
This is the accepted manuscript made available via CHORUS, the article has been
published as:

Combination of equiprobable symbolization and time
reversal asymmetry for heartbeat interval series analysis

Fengzhen Hou, Xiaolin Huang, Ying Chen, Chengyu Huo, Hongxing Liu, and Xinbao Ning
Phys. Rev. E 87, 012908 — Published 14 January 2013

DOI: 10.1103/PhysRevE.87.012908

http://dx.doi.org/10.1103/PhysRevE.87.012908


Combination of equiprobable symbolization and time reversal asymmetry 

for heartbeat interval series analysis 

Fengzhen Hou,1, 2 Xiaolin Huang,1* Ying Chen,1 Chengyu Huo,1 Hongxing Liu,1 Xinbao Ning1** 

1 Institute of Biomedical Electronic Engineering, School of Electronics Science and Engineering, 

Nanjing University, Nanjing, 210093, China 

2 Information Management Teaching and Research Center, Department of Science, China 

Pharmaceutical University, Nanjing 210009, China 

 

Abstract: 

Symbolic dynamics method and time reversal asymmetry analysis are both important 

approaches in the study of heartbeat interval series. However, there is limited research 

work reported on combining these two methods. We provide a new method of time 

reversal asymmetry analysis which focuses on the differences between the forward 

and backward embedding ‘m-words’ after the operation of equiprobable 

symbolization. To investigate the total amplitude as well as the distribution features of 

the difference, four indices are proposed. Based on the application to simulation series, 

we found that these measures can successfully detect the time reversal asymmetry in 

chaos series. With the application to human heartbeat interval series (RR series), it is 

suggested that the distribution features of the forward-backward difference can 

sensitively capture the dynamical changes caused by diseases or aging. In particular, 

the index DE , which reflects the random degree of the forward-backward difference 

distribution, can significantly discriminate healthy subjects from diseased ones. We 

conclude that RR series from the health shows more asymmetry in temporal structure 

in the original time scale from the perspective of equiprobable symbolization, whereas 

diseases account for the loss of this asymmetry. 
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1. Introduction 

Time reversal asymmetry (TRA), which refers to the significant change of the 

statistical properties after time reversal [1-10], is closely related to the nonlinear 

dynamics or the non-Gaussian characteristics [1, 2].  

The regulation of cardiac rhythm is a highly complex nonlinear process, which 

involves various inputs and multiple feedbacks [10, 11]. The heartbeat time series (RR 

series), which are defined as the sequence of time intervals between consecutive R 

peaks in the Electrocardiogram ( ECG ), have drawn much attention in the field of 

nonlinear dynamics analysis [12]. Recently, TRA has been demonstrated as one of the 

most important nonlinear characteristics of RR series by many researchers [3-9, 13, 

14].  

In the previous researches on TRA of RR series [3-9, 13, 14], people generally 

focused on evaluating the difference between the increments (denoted as ΔRR+ in 

the following) and the decrements (denoted as ΔRR- in the following) of consecutive 

RR intervals. For example, Costa et al. suggested comparing the Shannon entropy of 

ΔRR+ and ΔRR- over multiple scales [3]. Porta et al. advised to count the 

occurrences of ΔRR+ and ΔRR- and value their percentage difference [4-6]. Guzik 

et al. provided an index to differentiate the square of ΔRR+and the square of ΔRR-  

[7-8]. Hou et al. proposed to simultaneously inspect both Porta’s and Guzik’s indices 

under multiple temporal scales and high-dimensional embedding [13-14]. 

In 2007, TRA of symbolized RR series was taken into analysis by Commarota et al. 

for the first time [9]. By setting the symbolization threshold to 10±  ms, they firstly 

coded the one order differential RR series to ternary symbolic series with the three 

symbols of -1, 0, and 1. Subsequently, they compared the occurrence frequencies of 

sequence [1, 1, 1] and [-1, -1, -1] and found that the difference is significant, leading 

the conclusion that RR series is generally irreversible. 

In Cammarota’s method, 10 ms was intrinsically treated as the temporal resolution, 

and TRA of RR series was detected only by comparing between three successive 

accelerations and decelerations [9]. Commarota et al. took a valuable attempt to 

combine TRA analysis in RR series with the method of symbolic dynamics, and 



demonstrated the great significance of this combination [9]. However, they ignored 

the contribution of other sequences to TRA of RR series, especially when the 

sequences [-1,-1,-1] and [1, 1, 1] account only for a small part of all. In addition, 

based on Kurths’s research [15], when symbolic dynamics analysis is applied to RR 

series, the alphabet should be consisted of at least four symbols to preserve the 

intrinsic dynamics. Therefore, Commarota’s symbolization method [9], which covers 

essentially only two states – the acceleration and deceleration of heart rates, might 

lose some useful information. 

In essence, the symbolization of RR series is to convert the continuous-valued RR 

intervals into finite discrete symbols. It can simplify and speed up subsequent 

computation, as well as reduce the noise effects [16]. Meanwhile, the dominant 

dynamics features can be reserved as long as the symbolization method is 

appropriately applied.  

Among symbolization methods of RR series, the most traditional one is proposed 

by Kurths et al. [15]. It suggests to set partition boundaries at μ  and αμμ ± , where 

μ  is statistic mean of the whole series and α  is a pre-selected parameter [15]. 

Obviously this method will be affected by nonstationarity, and the selection of α  

might not be appropriate to other kinds of time series. 

In 2007, Lin et al. introduced a new symbolic representation of time series, which 

is named symbolic aggregate approximation (SAX) [17]. The method has received 

widespread attention in the field of data mining. Inspired by SAX, we propose the 

equiprobable symbolization (ES) method in this paper. Unlike the Kurths method [15], 

ES method divides the scalar measurement range into equiprobable regions so that all 

symbols in the alphabet have identical occurrence probabilities. Since it excludes the 

effects of mean value, standard deviation and the probability distribution of the 

original series, ES method can be applied to various time series. 

In this paper, we firstly describe our general approach for symbolizing data and 

constructing forward and backward symbol-words. We also define the indices used to 

detect the TRA of time series. Then, we apply our method to several series which 



have been proven irreversible for validation. Finally we apply it to RR series derived 

from different kinds of population: healthy young people, healthy old people, people 

suffering congestive heart failure (CHF), people suffering atrial fibrillation (AF), and 

people suffering sustained ventricular tachyarrhythmia (VT). Some meaningful results 

are presented and discussed in the following sections. 

 

2．Time reversal asymmetry analysis based on equiprobable symbolization 

(TRAES) 

2.1. Equiprobable Symbolization (ES) 

The original series given as }1:{ Nixi ≤≤  are transformed into the symbolic 

series }1:{ Nisi ≤≤  according to the rules as follows: 

Firstly, the elements in the original series are sorted. Then, given the alphabet size n, 

the quantiles, denoted as 1 2 1, , , nt t t −  in ascending order, are determined by dividing 

the sorted elements into n equal-sized parts. Subsequently, the symbolization can be 

achieved through the following equation in the case of 4n = .  
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Taking RR series for example, Fig. 1 indicates how ES method is developed.  
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Fig. 1 (Color online) Diagram illustrating equiprobable symbolization. (a) An 

example of RR series with length 4000. (b) The histogram of RR intervals, in which 

‘ 1t ’, ‘ 2t ’, ‘ 3t ’ corresponding to the quartiles. (c) Symbolizing process based on the 

quartiles partition.  

There are three key advantages in ES method. (1) It can directly reflect the dynamic 

features of the original series. Since the probability of each symbol in the alphabet 

becomes uniform in the original time scale, the frequency of each probable short 

sequence of certain length, which is also called ‘word’, depends solely on the time 

structure of the original series. (2) ES actually achieves the multi-resolution 

symbolization in the ranges of the original series. As shown in Fig.1 (b), more 

symbols are assigned to the dense regions to ensure enough resolution while fewer 

symbols are used to the sparse ones to reduce redundancy. (3) ES provides a widely 

applicable symbolization method since it is not affected by mean, standard deviation 

and probability distribution of the original series. 

In ES, altering the number of symbols is very easy. According to the research of 

Kurths [15], at least 4 different symbols are necessary in order to preserve the 

essential and robust properties of the dynamics in RR sequences. Therefore, in this 

paper, 4 symbols are included in the alphabet. 

 

2.2 Forward and backward symbolic words  

In order to investigate the time asymmetry of the original series, as suggested by 

Daws et al. [2], we consider the forward symbolic-words (denoted as fiW  ) and 

backward symbolic-words (denoted as biW ). fiW  and biW  are grouped together by 



sequential symbols in nature (Equation 2) and reverse time (Equation 3), respectively.  

1 2 1[ , , , , ]fi i i i m i mW s s s s+ + − + −= ， (1 1)i N m≤ ≤ − +   （2） 

1 2 +1[ , , , , ]bi i m i m i iW s s s s+ − + −= ， (1 1)i N m≤ ≤ − +    （3） 

This is conceptually similar to time-delay embedding with discrete symbols instead of 

continuously valued original measurements. 

In the above equations, m  is the word length, so the word is often called 

“m-word”.  

  Each m-word, no matter it is constructed in nature time or reversed time, is a m-bit 

code of Quaternary, which can be converted to decimal as following 

1 2
1 2 14 4 4 1m m

fi i i i m i mQ s s s s− −
+ + − + −= × + × + + × + +   （4）, 

1 2
1 2 14 4 4 1m m

bi i m i m i iQ s s s s− −
+ − + − += × + × + + × + +    （5）. 

Where , [1,4 ]m
fi biQ Q ∈ . 

We define ( )fP λ  and ( )bP λ  as the probable distribution of forward and 

backward m-words, respectively. The variable, λ , denotes the possible decimal code 

and ]4,1[ m∈λ . Therefore, the TRA of the original time series can be investigated 

through the difference between fP  and bP , which are denoted as F-B difference 

from now on. 

2.3 Measurements of TRA 

In order to quantify the F-B difference, several measures are suggested in this 

paper.   

(1) Euclidean Distance ( ED ):  

Taking fP  and bP  as two vectors in the multiple-dimensional space, the distance 

between them is calculated as 

4
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In general, greater value of ED  corresponds to the more obvious temporal 



asymmetry in the original series. 

(2) Entropy of the difference ( DE ) 

The Euclidean Distance reflects only the total amplitude of the F-B difference, 

whereas it cannot express the distribution of the difference. Thus, we define the 

entropy of the difference as  
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where dP  stands for the normalized difference between fP  and bP  as 
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The value of DE  reflects the random degree of the F-B difference distribution. 

Higher DE  means the difference distributes more uniformly, and vice versa. 

Different from the measurement ED , DE  describes the time structure of the original 

series from a new aspect.  

 (3) The percentage of reversible words RWP  and the percentage of constant words 

CWP  

There are some special m-words with equal occurrences in the forward and backward 

sequences. Due to the limitation of logarithmic calculation, those words are not taken 

into account for the calculation of DE . Therefore, we need to have a special treatment 

to those words.  

There might be three cases for those words when word length is assigned to 4: (i) 

the words like “aaaa” which are constituted by four same symbols and are called 

constant words here; (ii) the words as “abba” which contain two different symbols but 

read same no matter forward or backward, and we call them symmetric words; and (iii) 

the rest words, which are called reversible words. The percentage of symmetric words 

combined with reversible words is denoted as RWP  in the following study. The value 



of RWP  is directly related to the TRA of the original series, as the stronger 

asymmetry will decrease RWP  value. 

The relationship between the constant words and the property of TRA is more 

complex. When the percentage of the constant words, denoted as CWP , is not 

significantly great, the constant words can be treated as the reversible words. 

Otherwise, nontrivially large CWP  implies the substantial low-frequency rhythms, or 

trends, in current symbolizing resolution in the original time series. Therefore, we 

took the practice of considering CWP  as an independent parameter.  

The measurements of DE , RWP  and CWP , constitute a full description to the 

distribution of the difference dP . 

2.4 The selection of word length 

The word length can be seen as the length of the window from which we extract the 

underlying dynamical information, since the inner word temporal structure is mainly 

investigated. In general, the longer word-length set, the more information included. 

On the other hand, all embedding words of a series are deemed as a sample set and 

statistical analysis is then applied. In order to achieve reliable statistical results, the 

samples should be far more than possible patterns. Therefore, the selection of word 

length is a compromise of having both enough dynamical information and a sufficient 

good statistics to estimate the probability distribution. In this work, we have tried 

3m = , 4m = , and 5m = , respectively, and it turns out that 4m =  is the optimal 

compromise. Consequently, 4 is used in the following sections. 

2.5 The requirement of data length  

Given alphabet size n  and word length m , the amount of all possible m-words is 

mn . In order to achieve reliable statistical results, the length of the original time series, 

denoted as N , should be taken far longer than mn . In this paper, as the alphabet is 

consisted of four symbols, and the word length is assigned to 4, 2000 is considered 

enough for N . Moreover, both constant words and symmetric words may affect the 



accuracy on the calculation of the index DE , especially when they sum up to or even 

greater than 50%. Given above considerations, in this paper, the data length is 

allocated to 4000.  

 

3.  A numerical validation 

As a validation, we applied the TRAES method to four kinds of chaotic maps [6, 

13]: zeroth-order delayed Henon map ( 0-DHM), first-order delayed Henon map 

(1-DHM), zeroth-order delayed Tent map (1-DTM), and first-order delayed tent map 

(1-DTM). For each map, a series of length 4000 was obtained with the iterative 

computation. The four measurements suggested in TRAES method were calculated 

for those realizations and the results were listed in Tab. 1 (out of the brackets). For 

each series, 100 different surrogates were produced with the help of the iteratively 

refined amplitude-adjusted Fourier transform (IAAFT) algorithm [18, 19], and the 

surrogate data tests were used to check the significance of asymmetry [4]. The results 

of TRAES method applied to those surrogates were also listed in Tab. 1 (mean ±

standard deviation，in the brackets). As shown in Tab. 1, TRA was detected in all of 

the realizations through the measurements ED , DE , and RWP , which is consistent 

with the previous researches [6, 13, 14]. 

 

Tab. 1 TRAES results of chaos series (out of the brackets) and their 

corresponding surrogates (mean±standard deviation, in the brackets). The mean and 

the standard deviation were obtained from 100 different surrogates. 

 0-DHM 1-DHM 0-DTM 1-DTM 

DE 0.257(0.019±0.002) 0.122(0.019±0.002) 0.309(0.020±0.002) 0.215(0.020±0.002) 

ED 5.697(7.437±0.060) 6.907(7.429±0.059) 5.343(7.288±0.077) 6.401(7.396±0.068) 

PRW 0.001(0.100±0.026) 0.056(0.130±0.024) 0.024(0.119±0.028) 0.024(0.131±0.025) 

PCW 0.034(0.009±0.002) 0.020(0.009±0.002) 0.038(0.007±0.001) 0.018(0.009±0.002) 

‘0_DHM’ stands for the zeroth-order delayed Henon map; ‘1-DHM’ stands for the first-order 

delayed Henon map; ‘0-DTM’ stands for the zeroth-order delayed Tent map; ‘1-DTM’ stands for the 



first-order delayed tent map. 

 

As shown in Tab. 1, the differences between the original series and their surrogates 

can be successfully revealed by all the four indices. For each chaos series, the total 

amplitude of the F-B difference reflected by the parameter ED  is significantly 

greater than those of their surrogates, while the distribution of the difference reflected 

by the parameter DE  tends to be less random. Furthermore, it is noted that in all 

these series, either chaos or surrogates, the constant words only occupy tiny 

proportions. They can be treated as a reversal symmetry words and be analyzed by 

combining with RWP . From the summations of RWP  and CWP , it is found that the 

percentages of reversible words are less than those of their surrogates, which also 

reflects the TRA in the chaos series from another aspect. In a word, the results of the 

numerical validation suggest that the phenomenon of statistic symmetry is less 

noticeable in the original series than in their surrogates, showing the special temporal 

structures in the discussed chaos series. 

 

4. TRAES analysis for RR intervals 

The data analyzed here are five groups of RR series which come from different 

databases in the PhysioBank [20-22]: (i) the first group contains 22 records of healthy 

young subjects from nsrdb and nsr2db(11 female, 11 male, average age: 35), (ii) the 

second group contains 30 records of healthy elderly subjects from nsrdb and nsr2db 

（average age: 65, 19 female, 11 male）, (iii) the third group contains 36 records of  

subjects suffering congestive heart failure from chfdb and chf2db except one 

unknown subjects (6 female, 15 male, 15 unknown gender,, average age: 54), (iv) the 

fourth group contains 24 records of subjects suffering atrial fibrillation from afdb, and 

(vi) the last contains 22 records of subjects suffering a sustained ventricular 

tachyarrhythmia from sddb except 4 unknown subjects (7 female, 13 male, 2 

unknown gender, average age: 59). 

In the data preprocessing of RR series, the extreme intervals exceeding 2000 ms, 



which might be introduced by the accumulation of missing records, were eliminated 

firstly. And then in order to exclude “outliers” from the records, the detection 

algorithm proposed in Ref. [23] and Ref. [24] has been applied, i.e., for each set of 

five contiguous intervals, if the local mean, excluding the central interval, is less than 

half of the central interval, this central interval is excluded from further analysis. No 

interpolation was done for eliminated intervals. 

As mentioned above, the data length analyzed in this paper is 4000 (about 40 

minutes of ECG sampling). Therefore, from each processed series, we extracted a 

segment of 4000 intervals according to the following two principles: the selected 

segments do not include any extreme intervals and they correspond to the waking 

state of subjects.  

We applied the TRAES method to all of the selected segments. Noting that the 

symbols in the alphabet were still {0, 1, 2, 3} and the word length was also assigned 

to 4. As shown in Fig. 2, the four measurements suggested in TRAES method were 

calculated and the results were illustrated in the form of error bars. Meanwhile, 

unpaired t-tests were carried out to check the differences between different groups. 

The results of t-tests were listed in Tab. 2. For comparison, we applied the time and 

frequency domain analyses [25] to all the same segments. Table2 shows the results of 

t-tests. 

 

       (a)                               (b) 

 



       (c)                               (d) 

Fig. 2 (Color online) TRAES analysis of RR series from healthy young subjects 

(Young), healthy elderly subjects (Eld), congestive heart failure sufferers (CHF), atrial 

fibrillation sufferers (AF), and ventricular tachyarrhythmia sufferers (VT) using 

indices (a) ED , (b) DE , (c) RWP , and (d) CWP , where series length 4000N = , word 

length 4m = , and alphabet size 4n = .  

 

Tab. 2 Statistic significance tests for the differences between the young healthy (Yng) 

and the elderly healthy (Eld), as well as healthy and sick subjects. The series length 

4000N = , the word length 4m =  and alphabet size 4n = . ‘n.s.’ stands for no 

significant difference at the 1% significance level. 

 Yng vs. Eld 
Yng vs. 

CHF 
Yng vs. AF Yng vs.VT 

Eld vs. 

CHF 
Eld vs. AF Eld vs. VT 

ED  n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

DE  n.s. 510−  710−  510−  510−  710−  610−  

RWP  n.s. n.s. 310−  n.s. n.s. 410−  310−  

CWP  310−  n.s. 410−  410−  510−  810−  810−  

mRR n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

SDNN n.s. 510−  n.s. n.s. 410−  n.s. n.s. 

LF n.s. 410−  n.s. n.s. 310−  n.s. n.s. 

nLF n.s. 410−  410−  410−  n.s. 310−  n.s. 

HF n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

nHF n.s. 310−  410−  310−  n.s. 310−  n.s. 

Note: mRR— mean RR intervals from ECG, SDNN —standard deviation of RR intervals, 

LF—low-frequency spectral component of HRV, HF—high-frequency spectral component of HRV, 

nLF—, normalized LF, and nHF—normalized HF. 

 



From Fig. 2 and Tab. 2, we found that: 

(1) The significant differences of index ED  are not observed between any two 

different groups. It suggests that after equiprobable symbolization, the total 

amplitude of F-B difference is not enough to elucidate the dynamical changes 

brought by diseases or aging effects in RR series.  

(2) DE  of the healthy groups are significantly lower than those of the CHF, AF and 

VT groups. As a rational deduction, we speculated that the diseases may lose time 

asymmetry in cardiac rhythm dynamics. Moreover, the results of t-tests indicated 

that there is also significant difference ( 0.05p < ) between CHF and AF sufferers 

showing the different effects on cardiac dynamics of different diseases. When 

compared to conventional analysis, such as mean heart rate, standard deviation 

and frequency domain parameters, the index DE  provides a better ability to 

distinguish different groups. 

(3) The index RWP  has the similar trends as DE , except that the discrimination 

ability is weaker. The values of RWP  from AF and VT groups are significantly 

higher than the healthy. It indicates that the asymmetry reduces for the two kinds 

of cardiac diseases even from the point of the reversal words merely. 

(4) As shown in Fig. 2(d), there are considerable constant words in RR series, 

especially in those from the healthy subjects. There are two possible reasons for 

the formation of a large number of constant words: the alphabet size n  is not 

large enough to give a fine amplitude resolution, or the time series have 

substantial low frequency trends. With these suspicions, we examine the effects 

brought by changes of alphabet size n . As we know, the choice of n  is a 

trade-off between the cost and effectiveness -- greater n  leads to finer amplitude 

resolution and longer data length but increases the computation. In addition, the 

improvements in resolution are restricted by the original resolution of 

experimental data. Particularly, for RR series analyzed in this paper, the original 

amplitude resolution is limited by ECG sampling rates (128Hz and 250Hz). 



Therefore, during the symbolization, if some difference between the adjacent 

quantiles gets less than 10 ms, which approaches to the RR resolution, it will lead 

to series noise contamination instead of finer resolution. We found that, when 

alphabet size n  is set to 4, only 3 records have such close adjacent quantiles, 

while the total of such records increases to 29 when n is increased to 8. As a 

result, we will not consider the situations when n  is greater than 8. To ensure the 

statistical validity, when the word length 4m = , the data length are set as 

20000N = . Because two VT records cannot meet the requirement of data length, 

132 records in total are calculated in this step. We only give the illustrations of 

indices DE  and CWP  in Fig. 3, since the other two indices are in substantial 

agreements with Fig. 2. The results for 5n =  and 7 are also omitted for the 

similarities.  

 

       (a)           (b) 

 

       (c)           (d) 

 

       (e)           (f) 



Fig. 3 (Color online) TRAES analysis of RR series with the alphabet size of (a)-(b) 

4n = , (c)-(d) 6n = ,  and (e)-(f) 8n = . The series length 20000N =  and the 

word length 4m = . 

 

As shown in Fig. 3 (a), (c), and (e), the discrimination ability between groups for 

DE  does not get better as n increases, and the most excellent discrimination ability is 

still achieved when 4n = . In addition, though CWP  does decrease as n  increases, 

there are still considerable constant words even as n  is increased to 8. It suggests 

that there are substantial low frequency components in cardiac rhythm, and the 

percentages in the elderly healthy subjects are significantly higher than those in the 

young healthy ones. However, the AF and VT groups have lower values. It implies 

that purely aging might increases the low frequency elements in the healthy cardiac 

dynamic systems, while the diseases of AF and VT might decrease them on the 

contrary.  

The low frequency trends of RR series have no determinate correspondence with 

time asymmetry, since current sampling is somewhat over-sampling to such trends. As 

we known, given the word length invariant, over-sampling will lead to false linear 

approximation for any system. We also attempt to increase the word length m  to 6, 

but find little difference. In order to find out TRA of these trends, we conjecture that 

multi-scale analysis [3] should be taken into consideration. Nevertheless this also 

raises demands for much longer data length. 

 

 

 

5. Conclusions 

In this paper, time reversal asymmetry analysis combined with equiprobable 

symbolization is applied to chaos series and human RR intervals in different 

physiological and pathologic statuses. To measure both the total amplitude and the 

distribution features of the forward-backward differences of embedding symbolic 



‘m-words’, four indices are introduced.  

  By using the measurements we proposed, temporal reversal asymmetry has been 

confirmed in the Henon maps as well as in Tent maps, suggesting that the proposed 

method is a reliable tool for the TRA detection of time series. 

When applying to the RR series, it is found that the distribution features of the 

forward-backward difference can sensitively capture the dynamical changes brought 

by diseases or aging. E.g., the index DE , which stands for the random degree of F-B 

difference distribution, can significantly differentiate RR series derived from the 

health and disease populations. The percentage of reversible words, RWP , is 

significantly greater in patients with CHF, AF and VT than in the healthy people. Both 

indices reflect the TRA descent in RR series in the original time scale caused by 

cardiac diseases. Considering the good discrimination ability between groups, the 

index DE  may be helpful for clinical diagnostics of heart diseases. What is more, in 

the proposed method, the embedding word length 4 determined that the temporal 

structure of successive 5 heart beats was mainly investigated. Physiologically, this 

temporal scale mostly corresponds to respiratory sinus arrhythmia and it is greatly 

affected by vagal regulation. Therefore, according to above results, we speculate that 

these diseases have correlation with changes of vagal-function and the indices, 

especially DE , are sensitive to these changes. In addition, by comparing to the 

classical frequency domain analysis, it is found that the proposed index DE  can 

discriminate the health and the diseases more significantly than traditional parameters 

such as LF and HF, which are considered as the major indicators of sympathetic and 

vagal activities [25]. The proposed method may be appropriate for elucidating the 

neural pathophysiological mechanisms occurring during the mentioned diseases. 

However, in order to prove whether it can be used as a probe to investigate cardiac 

autonomic modulation or not, experimental models for sympathetic activation, such as 

tilt test and high-dose atropine administration, or parasympathetic activation, such as 

phenylephrine and low-dose atropine administration, should be designed in the 



future[26]. 

  It is also found that the rhythm of low-frequency, which is represented by the index 

CWP , is considerably presented in the cardiac dynamics of healthy human. In addition, 

it significantly increases with aging but decreases with the occurrence of diseases. 

Although the physiological essence of this phenomenon requires further studies, it 

still suggests that aging affects cardiac rhythm regulation differently from diseases 

studied in this paper. 
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