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Effects of community structure on the dynamics of random threshold networks
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Random threshold networks (RTNs) have been widely used as models of neural or genetic regula-
tory networks. Network topology plays a central role in the dynamics of these networks. Recently
it has been shown that many social and biological networks are scale-free and also exhibit commu-
nity structure, in which autonomous modules are wired together to perform relatively independent
functions. In this study, we use both synchronous and asynchronous models of RTNs to systemat-
ically investigate how community structure affects the dynamics of RTNs with scale-free topology.
Extensive simulation experiments show that RTNs with high modularity have more attractors than
those RTNs with low modularity and RTNs with smaller communities tend to have more attractors.
Damage resulting from perturbation of initial conditions spreads less effectively in RTNs with higher
modularity and RTNs with smaller communities. In addition, RTNs with high modularity can co-
ordinate their internal dynamics better than RTNs with low modularity under the synchronous
update scheme, and it is the other way around under the asynchronous update. This study shows
that community structure has a strong effect on the dynamics of RTNs.

PACS numbers: Valid PACS appear here

I. INTRODUCTION

Boolean networks have been widely used to model the
dynamic properties of complex networks such as biolog-
ical networks, neural networks, ecological networks, and
social networks [1–4]. In Boolean networks, the nodes
are characterized by two qualitative states, usually re-
ferred to as 1(ON) and 0(OFF), and each node updates
its state based on its regulation by other nodes of the net-
work. Random Boolean networks (RBNs) and random
threshold networks (RTNs) are two representative types
of Boolean networks wherein the regulatory relationships
contain a large degree of randomness. In classical models
of RBNs and RTNs, all nodes are synchronously updated
at each time step, and thus the network dynamics are
deterministic. Since the number of states of a Boolean
network is finite, after a transient period the system will
reach a steady state (also called fixed point) or a set of
regularly recurring states called limit cycle, which are
collectively referred to as attractors.

RBNs were initially introduced by Kauffman [1] and
have been extensively studied since then [5–7]. The dy-
namics of a RBN falls into ordered, chaotic (disordered)
and critical regimes. In the ordered regime, all the at-
tractors of the network are fixed points (steady states)
and the system is very robust against transient pertur-
bation of individual nodes. In the chaotic regime the
system is very sensitive to perturbations and even small
perturbations can change the entire behavior of the sys-
tem. The regime in between order and chaos is called
critical; in this regime the system maintains a balance
between robust behavior against the majority of random
perturbations and flexible switching in response to select
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perturbations. It has been shown that many topological
and state parameters, such as node indegree (the num-
ber of inputs), degree distribution, and expression bias in
lookup tables, determine the dynamic regimes of random
Boolean networks [5, 7–9].

RTNs were initially proposed as artificial neural net-
work models [2] and have also been studied in the con-
text of spin glasses [10]. RTNs also exhibit a rich range
of dynamics with a transition between frozen and chaotic
phases. The criticality of random threshold dynamics has
been extensively studied as well [11–16]. The parameters
that affect the dynamical regimes of RTNs include node
indegree, activation thresholds, and connection weights
[15, 18]. Threshold networks have been used to model
yeast cell-cycle regulation and ecological community as-
sembly and yielded important biological insights [4, 19].
Zañudo et al. studied the dynamical properties of RTNs
with different node indegrees, activator-repressor propor-
tions, activator-repressor strengths and different thresh-
olds, and identified the set of parameters that lead to
networks that show dynamical properties observed in bi-
ological systems [20].

Many empirical networks exhibit a scale-free topology
[21], i.e., the degrees of nodes are heterogeneous and fol-
low a power-law distribution. In addition to this scale-
free nature, recently it has been shown that most social
and biological networks also have a modular or commu-
nity structure, in which relatively autonomous modules
are wired together [22, 23]. Communities are typically
densely connected internally but sparsely connected to
the rest of the network. There are several quantitative
definitions for communities which compare the numbers
of internal and external edges [24, 25]. As the hetero-
geneity of node degree, the sizes of communities are also
heterogeneous and vary in a rich range. It is hypothe-
sized that community structure has significant effects on
the dynamics and stability of Boolean networks; how-
ever this question has not been studied systematically.
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Poblanno-Balp and Gershenson studied coupled RBNs
with multiple modules and increased the number of links
between modules to see how modularity affects the dy-
namics of the RBNs [26]. Their model simulates different
modularity by changing the links between modules and
inside modules, but the degree of each node may not
be conserved and iterations of the network may not sat-
isfy the definition of having a community structure when
considered separately. In addition, their networks do not
possess scale-free nature, and thus may not represent the
real topological properties of social and biological net-
works.

To date there have not been any studies on coupled
threshold networks and on modular RTNs. The effects of
community structure on the dynamics of RTNs have not
been investigated yet. In addition, most studies on RTNs
are based on the classical synchronous update scheme
wherein the states of all nodes are updated simultane-
ously according to the last state of the system. This
type of update implicitly assumes that the time scales of
all events in the system are similar and the state tran-
sitions of nodes are synchronized, an assumption which
may not be realistic for social networks and biological
networks [27]. In contrast, asynchronous models can ac-
count for the presence of multiple time scales. It is not
known whether the update schemes modulate the effects
of community structure.

In this study, we use both synchronous and asyn-
chronous models to systematically investigate how com-
munity structure affects the dynamics of RTNs with
scale-free topology. First, we investigate the effect that
community structure has on the number and length of
attractors of RTNs by increasing the strength of network
modularity and the size of communities. Then we de-
scribe damage spreading from multiple types of pertur-
bations of initial conditions in RTNs with and without
community structure. We also consider the effect of com-
munities with varying strength and size on the ability of
RTNs to coordinate their internal dynamics, measured
by the mutual information of node pairs’ state sequences.
All of our results indicate the importance of community
structure in the dynamics of RTNs.

II. METHODS

A. Models

A random threshold network (RTN) consists of N ran-
domly interconnected nodes. Each node is characterized
by a binary state variable σi ∈ {0, 1}. The transfer func-
tion of each node in RTNs is an additive sign function as
follows:

σ∗
i = ψ







N
∑

j=1

ωi,jσj + Ti







(1)

where ∗ denotes the next state of node i. ψ(x) = 1 if
x > 0, and ψ(x) = 0 if x ≤ 0. ωi,j is the interaction
weight between node i and node j. ωi,j > 0 represents
that node j activates node i, ωi,j < 0 means that node
j inhibits node i, and ωi,j = 0 indicates that node j
does not directly regulate node i. Ti is the threshold
parameter for node i, controlling how many signals are
needed for the activation of this node. Although most
studies on RTNs assume that ωi,j take discrete integer
values {−1, 1} with equal probability and Ti are fixed
and identical for all nodes, some studies investigate how
interaction weights and inhomogeneous thresholds affect
the phase transition of RTNs [15, 18]. In this study, we
assume ωi,j = 1 with a probability p and set the threshold
parameter Ti to be zero for all nodes.

In classic RTNs, the states of nodes are updated de-
terministically and synchronously, i.e., the state of each
node i at time step t + 1 is determined by the states of
its regulators at time step t:

σi(t+ 1) =

{

1 if
∑N

j=1
ωi,jσj(t) + Ti > 0,

0 if
∑N

j=1
ωi,jσj(t) + Ti ≤ 0.

(2)

In synchronous RTN models, the state trajectory from
each initial condition is unique and deterministic. Syn-
chronous models assume that the time scales of all events
are identical and the state transitions of all nodes are syn-
chronized, which may not be realistic for real-world net-
works [27–29]. Therefore, we also consider asynchronous
RTN models which allow the presence of different time
scales. There exist deterministic asynchronous schemes
updating each node according to its fixed time scale [30],
but stochastic schemes are better options if one is inter-
ested in general trends of dynamics. There are different
stochastic asynchronous schemes wherein all nodes are
updated according to a random order, or at each time
step one randomly selected node is updated [29, 31]. In
this study, we adopt a random order-based asynchronous
model, i.e., at each time step, a node order is chosen
uniformly at random from all possible permutations of
the nodes, and the state of each node in the network is
updated according to this order:

σi(t+ 1) =

{

1 if
∑N

j=1
ωi,jσj(tj) + Ti > 0,

0 if
∑N

j=1
ωi,jσj(tj) + Ti ≤ 0.

(3)

where tj ∈ {t, t + 1} denotes the most recent time step
at which node j was updated, depending on its position
in the order. This update method guarantees that each
node is updated exactly once during each unit time in-
terval. Because of the stochasticity of this asynchronous
model, the network dynamics are not deterministic and
the same initial condition can lead to different state tra-
jectories.



3

B. Identification of attractors

A RTN with N nodes has a total of 2N states, mak-
ing up its state space. Since the number of the system
states is finite, during its evolution from an initial condi-
tion the system’s state sooner or later will reach an at-
tractor, namely a fixed point or a set of recurring states
called complex attractor. The number of states in an
attractor is called the length of the attractor. For syn-
chronous RTNs the set of recurring states is referred to as
a limit cycle; the system traverses these states in a fixed
order. Since fixed points are time-independent, they are
the same in both synchronous and asynchronous models
of a RTN. In contrast, complex attractors can be differ-
ent in deterministic and stochastic asynchronous Boolean
models. Limit cycles present in the synchronous model of
a RTN may disappear if asynchronous updating schemes
are used. For asynchronous RTNs, the set of recurring
states is alternatively referred to as a loose attractor
since the system may oscillate irregularly within this set
of states [29]. All the possible transitions among sys-
tem states can be represented by a directed graph called
state transition graph, wherein nodes are states of the
system and edges denote the possible transitions among
the states. State transition graphs of a RTN can be dif-
ferent under the synchronous and asynchronous models
since update schemes affect the state trajectories of the
system.

The state space of a RTN increases exponentially with
the number of nodes in the network. Thus enumerating
all attractors for a large RTN is a challenging problem
under both synchronous and asynchronous schemes. As
in other studies [4, 14, 26, 32], we adopt a procedure
of randomly sampling initial conditions from which the
system’s state evolves until an attractor is reached. We
find attractors by taking advantage of the properties of
the state trajectories of synchronous and asynchronous
models. In a synchronous model any system state can
have only one successor in the state transition graph,
which may be a different state or the same state again.
Therefore, if the model reaches a state that has already
appeared in the last time step, then this state must be a
fixed point. If the model reaches a state that has already
appeared in the current trajectory but not in the last time
step, the set of states between these two repetitions of
the state forms a limit cycle, as shown in FIG. 1(a). For
our chosen asynchronous RTN model, the fixed points
can be identified in the same way as for the synchronous
scheme. Since one system state can have multiple suc-
cessors in the state transition graph of an asynchronous
RTN model, when the model reaches a state that already
appeared in the current trajectory, it does not necessar-
ily mean that a loose attractor is reached. However, if
we run the model for sufficient time and the system stays
in a set of recurring states, which form a strongly con-
nected component without outgoing edges in the state
trajectory, we can conclude that the model reached a
loose attractor, as shown in FIG. 1(b). The number of

FIG. 1: Examples of state transitions in synchronous and
asynchronous RTNs. (a) State transitions in synchronous
RTNs. In the left subfigure S5 is a fixed point, and in the
right subfigure {S2, S3, S4, S5} is a limit cycle. (b) State
transitions in asynchronous RTNs. {S2, S3, S4, S5, S6} is a
loose attractor.

time steps that the model needs to reach a fixed point or
a complex attractor can be calculated straightforwardly.

C. Damage spreading and coordination of internal

dynamics

One way to characterize the dynamic regime of a RTN
is to measure its sensitivity to initial conditions, i.e.,
whether small differences in initial states lead to simi-
lar or different system states. This sensitivity analysis
is similar to damage spreading and stability analyses of
RTNs [9, 14]. We use both transient and permanent per-
turbations to study the effects of community structure
on the damage spreading in RTNs. In transient pertur-
bations, for each initial condition S0 in a set of randomly
sampled initial system states, an initial condition S′

0
, dif-

fering from S0 in the state of one randomly chosen node,
is generated and used for the subsequent simulation. In
permanent perturbations, for each initial condition S0,
we randomly choose a node and maintain its state ob-
served in S0 permanently, and then generate another ini-
tial condition S′

0
, the same as S0 but the node is kept in

the opposite state permanently. The damage is measured
by the Hamming distance between the two system states
after a certain number of time steps. 〈d〉 is the average
damage over the sampled set of initial system states and
the ensemble of RTNs. When we examine the damage
spreading under the asynchronous update scheme, we
use the same sequence of node orders for unperturbed
and perturbed initial conditions to rule out the effects of
the stochasticity existing in asynchronous update.
The widely studied problem of synchronization of oscil-

lators in complex networks [33, 34] led to the introduction
of measures that quantify the coordination of a system’s
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internal dynamics. For Boolean networks, the mutual in-
formation contained in the time series (state sequences)
of two nodes measures how well their activities are co-
ordinated [32, 35]. Let p0 and p1 be the probabilities
of state 0 and state 1 respectively occurring in the time
series Σi = {σi(0), σi(1), σi(2), ...} of node i. Then the
entropy of Σi, characterizing the state uncertainty in the
time series, is defined as H [Σi] = −p0 log2 p0−p1 log2 p1.
The joint entropy of time series Σi and Σj, measuring
the state uncertainty associated with the two time series,
is defined as H [Σi,Σj] = −p00 log2 p00 − p01 log2 p01 −
p10 log2 p10 − p11 log2 p11, where pxy is the probability of
state pairs xy occurring in Σi and Σj , x, y ∈ {0, 1}, and
0 log2 0 = 0 for the special case where any of the proba-
bilities is zero.
In the above formulae, the probabilities can be es-

timated from the state sequences of nodes by running
the dynamic model from all possible initial states for a
very large number of time steps. However, this will be
prohibitively time-consuming. Therefore, we again start
from a set of randomly sampled initial conditions and
run the model to a certain number of time steps. The
probability px is estimated by the fraction of time steps
for which the state of a node is x, and the probability
pxy is estimated by the fraction of time steps for which
the state of node i is x and one time step later the state
of node j is y. The mutual information of Σi and Σj ,
quantifying the dependency between the two time series,
is defined as

I[Σi,Σj ] = H [Σi] +H [Σj ]−H [Σi,Σj].

For example, if the system reaches a fixed point right af-
ter an initial condition and the state sequences of node
i and node j in the fixed point are Σi = {0, 0, 0, ...}
and Σj = {1, 1, 1, ...}, then I[Σi,Σj] = 0. If the sys-
tem reaches a limit cycle and the state sequences of node
i and node j in the limit cycle are Σi = {0, 1, 0, 1, ...}
and Σj = {1, 0, 1, 0, ...}, then I[Σi,Σj ] = 1. I[Σi,Σj ]
measures the extent to which information about node i
at time t influences node j at time t + 1. It also reflects
how well the activities of node i and node j are coordi-
nated. The average of the mutual information over all
pairs 〈I〉 measures the ability that the system can co-
ordinate its internal dynamics. We study the effects of
community structure on the coordination of internal dy-
namics of RTNs.

III. RESULTS

We used the software tool from [36] to generate
directed scale-free networks with different community
structure (modularity) (designated as mRTN hereafter).
The software has a couple of parameters which allow
users to generate different types of networks, including
network size N , average indegree 〈kin〉 , mixing param-
eter µ (controlling the modularity of the networks), the
exponent t1 of the indegree distribution (P (kin) ∼ k−t1
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FIG. 2: Modularity of the generated directed networks. (a)
The modularity of the model networks, and of their shuffled
counterparts, for different mixing parameters. (b) The mod-
ularity of the model networks, and of their shuffled counter-
parts, with different sizes of communities.

and the exponent t2 for the community size distribu-
tion (P (C) ∼ C−t2), the minimum community size Cmin

and the maximum community size Cmax. We randomly
choose the values of interaction weights such that the
directed edges are activating with probability p and in-
hibitory with probability 1 − p. Since we have observed
that the conclusions (the relative relations between the
results on shuffled RTNs and on modular RTNs) using
p = 0.3 and p = 0.7 are similar to those using p = 0.5, we
set p = 0.5 which means that ωi,j was set to 1 or −1 with
equal probability. To generate RTNs without modularity
(designated as sRTN hereafter), we randomly shuffle the
modular RTNs while keeping their degree distribution
unchanged.

In this study, we chose N = 500 which is large enough
to consider the modularity of complex networks. We vary
the mixing parameter µ from 0.1 to 0.5 to generate net-
works with decreasing modularity, keeping t1 = 2, t2 = 1,
Cmin = 20 and Cmax = 100. In addition to modularity,
we also examine the effects of community size on network
dynamics. To do this, we keep a fixed mixing parameter
(µ = 0.1) and vary community size C from 20 to 100 (i.e.,
Cmin = Cmax = 20, Cmin = Cmax = 40, and so on). To
investigate the effects of the heterogeneity of community
size, we set Cmax = 50 for some simulations and com-
pare the results with those using Cmax = 100. When we
investigated the effects of community structure on the
number of attractors of RTNs, we set kin = 2.0 which
allows the networks to be critical and have a fair amount
of fixed points and complex attractors [12, 16–18, 32]. To
study the effects of community structure on the damage
spreading in RTNs and on the coordination of internal
dynamics, we set kin = 5.0 which is expected to take the
networks into the chaotic regime [12, 16–18, 32]. For each
set of parameters, we generate 100 networks and report
the averaged results over the ensemble of 100 realizations.

FIG. 2 shows the modularity of the networks with
kin = 2.0, where the modularity was calculated using the
modularity measureQ for directed networks [37] based on
the community assignment of nodes. The figure confirms
that increasing the mixing parameter induces a linear
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decrease in the network’s modularity, whereas changing
community sizes has no effect on the network’s modular-
ity. On the other hand, shuffled networks do not have
significant modularity. The modularity of the networks
with kin = 5.0 is similar to that of the networks with
kin = 2.0.
The state space of RTNs increases exponentially with

the number of nodes, thus it is impossible to check all
initial conditions. We sample 1000 initial conditions and
observe the behaviors of RTNs based on these sampled
initial conditions. For the initial conditions, we randomly
assign 0 or 1 with equal probability to each node. We run
both synchronous and asynchronous models for 200 time
steps unless noted otherwise.

A. Effects of community structure on attractors

We first run the RTN models described in the Meth-
ods section for 200 time steps which is large enough to
reach attractors, and then examine the effects of intro-
ducing community structure into the network topology
on the number of attractors. The number of fixed points
and limit cycles of RTNs under the synchronous update
scheme is shown in FIG. 3. The inset in the first panel of
the figure is the result from sampling 10,000 initial con-
ditions, confirming that 1000 initial conditions are suf-
ficient to indicate the trends. We can see that RTNs
with higher modularity (lower mixing parameter) tend
to have more attractors. In contrast, the shuffled RTNs,
which do not exhibit high modularity, have fewer attrac-
tors and significantly fewer limit cycles than RTNs with
a distinct community structure. This is mainly because
a RTN with distinct community structure behaves as a
collection of weakly coupled community RTNs. The at-
tractors of these relatively independent community RTNs
combine in different ways to form the attractors of the
whole RTN. For RTNs with high modularity, less initial
conditions lead to fixed points and more lead to limit
cycles, while for RTNs with low modularity, more ini-
tial conditions lead to fixed points than those leading to
limit cycles. This may be because, although the aver-
age indegree of a RTN without modularity is not large
enough to lead the system to the chaotic phase, the rel-
atively independent modules in a RTN exhibiting highly
modular structure can be chaotic because of the high in-
degree of nodes inside modules, and thus the whole RTN
has many limit cycles caused by the combination of limit
cycles of the modules. The number of time steps that
the models need to reach a fixed point or a limit cycle
does not show a clear trend with respect to the mod-
ularity of the networks (data not shown). In addition,
RTNs with distinct community structure tend to have
longer limit cycles than RTNs without community struc-
ture, supporting the conclusion that these limit cycles are
combinations of the individual communities’ limit cycles.
The above results indicate that community structure in
network topology does affect the criticality of random
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FIG. 3: Attractors of RTNs with different modularity under
the synchronous update scheme. The inset in the first panel is
the number of fixed points based on 10,000 initial conditions.
The third panel gives the number of initial conditions leading
to fixed points; the number of initial conditions leading to
limit cycles is 1000 minus the values shown.

threshold dynamics.

The number of fixed points and loose attractors of
RTNs under the asynchronous scheme is shown in FIG.
4. Like synchronous RTNs, asynchronous RTNs with
higher modularity tend to have more fixed points and
complex attractors. The shuffled asynchronous RTNs,
which do not exhibit significant modularity, have fewer
attractors than asynchronous RTNs with distinct com-
munity structure. Comparing the asynchronous mod-
els with the corresponding synchronous models, we can
see that asynchronous RTNs reach a fixed point much
more easily than synchronous RTNs, and synchronous
RTNs have more limit cycles than asynchronous RTNs
have loose attractors, consistent with the previous ob-
servations on asynchronous update in other systems [38–
40]. The lack of loose attractors mainly origins from the
stochasticity of the asynchronous update scheme which
makes the systems difficult to stay in a set of recurring
states. Similarly, for the same reason the vast major-
ity of initial conditions lead to fixed points and only
a few lead to loose attractors in asynchronous RTNs.
Like synchronous RTNs, asynchronous RTNs with dis-
tinct community structure tend to have longer attractors
than asynchronous RTNs without modularity. The re-
sults based on the asynchronous update scheme are con-
sistent with those based on the synchronous scheme, con-
firming the effects of community structure on the attrac-
tors of RTNs.

Similarly to the way that the heterogeneity of degree
and the connectivity of nodes affect the network dynam-
ics, community size may affect the dynamics of RTNs as
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FIG. 4: Attractors of RTNs with different modularity under
the asynchronous update scheme. The third panel gives the
number of initial conditions leading to fixed points; the num-
ber of initial conditions leading to loose attractors is 1000
minus the values shown.

well. To examine this point, we kept the mixing param-
eter as 0.1 which makes the network modularity remain
high (see FIG. 2) and added constraints to the commu-
nity size. We generated networks with communities of
20, 40, 60, 80 and 100 nodes. The networks contain one
community with a larger than designed size if the network
size is not exactly dividable by the community size. The
results under the synchronous update scheme are shown
in FIG. 5. The inset in the first panel of the figure is the
result from sampling 10,000 initial conditions, suggest-
ing that the lower value at community size 20 for 1000
initial conditions is a finite-size effect. We can see that
RTNs with small communities tend to have more attrac-
tors (fixed points and limit cycles) than RTNs with large
communities, probably because RTNs with small com-
munities have more relatively independent small modules
whose attractor combinations lead to more attractors of
the whole networks than RTNs with large communities.
In RTNs with small communities, very few initial con-
ditions lead to fixed points and the reachability of fixed
points is higher in RTNs with large communities. In ad-
dition, limit cycles in RTNs with small communities tend
to be longer than RTNs with large communities. Collec-
tively, we can conclude that in addition to modularity,
community size also affects the criticality of random net-
work dynamics.

The effects of community size on network dynamics un-
der the asynchronous scheme are demonstrated in FIG.
6. As in synchronous RTNs, asynchronous RTNs with
smaller communities tend to have more attractors, and
the number of initial conditions leading to fixed points
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FIG. 5: Attractors of RTNs with communities of different
sizes under the synchronous update scheme. The inset in the
first panel is the number of fixed points found from 10,000
initial conditions. The third panel gives the number of ini-
tial conditions leading to fixed points; the number of initial
conditions leading to limit cycles is 1000 minus the values
shown.

increases with the community size. Asynchronous RTNs
with smaller communities tend to have longer attrac-
tors. Again, the results based on the asynchronous up-
date scheme are consistent with those based on the syn-
chronous scheme and confirm the effects of community
size on the attractors of RTNs.

B. Effects of community structure on damage

spreading

In the last subsection we studied the effects of com-
munity structure on the dynamics of ordered or criti-
cal RTNs. We continue in this subsection by examining
how community structure affects the dynamics of chaotic
RTNs. The results on damage spreading caused by tran-
sient perturbation of initial conditions in RTNs with dif-
ferent community structure are shown in FIG. 7. We
can see that under both synchronous and asynchronous
schemes, RTNs with distinct community structure are
more robust to transient perturbation of initial condi-
tions than RTNs without community structure and shuf-
fled RTNs without modularity. In other words, damage
resulting from transient perturbations spreads less effec-
tively in highly modular RTNs than in RTNs without
modular topology. Community size also has dramatic ef-
fects on the damage spreading resulting from transient
perturbations in RTNs. Damage spreading is more diffi-
cult in RTNs with small communities than in RTNs with
large communities. We hypothesize that this may be
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FIG. 6: Attractors of RTNs with communities of different
sizes under the asynchronous update scheme. The third panel
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because nodes that connect communities act as bottle-
necks of damage propagation and make damage difficult
to spread across communities. In agreement with this
hypothesis, setting a lower maximum community size,
Cmax=50 instead of 100, lowers the average damage even
more for the two highest modularity values, indicating
that the heterogeneity of community size has nontrivial
effects on the stability of network dynamics. In addition,
asynchronous RTNs tend to exhibit smaller damage in
response to transient perturbation of initial conditions
than synchronous RTNs, indicating that the stochastic
asynchronous update scheme can slow down or weaken
the damage.

Damage spreading resulting from permanent pertur-
bation of initial conditions in synchronous and asyn-
chronous RTNs is shown in FIG. 8. We can see that
the effects of community structure on damage spreading
caused by permanent perturbations are similar to those
on damage spreading caused by transient perturbations.
As expected, damages resulting from permanent pertur-
bations are larger than those resulting from transient per-
turbation of initial conditions in both synchronous and
asynchronous RTNs. We conclude that modularity, com-
munity size and the heterogeneity of the community sizes
all have considerable impact on the stability of random
threshold dynamics.
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FIG. 7: Damage spreading from transient perturbations of
initial conditions in synchronous and asynchronous RTNs.
The upper two panels are for the synchronous update scheme
and the bottom two panels are for the asynchronous update
scheme.
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FIG. 8: Damage spreading from permanent perturbations
of initial conditions in synchronous and asynchronous RTNs.
The upper two panels are for the synchronous update scheme
and the bottom two panels are for the asynchronous update
scheme.

C. Effects of community structure on internal

dynamics

The average of the mutual information over all pairs
〈I〉 measures how well the system can coordinate its in-
ternal dynamics. Usually N〈I〉 is used because it ap-
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proaches a nonzero constant when the network size N
is infinitely large [33, 34]. For RTNs with average in-
degree 2, we did not see a clear difference between the
coordination ability of RTNs with and without modu-
lar topology, because all the networks reach fixed points
very soon, and thus have very low average mutual infor-
mation. For RTNs with average indegree 5.0, i.e., when
the networks are in their chaotic regime, we do see that
RTNs with strong community structure have different dy-
namic coordination abilities compared to RTNs without
modularity. According to the definition of 〈I〉 , the more
time steps we run the model, the more accurate esti-
mation of the mutual information we have. Therefore
we run the models for 500 time steps and discard the
first 50 time steps to remove any bias from the transient
dynamics. The mutual information of RTNs with and
without community structure is given in FIG. 9. We can
see that under the synchronous scheme RTNs with high
modularity can coordinate their internal dynamics better
than RTNs with low modularity and shuffled RTNs. This
is consistent with the previous observation that oscilla-
tors in the same community are synchronized more easily
than those across communities [33, 34]. Community size
also affects the coordination ability of synchronous RTNs.
RTNs with small communities coordinate their internal
dynamics better than RTNs with large communities and
RTNs without community structures.

Coordination of internal dynamics is different in asyn-
chronous RTNs than in synchronous RTNs. Overall
synchronous RNTs coordinate their internal dynamics
better than asynchronous RTNs. In addition, asyn-
chronous RTNs with distinct community structure coor-
dinate their internal dynamics less effectively than RTNs
without community structure, and asynchronous RTNs
with small communities coordinate their internal dy-
namics less effectively than RTNs with large commu-
nities. Note that synchronous and asynchronous RTNs
have similar coordination of their internal dynamics when
their networks do not exhibit modular topology. This
inverted behavior of synchronous versus asynchronous
RTNs is supported by the observed non-monotonic co-
ordination properties of synchronous Boolean networks
[32, 35]. Boolean networks in the ordered regime are dy-
namically frozen and all the attractors of the network are
fixed points, which make the average mutual information
〈I〉 close to zero. Boolean networks in the chaotic phase
are sensitive to small differences in initial conditions, thus
it is difficult to coordinate their internal dynamics. Crit-
ical Boolean networks have maximal coordination of in-
ternal dynamics. On one hand, we observed more limit
cycles in synchronous RTNs with high modularity than in
synchronous RTNs with low modularity; no fixed points
were found in these RTNs. Oscillating node pairs in the
same limit cycle can have high mutual information since
their states occur predictably. That may be why syn-
chronous RTNs with modular topology have higher mu-
tual information than synchronous RTNs without mod-
ular topology. On the other hand, asynchronous RTNs
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FIG. 9: Mutual information of time series in synchronous
and asynchronous RTNs with different community structure.
The upper two panels are for the synchronous scheme and the
bottom two panels are for the asynchronous scheme.

with high modularity have more fixed points and more
loose attractors than asynchronous RTNs with low mod-
ularity, and it is difficult for node pairs in the same fixed
points and loose attractors to highly coordinate their ac-
tivities since their states are not predictive of each other.
Therefore asynchronous RTNs with high modularity do
not coordinate their internal dynamics better than asyn-
chronous RTNs with low modularity.

IV. CONCLUSIONS

We systematically investigated the effects of commu-
nity structure on the dynamics of RTNs with scale-free
topology by using both synchronous and asynchronous
models. We have shown that RTNs with highly modular
topology tend to have more attractors than RTNs with-
out modular topology. We have also shown that damage
resulting from transient or permanent perturbations of
initial conditions is more difficult to spread in RTNs with
high modularity than RTNs with low modularity.
Our study significantly expands the investigation of

the differences between deterministic and stochastic dy-
namics in Boolean networks. We found that it is much
easier for asynchronous RTNs to reach a fixed point than
synchronous RTNs, and synchronous RTNs have more
limit cycles than asynchronous RTNs have loose attrac-
tors, consistent with the previous observations on asyn-
chronous update in other systems [38–40]. Asynchronous
RTNs tend to more easily correct small perturbations
than synchronous RTNs. This is probably due to the
overall smaller number of loose attractors and the higher
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reachability of fixed points in asynchronous RTN models.
Finally we have shown that RTNs with high mod-

ularity can coordinate their internal dynamics better
than RTNs with low modularity under the synchronous
scheme, whereas asynchronous RTNs with high modu-
larity do not have better coordination of their internal
dynamics than asynchronous RTNs without modular-
ity. We also observed that synchronous RTNs coordinate

their internal dynamics better than asynchronous RTNs.
Overall this study shows that average indegree is not the
only factor that affects the criticality of random thresh-
old dynamics, and that local structure has strong effects
on the dynamics of RTNs.
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