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Recent work has revealed a law governing flux fluctuation hadverage flux in complex dynamical systems.
We establish the universality of this flux-fluctuation lawabhgh the following steps: (1) we derive the law in a
more general setting, showing that it depends on a singkenpeter characterizing the external driving, (2) we
conduct extensive numerical computations using distixtetraal driving, different network topologies, multiple
traffic routing strategies, and (3) we analyze data from amaheehicle traffic system in a major city in China
to lend more credence for the universality of the flux-flutralaw. Additional factors considered include
flux fluctuation on links, window size effect, and hidden tlgmical structures such as nodal degree correlation.
Besides its fundamental importance in complex systemsfluReluctuation law can be used to infer certain
intrinsic property of the system for potential applicasosuch as control of complex systems for improved
performance.

PACS numbers: 89.75.Hc, 89.20.Hh, 89.75.Da

I. INTRODUCTION ical support from both model systems and a realistic commu-
nication network system for the flux-fluctuation law [3].

_In a finite physical system observed and probed in finite | this paper, we generalize the flux-fluctuation law, first
time, fluctuations in quantities of interest are ubiquitoBsr  yptained in Ref. [3], and address the universality of thisda

a complete random process such as one that follows the staggpjied to general complex networked systems. Our approach
dard Gaussian distribution, its average and variance aré Pgonsists of three steps. (I) We present a straightforwatd bu
rameters that are independent of each other. In this case, thyore general derivation of the relation, which does not rely

fluctuations are an intrinsic property of the random procesg, system details. In particular, It denote the flux of some
which does not depend oniits average. However, when the prinq of physical flow of node in a complex network, and let
cess contains a deterministic component, such as those occ%{f

t

4 . > ‘{ ) ando; be the average flux and the corresponding fluctu-
ring on.comple_x dynam|cal.systems, the mean an(_j variance Qftjon, respectively. The law betweéfy) ando; is then given
a physical variable are typically correlated. Considerelo- |
ample, traffic flow on a complex network. As the average flux
is increased, the fluctuations tend to intensify as well.l&xp
ration of issues such as the characterization of fluctustion
complex dynami_cal systems, the precise relatic_m betwezn th O, = 1 /<fi> + a2<fi)2, (1)
average and variance, and the effect of fluctuations onrsyste
dynamics, etc., has formed a particular area of recentrasea
[1-9].

An issue of significant physical interest is whether there exWherea = 0 g2 /(Rr)? is a single parameter determined by
ists a universal scaling law between the fluctuation andihe a the property of the external drivin(t) only, 0 r,. and(Rr)
erage flux [1-6]. In particular, the importance of fluctuatio are the standard deviation and the expectation valug(o,
in Comp]ex dynamica| systems was recognized and a poweFeSpeCtlvely. We note that, in Ref. [3], the flUX'ﬂUCtuaﬂaW
law scaling relation between the fluctuation and the averagB@s the same form as Eq. (1), but it was derived based on a
flux was reported [1], where the the power-law exponent caf@ndom-diffusion picture under the assumption of unifgrml
take on a finite set of discrete values, such&or 1 [1]. Sub- ~ distributed external driving. In our expression, the paam
sequently, it was shown [2] that, in contrastto the resukéf,  ter is generally given by the ratio between the variance and
[1], the power-law exponent can assume continuous values i€ meéan square of the external driving. Equation (1) is thus
the rangd1,/2, 1] [2] Quite recently, the notion of power-law More general. (Il) We carry out extensive numerical compu-
scaling between the fluctuation and the average flux was rd@tion using various network models and traffic dynamics to
futed and a non-power-law type of relation between the twgStablish the validity of Eq. (1). (IIl) We demonstrate tite
quantities was obtained by Meloei al. [3]. Besides provid- flux-fluctuation law holds for real traffic flow in a major city

ing an analytical argument, the authors also presentedmumdn China, and we point out the special caveats that must be
taken into account in order to observe Eg. (1) in real physica

systems. Our results corroborate with those in Ref. [3] at th

the relation between flux fluctuation and average in gensral i
*Electronic addresiuangzg@ zu. edu. cn not a power law, but these two basic quantities obey a law that
tElectronic addressxueds @ zu. edu. cn is apparently universal in complex physical systems.
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We begin by demonstrating how Eg. (1) can be obtained (5 = Z_;Jn Pr.(n)

in a more general setting than that of Ref. [3]. Here we as-
sume that the traffic dynamics of the system is conservative,
and packets can flow from one node to another if there is a
connection between them.

ZnQ/ Pr(n,r)Pr,(r)dr
n=0 0

We first consider the simple case of a single-node traffic- = / [Z n®Py(n, )] Pry.(r)dr
flow model in the free-flow state without any congestion. Let 0 n=0
R(t) be the probe_lb|llty that, during a time unit, a pacl_<age _ i+ 12| Pr, (r)dr
passes through this node. LEbe the length of the time win- 0 T

dow of measurement of flug;, ando; be the deviation of;
from its average. For an arbitrary time wind@w¢ + 7], there

are on averag®&, = »:+T R(7)dr packets passing through e thus have,

this node. The quantity®; can thus be regarded as a kind of

“external driving” that represents systematic or random vari- .9 9 9 O R,2

ations upon the system from the outside environment, which 0% = (fi%) = (fi)” = {fi) + (£i) <RTT>2’ ®)
determines the total flux of the system in a given period. For

example, in a river network, the external driving can be thewhich is Eq. (1).

precipitation in the basin region; while for traffic flow in a  The above argument suggests that, in the case of an arbi-
city, the external driving can be the daily rhythmic behawib  trary packet-generation distribution, there is a singlepee-
human activities, such as commuting between one’s place dér in the relationship betwee®; and(f;), which is the ratio
residence and place of work. External driving should be dis« between the standard deviation and the meakpf De-
tinguished from intrinsic fluctuations of the system. Faffic ~ pending on this ratio, the asymptotic expression of Eq. k) h
flow on the network, such intrinsic fluctuations are caused bytwo scaling forms. In particular, for smadt or f;, Eq. (1)
for example, randomness in the package generating procebscomes

and in the selection of paths.

The external drivingR; does not need to be uniform in 0i = v{fi),
time. LetPgr,(r) be the probability ofRr = r. If Ry is
constant,f; follows the standard Poisson process so that th
expectation off; is (f) = Ry, as shown in Fig. 1(a). The
probability of f; = n is then given by the Poisson distribution o= alf).

Pr(n,Rr) = e BT R2/nl. In the more general case where
Ry is time dependent, as shown in Fig. 1(b), we can regardhe previously observed [1, 2] two forms of the power-law
it as a random variable with some kind of probability distri- scaling between the flux fluctuation and the average flux are
bution PRT (T), which can be quite arbitrary. In this case, thethus two ||m|t|ng cases of Eq (1) in terms of the ratio
probability of f,, = n can be expressed as Equation (1) is for a single node under external driving.
In a complex networked system, packets flow among various
) nodes, e.g., data packets in the Internet, traffic flow iny cit
Py, (n) = / P (n,r)Pr, (r)dr, (2)  stream flows in a branched river, etc. If the system is under
0 a singleand spatiallyuniform external driving, the effective
driving on different nodes will be different, e.g., nodegtwi
which allows us to calculate the average and variangg afi a larger basin will have a larger flux. However, we expect

= (Rr) + (Rr®). 4

a power-law scaling with the exponent2. For largex or f;,
%q. (1) reduces to
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FIG. 2: (Color online.) For a BA scale-free network with= 1000 nodes and mean degrée = 4, under the shortest-path routing protocol,
nodal flux fluctuatioro; versus the average flu);) for various distributions ofR(t) related to external driving: (aR(¢) is constant within
each observational window, (j(¢) varies with time but has the same value®f as in (a). (c) overlay of the two cases under uniform
distribution of R, whereR, is represented by circles in panel (a), dRglis represented by circles in panel (b). The scattered dédspare
simulation results from all nodes, where each point repitssene node, and the solid curves are from the theoretiedigiion Eq. (1). Other
parameters ar€ = 100, (Rr) = 10 x T, andJ r,.?/(Rr)? = 0.1.

the statistical properties of the driving forces at the lexfe  fluctuation law. It can also be seen that the dynamical detail
individual node to be the same. That is, the ratishould of the external driving within the observational time wimdo
be node independent, which can be argued as follows. Forlaave no effect on the form of the law. Note, however, that the
given total number of packefs,,, when the routing protocol size of the window matters. Assume we have a gifn),

is fixed, the average number of packéfs) on a nodei is  for different observational time window, the resulting ext
given, and because of the randomness in the selection of threal driving R will be different, leading to a different values
source and destination of the packefsis a random variable of o = 012%/<RT>2. Since Eq. (1) only depends an the
following Poisson distribution. The paramet®y- character-  resulting plot ¢, (f;)) will be different, but the form of the
izesN,. The variation inR; corresponds to the variation in equation will be the same. Another point is that for a larger
the total number of packets in the network and, hence, it isvindow, the average flukf;) will be larger. When the change
a global parameter and it is the same for all nodes, so is in « is small, the power-law fitting can yield exponent 0.5
(= crf%T/<RT>2). This reasoning is independent of network for small window and exponent 1 for large observational win-
topology and routing protocol, it thus is valid for diffeten dows, as noted by Kujawslkit al. [6]. In the special case
variations in network topology and routing protocol. For ex treated in Ref. [3] where the external drivifity is uniformly
ample, if the network has correlation and hidden structuredistributed in the rang@V —é, W +6], we haved g,.? = §2/3

the flux of two neighboring nodeg; and f; may be corre- and(Rr) = W. Equation (1) then reduces to Eq. (7) in Ref.
lated, however, the dependencesgfon (f;), andc; on (f;) [3].

will both follow Eg. (1) with the same parameter Specifi-

cally, if we plot ((f;),0;) for every node, all points should fall

on the same curve with a single value of the ratio 1. NUMERICAL TESTS OF UNIVERSALITY
Note that the above analysis is based on two observations:
1) for a given total number of packef$, and a given rout-  To demonstrate the universality of Eq. (1), we carry out nu-

ing protocol, the average fluxf;) at nodei is fixed and  merical simulations of packet-flow dynamics [10] on a num-
(fi) ~ Np; 2) because of the randomness in selecting sourcger of standard complex network models, namely, scale-free
and destination for each packe,is a random variable fol- - random, and small-world networks. In each case, at each time
|0Wing Poisson distribution. As indicated in Ref. [6], if we step, the system generatﬂspackets, whose sources and des-
consider the flux behavior through links in network insteadtinations are selected randomly. The packets start to flow in
of nodes, the two observations still hold, e.gf;;) ~ N,  the network until they reach their respective destinatidie
and f;; is a random variable following Poisson distribution. delivery capacity of the nodes is assumed to be infinity, and
Therefore Eq. (1) should hold with respect to links with the packets are delivered according to a certain routing styate
same parameter. In our simulation, we have considered two specific protacols
Our derivation of Eq. (1), while straightforward, provides shortest-path and efficient protocols, where for the latier
a deeper understanding of the physical origin of the fluxpath along which the sum of degrees is minimum [11] is se-



lected. The computations are performed for differBatdis- 100 prr——rreepere g T T
tributions (uniform, Poisson, power-law) on networks df di X Nodes
ferent topologies. In our simulation, we fik = 100 and ——analytical result

(Rr) = 10 x T. For uniform distribution, the range of

Ry is (Rr) x [1 —+/0.3,1 + +/0.3]. For Poisson distribu-

tion, Ry = (Rr) x z, wherez follows the Poisson distri- 5
bution with () = 10. In the case of power-law distribution, =
Rr = (Rr) x z(a — 2)/(av — 1), wherex follows the dis- ©
tribution function(a. — 1)z~* anda = 5.3166. The above
parameters give rise @ = O g,%/(Rr)? = 0.1 for all the

three cases so that meaningful comparison can be made. In o1l |
addition, in order to show that the details of the flow dynam- Yy o7 P 10 100

ics in the observational time window have no effect on Eq. (1) <f > <f>

we choose two forms aR(t) series for every case considered: L

(@) ﬁ)t(EdtR(t) n th_egbsegv‘?t'on.al V}”ndow’. Véhen@;[(t) I.SS FIG. 3: (Color online.) Flux fluctuation;; (ando;) as a function of
f:onsRa? 'E a}gy V;ln OV(\j/ g}\{i”?sb rom erln ow 1o Vé'n ?W’ the average fluXfi;) (and(/f;)) for all the links (and nodes) in the
!'e" ( ) - T/ ! an (b) R( )S e'ng c Ofser? ran Oomly  network. The parameters are the same as that in Fig. 2(a)sdlite
in the observational window from a uniform distributiong€.  curves are from theory [Eq. (1)]. The dashed ling; (~ NG
Ry /T x[0,2]. In both (a) and (b), the total driving within the and the dotted lines;; ~ (f;)) are for eye guidance.

window, R, is the same.

Equation (1) indicates that the external driving contrésut
to the flux fluctuation through the rati®, implying that for
external driving with different distributions but the same
ratio, the dependence of the flux fluctuation on the average
flux should follow the same curve. Figure 2 shows simula-
tion results for different?; distributions but the same ratio, 100} ¢ Waomanwand R
together with the corresponding analytical results. Thausi * Er'fa[;?faﬁ'fegﬁp“ - Ez[yat'i‘cda‘;’feg;iph
lations are performed on a scale-free network with degree di
tribution P(k) ~ k=243 N = 1000 nodes and mean degree
(k) = 4, which is generated by the preferential-attachment
rule [12]. The routing protocol is one based on the shortest
path. The total observational time 19° time steps. Fig- 1 (@)
ure 2(a) shows the results for the case of const in 1 10 £, 100 1 10 5 100
an observational time window, and Fig. 2(b) corresponds to i
the case wher&(¢) varies according to uniform distribution
in the observational window while having the saile dis- o r=0.102
tribution as in Fig. 2(a). It can be seen that, insofar as the o
ratio « is the same, the data points all fall on the same theo- ——analytical result
retical curve. Figure 2(c) shows, for the uniform distribat
of Ryr, the results from case (a) and case (b), which com- N
pletely overlap with each other, corroborating that onlg th
external drivingR7 matters, while the details of the flow dy-
namics within the observational time window have no effect
on Eq. (1). This gives strong support for the universality of 1 10 100
Eq. (1). All these suggest that the dynamical details within i

the observational window have little effect on the windaw-t ) )
window fluctuation behaviors. FIG. 4: (Color online.) Nodal flux fluctuatios; versus the average

. . flux (f;) for complex networks of different topologies. The solid
We have also checked the fluctuation behavior of the flux, ,1ves are from theory [Eq. (1)]. Panel (a) is for the caseraRét)

through links [6], where for a linki( j), flows in both direc- s constant within one observational window but varies frin-
tions are considered and denotedfy In Fig. 3, we plotthe  dow to window, and in panel (biR(t) varies in every observational
flux fluctuationo;; as a function of the average flix;;) for ~ window. In both panels, results from BA scale-free netwoskth
the links. The flux fluctuation versus the average flux of theP(k) ~ k~2*%¢ and (k) = 4, random networks witl{k) = 6.5,
nodes §;, (f;)) for the same network are also plotted for com-and small-world networks witffk) = 4 and rewiring probability
parison. The parameters are the same as that in Fig. 2(a). We= 0-3 are shown. Panel (c) shows the results from the assorta-
see that data from links and from nodes both fall on the samfVely mixed scale-free networks witR (k) ~ k==, (k) = 4,
theoretical curve Eq. (1) with the same parameter: 0.1, and different Rearson correlation coefficienOther parameters are
. . . . . the same as Fig. 2(a). In all cases, Eq. (1) holds.

implying that there is no difference between fluctuation-phe

nomena observed with respect to links and nodes. One differ-

—10

(c)
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FIG. 5: Nodal flux fluctuatiom ;, as a function of f;) with different

routing strategies. The solid curves are from theory [E}l]. ®anel  FIG. 6: Nodal flux fluctuatiomr; as a function of f;) observed under

(a) is for the cases wher®(t) is constant within one observational observational time windoW" = 100, and200, with external driving

window but varies from window to window, and panel (b) is fft) as a rectangle wave [see Eqg. (6)]. The simulation is perfdrarea

varies in every observational window. BA scale-free network withlvV = 1000, (k) = 4. The solid curves
are from theory [Eq. (1)].

ence, which does not affect Eq. (1), is that the flux on links is
typically smaller than the flux on nodes, so the link based angj time, thuss2, = 0 and we getr = 0. Then, from Eq. (1)

node-based fluctuation-flux relation fall on different g 5
of the plot. we haves; = \/(fi) + (fi)” for T' = 100 ando; = \/(f;)

We now demonstrate that Eq. (1) holds regardless of théor T = 200. The simulations withR(¢) given by Eg. (6)
network topology and traffic routing protocol, despite theare performed on a BA scale-free network with = 1000,
known fact that network structure and routing strategy cank) = 4, and the other parameters are the same as those in
affect the traffic-flow dynamics in a significant manner [6, Fig. 2 (a). The data ofo(, (f;)) are plotted in Fig. 6, which
10, 13-25]. We consider four types of well-studied networkcoincide well with the analytical results. We see that,alidh
topologies: scale-free [12], random [26], small-world 27 « can be sensitive to the observational time window, the law
and assortatively mixed scale-free networks [28]. Theltesu governing the flux fluctuation and the average flux in Eq. (1)
for scale-free, random, and small world network topologiesapparently holds.
with R(t) constant and time-varying cases within the obser- All examples illustrated so far share one feature: nodes (or
vational window are shown in Figs. 4 (a) and (b), respedtivel links) in the network possess the same value of the ratio
Results from the assortatively mixed networks are plotted i despite that the flow fluxf) ~ (Rr) can have a wide distri-
Fig. 4(c). Using Pearson correlation coefficierto measure  bution with respect to nodes (or links). As a result, the beha
the degree correlation and a rewiring process to adjust thigrs of fluctuation versus average flux for different network
degree-correlation coefficient [28], we compare threeescal topologies and traffic routing protocols can all be collapse
free networks with the same degrees for assortative cagies wiinto a single curve as given by Eq. (1). However, when there
r = 0.102 andr = 0.305, and the disassortative network is a heterogeneous distribution of the values.@n nodes in
with » = —0.306. We see that, for all cases considered, thethe network, there can be distinct segments in the plot of fluc
behaviors of flux fluctuation versus the average flux collapseuation versus the average flux, and we anticipate thistgitua
into a single curve as predicted by Eq. (1), indicating that t to arise in real-world network systems, as we will demornstra
relation holds universally with respect to different netiwvo below.
topologies. We have also tested two different traffic ragitin
protocols: shortest path and the efficient routing [11]. As
shown in Fig. 5, computations reveal that Eq. (1) holds for
traffic flows on complex networks, regardless of the routing
protocol used.

We now turn to the observational window issue [2, 3, 5]. The real-world system we study is vehicular flow passing
We carry out simulations by setting(t) as a rectangle wave through 32 intersections in Lanzhou, the capital city of &an

IV. AREAL-WORLD EXAMPLE

of period 200 and duty cycle 0.5: province in western China. The original data were collected

every15 minutes over 2 years at various intersections. Each

R(t) = 10, ¢ € [1,100], [201, 300], [401,500], - - - data point is the total number of vehicles that pass through
0, te€ [101,200],[301,400], [501,600], - - - the intersections over the observational winddiv & 15

(6)  minutes). Since in general flux time series of traffic in so-
The observation starts from= 1, and we consider two win- cial or technological systems are driven by human activitie
dow lengthsT" = 100 and7" = 200. For the case df = 100,  [15], the vehicular traffic flow is periodic with the period of
Ry = 1000,0,1000,0,... we geta = ogr,.2/(Rr)> = 1, 24 hours. For each intersectionthe available datg; (¢) has
while for the case of" = 200, R+ = 1000 and is a constant about70000 points, from which the meafy;) and the stan-
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o; ~ (f;) occurs aboutf;) = 100. Note that there are a few
. outliers (solid circles). From Eg. (1), we can express thie ra
i o as

o real data in 00:00---24:00
1000 - theoritical curve I
O real data in 03:00---- ’
o real data in 03:00----
—— theoritical curve

V07— (i)

T )

We see that the value of the ratios for the outliers are indeed
quite different from the values associated with the curizes.

the outliers, the corresponding external driving (humdivac

ity) during this time period has relatively larger fluctumats

or, than those in other “normal” intersections.

10 100 1000 V. CONCLUSION
<f>

By considering a general setting of complex networked
FIG. 7: (Color online.) For real-world traffic data over a tyear pe-  systems, we are able to obtain the law governing the flux
riod collected from a major city in China, flux fluctuatien versus  fluctuation and the average flux in a straightforward manner,
the average fluxf;), Wher.e squares correspond to data. ina Wh°|esuggesting universal applicability of the law to complex
day (00:00-24:00), and circles correspond to the data imthely gy namical systems. Further support for the universality is
period 03:00-04:00. The curves underlying the squarestadit- - ooy by extensive computations with respect to different
cles are from Eq. (1) witlh™ = 0.2989 anda” = 0.0604, respec- s of the external driving, different network tapol
tively. The dashed lines; ~ \/{7:)) and the dotted lines; ~ (f;)) _ _ : Ing, apo
are for eye guidance. gies, and different traffic routing protocols. Dependmg on
the property of the external driving, the flux-fluctuatiomwla
exhibits a crossover between power-law scaling behaviors o
distinct exponents, which has been observed in a real-world
dard deviationr; can be calculated. The results for all inter- vehicular traffic network. Conversely, by measuring the flux
sections are plotted in Fig. 7 as the squares, where the-unddluctuation with respect to the mean flux, the values of the key
lying curve is Eq. (1) for? = 0.2989. We see that the data parametevr, /(Rr) for different nodes in the network can
agrees with the theory well. In addition, there is a strogg si be obtained, allowing abnormal nodes with relatively laaye
nature of power law relation ag ~ (f;). The reason is that smaller driving fluctuations to be detected. This can beulsef
the average fluxf:) is large. for monitoring the health of the system and for controllihg t
In order to reveal the fluctuation behavior for small averagesystem for improved performance. Fluctuation phenomena
flux values, we divide the data set from each intersectiam int play an important role in the dynamics of complex systems.
24 hourly intervals. The minimum of the traffic-flow flux oc- Uncovering universal phenomena is of fundamental interest
curs betweerd am to4 am. We then take all the data points The universal flux-fluctuation law that this work aims to
(about3000 for each intersection) in this period and calculate€stablish is one such example.
the fluctuation and average for each intersectiorhe results
are plotted in Fig. 7 as circles, where the underlying cusve i We thank Jiagi Dong for helpful discussions. This work
again Eq. (1) but fon® = 0.0604. We observe that Eq. (1) was partially supported by the NSF of China under Grants No.
characterizes the real data well for both relatively largd a 11275003, 11135001, and 10905026. Y.C.L. was supported
smalla values. A crossover from the behavigr~ /(f;) to by AFOSR under Grant No. FA9550-10-1-0083.
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