furcation happens when the lower (NF) and the band mode
coalesces. αd = 1000m/s2. To see all modes, probe pertur-
bation is applied only next short cantilever site (site 47) of
the ILM (site 49). Vibration is analyzed at the same pertur-
bation site. Lower parts of spectra are magnified 10 times to
see band modes. As the lower (NF) approaches the lower bi-
furcation point (bottom trace), the peak heights of the (NF)
and the band mode are enhanced. At the middle of this pic-
ture, the lower (NF) peak and the even LLM cross without
interaction.

point. Both vibration shapes for upper and lower side-
band peaks are shown. These are obtained by averaging
snapshots at the maximum response instant over a few
thousand periods of vibrations. Because of the cosine
probe driver, the maximum response appears a quarter
period delayed in each period. Only snap shots at these
moments are accumulated. Again two simulations with
opposite probe phase eliminate by subtraction most of
the large vibration of the ILM. The same method is used
in the response calculation so the NF mixing partner la-
beled (NF) in Fig. 13 is upside down with respect to the
NF.

When the driver frequency is large, the ILM has a large
amplitude and is narrow in width. The NF has the lowest
beat frequency for this case. The ILM generates at least
two LLMs, the even LLM is next to the NF and the odd
LLM extends outside of the even LLM. For both even
and odd shaped LLMs, the lower peaks are due to the
LLMs and the upper peaks are four-wave mixing results
with the ILM. The shape of the upper odd LLM is very

similar to the ILM, because it is strongly affected by the
shape of the ILM. When the driver frequency approaches
the lower bifurcation point, i.e., the ILM becomes smaller
and wider. The odd LLM is extended and looks like a
band mode, i.e., its frequency is very close to the top of
the optic band. In both frames, the NF shape is very
similar to that of the ILM. On the other hand, its mixing
partner labeled ”(NF)” in the left panel near the lower bi-
furcation point is clearly different from that of NF. Since
the frequency of the (NF) is very close to top of the band
at the lower bifurcation, its shape is distorted by inter-
action with the optic band.
Another distinct feature, seen in Fig. 13, is the differ-

ence in shape between the odd-LLM (or the top band
mode) at the bottom of each panel, and their mixing
partner shown at the top of each panel. As shown here,
the mixing partner (upper) shape now resembles the
ILM. This narrower shape is generated by the nonlin-
ear mixing the odd-LLM with the ILM, and since the
ILM only exists locally the nonlinear mixing can only
take place at the lattice points where the ILM exists.

VI. DISCUSSIONS

A. Upper bifurcation point for an ILM and a

Duffing resonator

At the upper bifurcation of an ILM, the NF frequency
approaches the driver frequency and its amplitude di-
verges. Simulations show good agreement with the exper-
imental results. Clearly the NF itself plays an important
dynamic role at the upper bifurcation point. In addi-
tion the driven ILM amplitude behavior with frequency
is similar to that found for the Duffing oscillator, com-
pare Figs. 5 and 9(a). Also the behavior of the ILM NF is
quite similar to that found for a single Duffing oscillator,
as described in Section II and Appendix A. At the bifur-
cation for both the ILM, and the single Duffing resonator,
as shown in Eq. (A.7), the beat frequency between the
driver and the NF goes to zero at the transition.
More evidence of an NF for the driven ILM is their

similar shapes shown in Fig. 13. In contrast, LLMs have
a completely different form than the ILM consistent with
the expectation that a deformation vibration of the ILM
requires the excitation of LLMs. At the same time, the
similar shape in Fig. 13 means that the perturbed motion
of the NF does not cause shape deformation of the driven
ILM. Since there is only one degree of freedom in the
single Duffing resonator, this shape resemblance between
the NF and the ILM suggests the NF in both systems are
similar.
To see the resemblance of the two systems more clearly,

we plot the ILM center amplitude in a van der Pol plane
that is usually used to analyze the Duffing oscillator.[52]
Although the ILM has many degrees of freedom, only the
amplitude of the center site of the ILM is monitored, be-
cause the ILM and its NF only differ in phase. To make
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FIG. 13. Normalized vibration shapes of ILM and LLMs aligned by their peak frequencies. Left panel is for a driver frequency
nearby the lower bifurcation(F − fT )/fBW = 0.137 (137.70 kHz) and right panel is for nearby the upper bifurcation (F −

fT )/fBW = 2.16 (146.00kHz). αd = 1000m/s2. Letters indicate names of modes, and letters with parentheses are for peaks
generated by the four-wave mixing with the mode and the ILM. For the high frequency case (right), even and odd LLMs exist
below the ILM. For the low frequency case (left) the odd LLM merges into the band and becomes the top band mode. In
addition, the frequency of the even LLM is closer to the ILM than is the NF.

the comparison the sine amplitude of the ILM displace-
ment is plotted as a function of the cosine component,

xi = a cosΩt+ b sinΩt (6)

where xi is the displacement at the center and a and b
are cosine and sine coefficients. The results are shown in
Fig. 14 where, just like Fig. 2(b), the ILM amplitude at a
particular instant is described by an arrow from the origin
to a point on the elliptical trajectory for a particular driv-
ing frequency and the area of the ellipse is related to the
amplitude of the NF, which is driven by the weak probe.
Note that at large amplitudes the major axis of the el-
lipse is along the theta direction of an origin-centered cir-
cle (dashed curve) indicating that the NF accompanies
the phase oscillation of the ILM. Our conclusion is that
the dynamics of an ILM in a micromechanical array as
the upper bifurcation point is approached is the same as
that previously described for a single Duffing oscillator.

B. Mechanism of the lower bifurcation

The mechanism of the lower bifurcation is different
from the upper one. It is related to the interaction be-
tween the NF and the band mode. This can be seen
most easily by examining Fig. 15. As the ILM frequency
increases with amplitude the upper and lower NF fre-
quencies depend on the ILM amplitude, and the beat

frequency softens when approaching to the upper bifur-
cation point. At the lower bifurcation point, the lower
(NF) four wave mixing peak intersects the band mode.
Although the even LLM is very close to the driver fre-
quency around the lower bifurcation point it does not
play a role in the transition because the NF has odd
symmetry.
The key to understanding the lower bifurcation is again

the NF. The enhancement of the NF-response peak can
be understood as follows. The NF is the positive peak on
the high frequency side of the ILM. Vibration at the up-
per sideband peak generates a four-wave mixing signal
at the lower (NF) peak. If the lower (NF) peak coa-
lesces with the band mode frequency, the four-wave mix-
ing signal of the upper NF resonates with it, and the
resonance reduces the damping. This signal is four-wave
mixed again with the large amplitude ILM and ampli-
fies the upper NF signal. The net gain can be far larger
than before coalescence and if the net gain overcomes the
loss, the coupled NF and band modes grow without any
driving source. Thus, the response diverges.
This process is the same as parametric oscillation by

four-wave mixing, that produces two different frequen-
cies ω1 and ω2 from the large amplitude vibration at Ω
simultaneously when these frequencies satisfy a relation
ω1+ω2 = 2Ω . A similar nonlinear process occurs in para-
metric oscillators and amplifiers where three-wave mixing
ω1+ω2 = Ω process is usually employed.[54, 55] Signals at
ω1 and ω2 are called signal and idler, and some paramet-
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FIG. 14. (Color online)Sine coefficient b vs. cosine coefficient
a (van der Pol phase plane) of the probe perturbed ILM.
The driver frequency is changed from (F − fT )/fBW = 0.137
(138kHz) to 2.161 (146.4 kHz) with 0.098 (0.4 kHz) step. The
probe frequency is set at each NF for different driver frequen-
cies. The stable fixed point located at each center of each
ellipse moves circularly upwards as the driver frequency is in-
creased, and approaches a = 0. The dashed curve is a quarter
circle with its center at the origin. Ellipses are along at theta
direction, showing that the NF causes phase oscillation of the
ILM. To see these ellipses, relatively larger probe excitation
amplitude 10m/s2 is used. The small ellipse for 2.161 is due
to off resonance by the sideband response nonlinearity with
the larger probe excitation amplitude.

ric oscillators have resonators to enhance the parametric
process. For the ILM case, the NF can be one of the res-
onators and, the band mode can be another resonator.
Since ω1 and ω2 are symmetric to the driver frequency
for ω1 + ω2 = 2Ω, the coalescing of the lower peak of
the NF and the band mode producing the idler and the
resonating signal. If this process takes place, the driver
energy is effectively converted into these modes, and auto
oscillation will be observed producing divergence of the
response peak.

A theoretical study about the lower bifurcation reveals
that it is a stability transition bifurcation.[22] Before the
bifurcation, there are stable ILM and low-amplitude so-
lutions. At the bifurcation, the stable ILM changes from
a sink to a saddle with the remaining low amplitude sta-
ble solution. Thus, the ILM disappears and only the low
amplitude state is realized.[22] From our study, the di-
vergence of the amplitude of the NF is observed, which
corresponds to the conversion of the spiral sink to a spiral
source in the van der Pol phase space. The theoretical
work predicts conversion to the saddle in the full phase
space, while we observed switching to a source in a lower
dimensional sub-space of the full phase space, consistent
with the theoretical work.

Figure 15 also suggests the existence of another kind
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FIG. 15. (Color online)ILM, NF, even LLM and odd LLM
frequencies as a function of the ILM amplitude (frequency)
for fixed αd = 1000m/s2. Lower bifurcation takes place when
the lower peak of the (NF) touches the optic band. At a low
driving amplitude such as αd = 300m/s2, the gap frequency
of the even LLM softens before touching of the lower (NF)
and the ILM begins to move laterally.

of bifurcation when the even LLM softens faster than the
coalescence of the band and the lower NF peak, although
we haven’t observed such a case experimentally. We have
explored numerically the parameter space and found that
such a case happens with lower driver amplitude, αd =
300m/s2. In this case, there is no low amplitude state
as shown in Fig. 11(a). The ILM smoothly goes into the
chaotic region when the driver frequency is decreased in
simulations. The softening of the even LLM is consistent
with the removal of the ILM pinning effect.

C. Application of the natural frequency

measurement

There are two applications that come to mind. (1) For
any driven, damped systems, the NF of a nonlinear exci-
tation is to be expected if it has a stable fixed point in a
van der Pol phase space. A four-wave emission spectrum
[by Eq. (A.8)] can be used to observe such an NF. For
example, Kollmann et al. studied the stability of solitons
in a discrete, driven, damped nonlinear Ablowits-Ladik
Schrödinger equation.[56] Since bifurcation is realized at
the edge of stable region an NF should provide a well
defined marker of the incipient transition. (2) A quan-
tum oscillator system may provide another application.
There is a similar sideband structure in an emission spec-
trum of a driven quantum oscillator,[57] indicating that
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the NF may exist in a quantum lattice. ILMs in quan-
tum lattices have been studied theoretically[58–62] and
experimentally.[63–68] In those systems, observation of
the NF could be used to study the approach to bifurca-
tion.
Although our linear spectroscopic measurement of the

NF identifies properties near the stable point, if a barrier
height can be obtained for a transition from the stable
state to another stable state, it may be helpful for ap-
plications, such as exploring stochastic resonance. If the
barrier height can be estimated from such a response ex-
periment then ILMs can be used to explore stochastic
resonances, bifurcation amplifiers, or other information
processing in arrays.

VII. CONCLUSION

Once the natural frequency (NF) of a nonlinear oscil-
lator is identified in terms of its asymptotic limit as the
driver and damping simultaneously go to zero (so that
its amplitude remains fixed) then the resonance plays the
same role as the natural frequency for a driven harmonic
oscillator without damping. One of the main findings of
this work is that this idea carries over to a discrete non-
linear lattice with many degrees of freedom. By experi-
mental measurement and simulations it has been shown
that the NF plays key, but different, roles in the two bi-
furcation transitions observed there. We have shown that
observing the linear response spectrum via a variable fre-
quency probe perturbation on a strongly driven nonlin-
ear mode is very useful for experimentally studying the
approach to the switching transitions. The two bifurca-
tions of the AR-ILM observed in the cantilever array are
studied both experimentally and numerically. The driver
frequency is the variable parameter with which to reach
the bifurcation regions that occur at both edges of the
stable AR driver frequency range. The NF of the ILM is
observed as a sideband pair symmetrically located about
the driver frequency. Other linear features observed with
this technique are an even-linear local mode, and the top
most band modes. At the upper bifurcation, the NF
peak approaches the driver, as measured by the soften-
ing of the beat frequency between the two. At the lower
bifurcation point, the position of the four wave mixing
partner of the NF coalesces with the top most band mode
of the same symmetry and the NF amplitude diverges.
The nonlinear mixing of these two modes causes auto os-
cillation of the NF and the ILM again becomes unstable.
The tracking of the NF of the ILM is the key ingredient
in identifying the approach of both transitions.
In the language of the phase space representation for

this nonlinear lattice, this linear probe spectroscopy mea-
sures the local property nearby the stable ILM state as
a response spectrum. For the upper bifurcation case, the
saddle-node bifurcation of pair annihilation of the stable
and the unstable solution causes softening of the phase
oscillation in the van der Pol phase space, that is a 2D

projection of the full phase space for considering the NF
of the ILM. For the lower bifurcation case, it is the tran-
sition of the stable ILM solution to the saddle in this
phase space. The auto oscillation of the NF indicated by
the divergence of the peak amplitude is the sign of con-
version from a stable sink to an unstable spiral source in
the van der Pol phase plane.
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Appendix: Driven Duffing oscillator and its natural

frequency

Equation (1) is the model equation of the single Duff-
ing oscillator. The driver Ω is set near its fundamental
resonance and a probe (ω) spectrum response is obtained
near this driver frequency. Inserting Eq. (2) into Eq. (1)
and retaining terms that oscillate near the driver fre-
quency, one finds
(
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(A.1)
where γ = 1/τ . By equating each oscillating terms, the
three resulting equations are
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Equation (A.2a) is the driver response. Where three so-

lutions are possible for Ã , the high amplitude solution is
taken among them. From Eqs. (A.2b) and (A.2c) , the
probe response function can be calculated as

χ̃ (ω) = ã
αp

= 1

(ω2
nl

−ω2−iγω)− 9
16

ε2|Ã|4 1

(ω2
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−ω′2+iγω′)
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0
(ω′)

(A.3)
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FIG. 16. Real (upper) and imaginary (lower) parts of ana-
lytical (solid) and simulated (dashed) sideband response for
a single Duffing resonator as a function of probe frequency.
αd = 2000m/s2 and αp = 0.01m/s2. Simulated response
is obtained by eliminating the large amplitude oscillation by
taking difference of opposite probe phase simulations. The
result is divided by the prove driver strength. Upper peak is
larger than the lower peak, and has positive imaginary part.

where χ̃0 (ω) =
1

ω2
nl

−ω2
−iγω

and ω2
nl = ω2

0+
3
2ε

∣

∣

∣
Ã
∣

∣

∣

2

. Real

and imaginary parts of the response functions are given
by χ̃ = χ1 + iχ2.

Note that the nonlinear frequency shift of ã and b̃
is twice that of Ã . This result is analogous to that
in a nonlinear glass fiber where the phase shift due to
a cross-phase modulation is twice that for self phase
modulation.[69] It is this mechanism that makes the NF
frequency dependence different from that of the driving
frequency. It is Eq. (A.2c) that brings the natural reso-
nance close to the driver.

The solid curves in Fig. 16 show the real and imag-
inary parts of the analytical response curve described
by Eq. (A.3). Values of the parameters used through-
out this appendix are τ = 0.01s, ω0 = 2π × 105s−1 and
ǫ = 1.97 × 1020s−2m−2. The dashed curves in Fig. 16
show the corresponding curves by simulations. For the
probe driver, we have used typically αp = 0.01m/s2 . To
eliminate the large amplitude vibration oscillating at the
driver frequency, we made two sets of simulations with
opposite probe phase keeping the driver the same. The
resultant difference between the two simulations contains
only the effect of the probe. Then, the remaining dis-
placement is multiplied by cosωt or sinωt and averaged
over a certain time (like a lock-in amplifier) to obtain real
and imaginary parts of the probe response. By changing
the probe frequency, real and imaginary parts of the re-
sponse spectra are calculated. Figure 16 shows real and
imaginary parts of the probe response. The curves in
Fig. 16 show good agreement between analytical solution
and simulations. The small difference between them is
due to scanning the probe frequency at a non-zero speed.

Similar sideband curves are obtained by Dykman et al.
in Refs. [46, 70]. They studied the Duffing oscillator as

a foundation for a stochastic resonance situation. Since
noise plays important role in the stochastic resonance,
they calculated a spectral density of vibration analyti-
cally (Eq. (19) in Ref. [46]). Although their equation
is somewhat more complex than ours, it reproduces our
sideband curve, the beat frequency and peak height well,
if we calculate the spectral density only the high ampli-
tude state (j = 3 in their notation) in their Eq. (19).
The beat frequency ωb is calculated from the denomi-

nator of Eq. (A.3) by setting its real part to zero, ignoring
the damping γ. The result is

ωb = ωn − Ω

=
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2
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4 . (A.4)

The beat frequency is related to the stability of the
stationary state. For the Duffing equation, the stability
can be checked by evaluating perturbed equations at the
stationary state [Ch. 4.1 in Ref. [71], or Ch.7 in Ref.
[72]]. For example, from the equation of motions for a(t)
and b(t) (Eqs. (7.16 and 7.17) in Ref. [72]), and their
linear approximated equations, (Eq. (7.21) in Ref. [72]),
one can obtain a second order derivative equation with
one variable by inserting one of the linearized equations.
The oscillation frequency can be calculated as
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4
]

. (A.5)

The beat frequency by Eq. (A.4) can be approximated
to Eq. (A.5) by using the fact ωb << Ω, ωnl. There is
not much difference in the driver frequency dependence
of the beat frequency between these two equations.
The single Duffing resonator has one bifurcation point

with increasing frequency for the AR high amplitude
state, where the amplitude drops suddenly. The beat fre-
quency by Eq. (A.5) decreases as it is approached. The
bifurcation frequency is calculated from Eq. (A.2a) as
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Ã
∣

∣

∣

2

. (A.6)

Inserting this result into Eq. (A.5) gives zero frequency
so
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(A.7)
Figure 17 shows the natural resonance frequency as a

function of the driver frequency. Solid and long dashed
curves in Fig. 17(a) are the stable and unstable solutions.
Dotted curves are upper and lower natural resonance fre-
quencies, as a function of the amplitude. To find those
frequencies, determine the amplitude at a given driver
frequency first (open circle). Then, draw a horizontal
line. See two crossing points with the dotted curves (solid
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FIG. 17. (Color online)(a) The driver response and the NF
as a function of the driver frequency of the Duffing resonator.
αd = 1000m/s2. Solid curve is the stable driver response am-
plitude, and long dashed curve is the unstable branch. Dotted
curve is the natural resonance curve for the high amplitude
solution. Inset is the magnified picture at a middle range, it
shows how to find the natural frequency. For a given driver
frequency, find a point (open circle) on the driver response
curve indicated by the solid curve. Draw a horizontal line
and find crossing points with the dotted curves. These points
indicate the natural frequency at the amplitude determined
by the driver frequency. As the amplitude decreasing, the
upper natural frequency peak is approaching the linear reso-
nance peak. When the driver frequency is nearby the linear
resonance frequency, the lower peak is very small and the up-
per peak is dominant. Note that the position of the natural
frequency peak is different from the unstable solution. (b)
The beat frequency of the natural frequency as a function of
the driver frequency. It goes to zero as approaching to the up-
per bifurcation. (c) The peak height of the natural frequency
as a function of the driver frequency. It diverges at the upper
bifurcation point.

circles). These frequencies are the natural resonance fre-
quencies. Figure 17(b) is the beat frequency. It increases
first, then goes to zero at the upper bifurcation point.
Figure 17(c) is the peak height. It gradually increases at
lower frequency, but diverges at the bifurcation point.

Although Eq. (A.3) gives the response for the high am-
plitude state, it can be applied to the low amplitude state
by using the low amplitude solution among three solu-
tions of Ã. In this case there is only one resonance peak
below the driver frequency, nearby the linear resonance
frequency. Because of the low amplitude of the driver
response, and because of weak four wave mixing process,
the other peak is not seen in the spectrum. As the driver
frequency decreases approaching a low to high bifurca-
tion point, the NF peak approaches the driver frequency
and the amplitude jumps to high amplitude.[36, 48]

In addition, the four-wave emission spectrum can be
calculated from Eq. (A.2) as follows.

χ̃emission (ω) = b̃
αp

= − 3
4εÃ

2χ̃ (ω′) ã∗

αp

=
−

3
4
εÃ2χ̃(ω′)χ̃∗

0(ω)

1− 9
16

ε2|Ã|4χ̃∗

0
(ω)χ̃0(ω′)

.
(A.8)

Because of very similar denominator of Eq. (A.8) to
Eq. (A.3), the emission spectrum has the same two peak
structure as the response function when the amplitude
|Ã| is large. Such sidebands have been observed in a four
wave emission spectrum of the driven antiferromagnet,
C2H5CH3(CuCl4)2.[66, 73]
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