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Recent work has revealed a law governing flux fluctuation and the average flux in complex dynamical systems.
We establish the universality of this flux-fluctuation law through the following steps: (1) we derive the law in a
more general setting, showing that it depends on a single parameter characterizing the external driving, (2) we
conduct extensive numerical computations using distinct external driving, different network topologies, multiple
traffic routing strategies, and (3) we analyze data from an actual vehicle traffic system in a major city in China
to lend more credence for the universality of the flux-fluctuation law. Additional factors considered include
flux fluctuation on links, window size effect, and hidden topological structures such as nodal degree correlation.
Besides its fundamental importance in complex systems, theflux-fluctuation law can be used to infer certain
intrinsic property of the system for potential applications such as control of complex systems for improved
performance.

PACS numbers: 89.75.Hc, 89.20.Hh, 89.75.Da

I. INTRODUCTION

In a finite physical system observed and probed in finite
time, fluctuations in quantities of interest are ubiquitous. For
a complete random process such as one that follows the stan-
dard Gaussian distribution, its average and variance are pa-
rameters that are independent of each other. In this case, the
fluctuations are an intrinsic property of the random process
which does not depend on its average. However, when the pro-
cess contains a deterministic component, such as those occur-
ring on complex dynamical systems, the mean and variance of
a physical variable are typically correlated. Consider, for ex-
ample, traffic flow on a complex network. As the average flux
is increased, the fluctuations tend to intensify as well. Explo-
ration of issues such as the characterization of fluctuations in
complex dynamical systems, the precise relation between the
average and variance, and the effect of fluctuations on system
dynamics, etc., has formed a particular area of recent research
[1–9].

An issue of significant physical interest is whether there ex-
ists a universal scaling law between the fluctuation and the av-
erage flux [1–6]. In particular, the importance of fluctuations
in complex dynamical systems was recognized and a power-
law scaling relation between the fluctuation and the average
flux was reported [1], where the the power-law exponent can
take on a finite set of discrete values, such as1/2 or1 [1]. Sub-
sequently, it was shown [2] that, in contrast to the result inRef.
[1], the power-law exponent can assume continuous values in
the range[1/2, 1] [2] Quite recently, the notion of power-law
scaling between the fluctuation and the average flux was re-
futed and a non-power-law type of relation between the two
quantities was obtained by Meloniet al. [3]. Besides provid-
ing an analytical argument, the authors also presented numer-
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ical support from both model systems and a realistic commu-
nication network system for the flux-fluctuation law [3].

In this paper, we generalize the flux-fluctuation law, first
obtained in Ref. [3], and address the universality of this law as
applied to general complex networked systems. Our approach
consists of three steps. (I) We present a straightforward but
more general derivation of the relation, which does not rely
on system details. In particular, letfi denote the flux of some
kind of physical flow of nodei in a complex network, and let
〈fi〉 andσi be the average flux and the corresponding fluctu-
ation, respectively. The law between〈fi〉 andσi is then given
by

σi =

√

〈fi〉+ α2〈fi〉2, (1)

whereα ≡ σRT

2/〈RT 〉2 is a single parameter determined by
the property of the external drivingR(t) only,σRT

and〈RT 〉
are the standard deviation and the expectation value ofR(t),
respectively. We note that, in Ref. [3], the flux-fluctuationlaw
has the same form as Eq. (1), but it was derived based on a
random-diffusion picture under the assumption of uniformly
distributed external driving. In our expression, the parame-
ter is generally given by the ratio between the variance and
the mean square of the external driving. Equation (1) is thus
more general. (II) We carry out extensive numerical compu-
tation using various network models and traffic dynamics to
establish the validity of Eq. (1). (III) We demonstrate thatthe
flux-fluctuation law holds for real traffic flow in a major city
in China, and we point out the special caveats that must be
taken into account in order to observe Eq. (1) in real physical
systems. Our results corroborate with those in Ref. [3] in that
the relation between flux fluctuation and average in general is
not a power law, but these two basic quantities obey a law that
is apparently universal in complex physical systems.
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FIG. 1: A schematic illustration of obtaining fluxf observationally
with respect to external drivingRT . In (a),RT is constant andf is
random variable with Poisson distribution. In (b)RT is assumed to
change with time.

II. THEORY

We begin by demonstrating how Eq. (1) can be obtained
in a more general setting than that of Ref. [3]. Here we as-
sume that the traffic dynamics of the system is conservative,
and packets can flow from one node to another if there is a
connection between them.

We first consider the simple case of a single-node traffic-
flow model in the free-flow state without any congestion. Let
R(t) be the probability that, during a time unit, a package
passes through this node. LetT be the length of the time win-
dow of measurement of fluxfi, andσi be the deviation offi
from its average. For an arbitrary time window[t, t+T ], there
are on averageRT =

∫ t+T

t
R(τ)dτ packets passing through

this node. The quantityRT can thus be regarded as a kind of
“external driving” that represents systematic or random vari-
ations upon the system from the outside environment, which
determines the total flux of the system in a given period. For
example, in a river network, the external driving can be the
precipitation in the basin region; while for traffic flow in a
city, the external driving can be the daily rhythmic behavior of
human activities, such as commuting between one’s place of
residence and place of work. External driving should be dis-
tinguished from intrinsic fluctuations of the system. For traffic
flow on the network, such intrinsic fluctuations are caused by,
for example, randomness in the package generating process
and in the selection of paths.

The external drivingRT does not need to be uniform in
time. LetPRT

(r) be the probability ofRT = r. If RT is
constant,fi follows the standard Poisson process so that the
expectation offi is 〈f〉 = RT , as shown in Fig. 1(a). The
probability offi = n is then given by the Poisson distribution
Pπ(n,RT ) = e−RTRn

T /n!. In the more general case where
RT is time dependent, as shown in Fig. 1(b), we can regard
it as a random variable with some kind of probability distri-
butionPRT

(r), which can be quite arbitrary. In this case, the
probability offn = n can be expressed as

Pfi(n) =

∫ ∞

0

Pπ(n, r)PRT
(r)dr, (2)

which allows us to calculate the average and variance offn in

a straightforward manner. In particular, we have

〈fi〉 =

∞
∑

n=0

nPfi(n)

=

∞
∑

n=0

n

∫ ∞

0

Pπ(n, r)PRT
(r)dr

=

∫ ∞

0

[
∞
∑

n=0

nPπ(n, r)]PRT
(r)dr

=

∫ ∞

0

rPRT
(r)dr = 〈RT 〉, (3)

and,

〈fi2〉 =

∞
∑

n=0

n2Pfi(n)

=
∞
∑

n=0

n2

∫ ∞

0

Pπ(n, r)PRT
(r)dr

=

∫ ∞

0

[

∞
∑

n=0

n2Pπ(n, r)]PRT
(r)dr

=

∫ ∞

0

[r + r2]PRT
(r)dr

= 〈RT 〉+ 〈RT
2〉. (4)

We thus have,

σi
2 ≡ 〈fi2〉 − 〈fi〉2 = 〈fi〉+ 〈fi〉2

σRT

2

〈RT 〉2
, (5)

which is Eq. (1).
The above argument suggests that, in the case of an arbi-

trary packet-generation distribution, there is a single parame-
ter in the relationship betweenσi and〈fi〉, which is the ratio
α between the standard deviation and the mean ofRT . De-
pending on this ratio, the asymptotic expression of Eq. (1) has
two scaling forms. In particular, for smallα or fi, Eq. (1)
becomes

σi =
√

〈fi〉,

a power-law scaling with the exponent1/2. For largeα or fi,
Eq. (1) reduces to

σi = α〈fi〉.

The previously observed [1, 2] two forms of the power-law
scaling between the flux fluctuation and the average flux are
thus two limiting cases of Eq. (1) in terms of the ratioα.

Equation (1) is for a single node under external driving.
In a complex networked system, packets flow among various
nodes, e.g., data packets in the Internet, traffic flow in a city,
stream flows in a branched river, etc. If the system is under
a singleand spatiallyuniform external driving, the effective
driving on different nodes will be different, e.g., nodes with
a larger basin will have a larger flux. However, we expect
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FIG. 2: (Color online.) For a BA scale-free network withN = 1000 nodes and mean degree〈k〉 = 4, under the shortest-path routing protocol,
nodal flux fluctuationσi versus the average flux〈fi〉 for various distributions ofR(t) related to external driving: (a)R(t) is constant within
each observational window, (b)R(t) varies with time but has the same value ofRT as in (a). (c) overlay of the two cases under uniform
distribution ofRT , whereR1 is represented by circles in panel (a), andR2 is represented by circles in panel (b). The scattered data points are
simulation results from all nodes, where each point represents one node, and the solid curves are from the theoretical prediction Eq. (1). Other
parameters areT = 100, 〈RT 〉 = 10× T , andσRT

2/〈RT 〉
2 = 0.1.

the statistical properties of the driving forces at the level of
individual node to be the same. That is, the ratioα should
be node independent, which can be argued as follows. For a
given total number of packetsNp, when the routing protocol
is fixed, the average number of packets〈fi〉 on a nodei is
given, and because of the randomness in the selection of the
source and destination of the packets,fi is a random variable
following Poisson distribution. The parameterRT character-
izesNp. The variation inRT corresponds to the variation in
the total number of packets in the network and, hence, it is
a global parameter and it is the same for all nodes, so isα
(= σ2

RT
/〈RT 〉2). This reasoning is independent of network

topology and routing protocol, it thus is valid for different
variations in network topology and routing protocol. For ex-
ample, if the network has correlation and hidden structures,
the flux of two neighboring nodesfi andfj may be corre-
lated, however, the dependence ofσi on 〈fi〉, andσj on 〈fj〉
will both follow Eq. (1) with the same parameterα. Specifi-
cally, if we plot (〈fi〉,σi) for every node, all points should fall
on the same curve with a single value of the ratioα.

Note that the above analysis is based on two observations:
1) for a given total number of packetsNp and a given rout-
ing protocol, the average flux〈fi〉 at nodei is fixed and
〈fi〉 ∼ Np; 2) because of the randomness in selecting source
and destination for each packet,fi is a random variable fol-
lowing Poisson distribution. As indicated in Ref. [6], if we
consider the flux behavior through links in network instead
of nodes, the two observations still hold, e.g.,〈fij〉 ∼ Np

andfij is a random variable following Poisson distribution.
Therefore Eq. (1) should hold with respect to links with the
same parameterα.

Our derivation of Eq. (1), while straightforward, provides
a deeper understanding of the physical origin of the flux-

fluctuation law. It can also be seen that the dynamical details
of the external driving within the observational time window
have no effect on the form of the law. Note, however, that the
size of the window matters. Assume we have a givenR(t),
for different observational time window, the resulting exter-
nal drivingRT will be different, leading to a different values
of α = σ2

RT
/〈RT 〉2. Since Eq. (1) only depends onα, the

resulting plot (σi, 〈fi〉) will be different, but the form of the
equation will be the same. Another point is that for a larger
window, the average flux〈fi〉 will be larger. When the change
in α is small, the power-law fitting can yield exponent 0.5
for small window and exponent 1 for large observational win-
dows, as noted by Kujawskiet al. [6]. In the special case
treated in Ref. [3] where the external drivingRT is uniformly
distributed in the range[W−δ,W+δ], we haveσRT

2 = δ2/3
and〈RT 〉 = W . Equation (1) then reduces to Eq. (7) in Ref.
[3].

III. NUMERICAL TESTS OF UNIVERSALITY

To demonstrate the universality of Eq. (1), we carry out nu-
merical simulations of packet-flow dynamics [10] on a num-
ber of standard complex network models, namely, scale-free,
random, and small-world networks. In each case, at each time
step, the system generatesR packets, whose sources and des-
tinations are selected randomly. The packets start to flow in
the network until they reach their respective destinations. The
delivery capacity of the nodes is assumed to be infinity, and
packets are delivered according to a certain routing strategy.
In our simulation, we have considered two specific protocols:
shortest-path and efficient protocols, where for the latter, a
path along which the sum of degrees is minimum [11] is se-
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lected. The computations are performed for differentRT dis-
tributions (uniform, Poisson, power-law) on networks of dif-
ferent topologies. In our simulation, we fixT = 100 and
〈RT 〉 = 10 × T . For uniform distribution, the range of
RT is 〈RT 〉 × [1 −

√
0.3, 1 +

√
0.3]. For Poisson distribu-

tion, RT = 〈RT 〉 × x, wherex follows the Poisson distri-
bution with 〈x〉 = 10. In the case of power-law distribution,
RT = 〈RT 〉 × x(α − 2)/(α − 1), wherex follows the dis-
tribution function(α − 1)x−α andα = 5.3166. The above
parameters give rise toα = σRT

2/〈RT 〉2 = 0.1 for all the
three cases so that meaningful comparison can be made. In
addition, in order to show that the details of the flow dynam-
ics in the observational time window have no effect on Eq. (1),
we choose two forms ofR(t) series for every case considered:
(a) fixedR(t) in the observational window, whereR(t) is a
constant in any window but varies from window to window,
i.e., R(t) = RT /T , and (b)R(t)’s being chosen randomly
in the observational window from a uniform distribution, e.g.,
RT /T × [0, 2]. In both (a) and (b), the total driving within the
window,RT , is the same.

Equation (1) indicates that the external driving contributes
to the flux fluctuation through the ratioα, implying that for
external driving with differentRT distributions but the same
ratio, the dependence of the flux fluctuation on the average
flux should follow the same curve. Figure 2 shows simula-
tion results for differentRT distributions but the same ratio,
together with the corresponding analytical results. The simu-
lations are performed on a scale-free network with degree dis-
tributionP (k) ∼ k−2.436, N = 1000 nodes and mean degree
〈k〉 = 4, which is generated by the preferential-attachment
rule [12]. The routing protocol is one based on the shortest
path. The total observational time is106 time steps. Fig-
ure 2(a) shows the results for the case of constantR(t) in
an observational time window, and Fig. 2(b) corresponds to
the case whereR(t) varies according to uniform distribution
in the observational window while having the sameRT dis-
tribution as in Fig. 2(a). It can be seen that, insofar as the
ratioα is the same, the data points all fall on the same theo-
retical curve. Figure 2(c) shows, for the uniform distribution
of RT , the results from case (a) and case (b), which com-
pletely overlap with each other, corroborating that only the
external drivingRT matters, while the details of the flow dy-
namics within the observational time window have no effect
on Eq. (1). This gives strong support for the universality of
Eq. (1). All these suggest that the dynamical details within
the observational window have little effect on the window-to-
window fluctuation behaviors.

We have also checked the fluctuation behavior of the flux
through links [6], where for a link (i, j), flows in both direc-
tions are considered and denoted byfij . In Fig. 3, we plot the
flux fluctuationσij as a function of the average flux〈fij〉 for
the links. The flux fluctuation versus the average flux of the
nodes (σi, 〈fi〉) for the same network are also plotted for com-
parison. The parameters are the same as that in Fig. 2(a). We
see that data from links and from nodes both fall on the same
theoretical curve Eq. (1) with the same parameterα = 0.1,
implying that there is no difference between fluctuation phe-
nomena observed with respect to links and nodes. One differ-
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FIG. 3: (Color online.) Flux fluctuationσij (andσi) as a function of
the average flux〈fij〉 (and〈fi〉) for all the links (and nodes) in the
network. The parameters are the same as that in Fig. 2(a). Thesolid
curves are from theory [Eq. (1)]. The dashed line (σij ∼

√

〈fij〉)
and the dotted line (σij ∼ 〈fij〉) are for eye guidance.
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FIG. 4: (Color online.) Nodal flux fluctuationσi versus the average
flux 〈fi〉 for complex networks of different topologies. The solid
curves are from theory [Eq. (1)]. Panel (a) is for the case whereR(t)
is constant within one observational window but varies fromwin-
dow to window, and in panel (b)R(t) varies in every observational
window. In both panels, results from BA scale-free networkswith
P (k) ∼ k−2.436 and〈k〉 = 4, random networks with〈k〉 = 6.5,
and small-world networks with〈k〉 = 4 and rewiring probability
p = 0.3 are shown. Panel (c) shows the results from the assorta-
tively mixed scale-free networks withP (k) ∼ k−2.436, 〈k〉 = 4,
and different Pearson correlation coefficientr. Other parameters are
the same as Fig. 2(a). In all cases, Eq. (1) holds.
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FIG. 5: Nodal flux fluctuationσfi as a function of〈fi〉 with different
routing strategies. The solid curves are from theory [Eq. (1)]. Panel
(a) is for the cases whereR(t) is constant within one observational
window but varies from window to window, and panel (b) is forR(t)
varies in every observational window.

ence, which does not affect Eq. (1), is that the flux on links is
typically smaller than the flux on nodes, so the link based and
node-based fluctuation-flux relation fall on different regions
of the plot.

We now demonstrate that Eq. (1) holds regardless of the
network topology and traffic routing protocol, despite the
known fact that network structure and routing strategy can
affect the traffic-flow dynamics in a significant manner [6,
10, 13–25]. We consider four types of well-studied network
topologies: scale-free [12], random [26], small-world [27],
and assortatively mixed scale-free networks [28]. The results
for scale-free, random, and small world network topologies
with R(t) constant and time-varying cases within the obser-
vational window are shown in Figs. 4 (a) and (b), respectively.
Results from the assortatively mixed networks are plotted in
Fig. 4(c). Using Pearson correlation coefficientr to measure
the degree correlation and a rewiring process to adjust the
degree-correlation coefficient [28], we compare three scale-
free networks with the same degrees for assortative cases with
r = 0.102 and r = 0.305, and the disassortative network
with r = −0.306. We see that, for all cases considered, the
behaviors of flux fluctuation versus the average flux collapse
into a single curve as predicted by Eq. (1), indicating that the
relation holds universally with respect to different network
topologies. We have also tested two different traffic routing
protocols: shortest path and the efficient routing [11]. As
shown in Fig. 5, computations reveal that Eq. (1) holds for
traffic flows on complex networks, regardless of the routing
protocol used.

We now turn to the observational window issue [2, 3, 5].
We carry out simulations by settingR(t) as a rectangle wave
of period 200 and duty cycle 0.5:

R(t) =

{

10, t ∈ [1, 100], [201, 300], [401, 500], · · ·
0, t ∈ [101, 200], [301, 400], [501, 600], · · ·

(6)
The observation starts fromt = 1, and we consider two win-
dow lengths:T = 100 andT = 200. For the case ofT = 100,
RT = 1000, 0, 1000, 0, ... we getα = σRT

2/〈RT 〉2 = 1,
while for the case ofT = 200, RT = 1000 and is a constant
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FIG. 6: Nodal flux fluctuationσi as a function of〈fi〉 observed under
observational time windowT = 100, and200, with external driving
as a rectangle wave [see Eq. (6)]. The simulation is performed on a
BA scale-free network withN = 1000, 〈k〉 = 4. The solid curves
are from theory [Eq. (1)].

in time, thusσ2
RT

= 0 and we getα = 0. Then, from Eq. (1)

we haveσi =

√

〈fi〉+ 〈fi〉2 for T = 100 andσi =
√

〈fi〉
for T = 200. The simulations withR(t) given by Eq. (6)
are performed on a BA scale-free network withN = 1000,
〈k〉 = 4, and the other parameters are the same as those in
Fig. 2 (a). The data of (σi, 〈fi〉) are plotted in Fig. 6, which
coincide well with the analytical results. We see that, although
α can be sensitive to the observational time window, the law
governing the flux fluctuation and the average flux in Eq. (1)
apparently holds.

All examples illustrated so far share one feature: nodes (or
links) in the network possess the same value of the ratioα,
despite that the flow flux〈f〉 ∼ 〈RT 〉 can have a wide distri-
bution with respect to nodes (or links). As a result, the behav-
iors of fluctuation versus average flux for different network
topologies and traffic routing protocols can all be collapsed
into a single curve as given by Eq. (1). However, when there
is a heterogeneous distribution of the values ofα on nodes in
the network, there can be distinct segments in the plot of fluc-
tuation versus the average flux, and we anticipate this situation
to arise in real-world network systems, as we will demonstrate
below.

IV. A REAL-WORLD EXAMPLE

The real-world system we study is vehicular flow passing
through 32 intersections in Lanzhou, the capital city of Gansu
province in western China. The original data were collected
every15 minutes over 2 years at various intersections. Each
data point is the total number of vehicles that pass through
the intersections over the observational window (T = 15
minutes). Since in general flux time series of traffic in so-
cial or technological systems are driven by human activities
[15], the vehicular traffic flow is periodic with the period of
24 hours. For each intersectioni, the available datafi(t) has
about70000 points, from which the mean〈fi〉 and the stan-
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FIG. 7: (Color online.) For real-world traffic data over a two-year pe-
riod collected from a major city in China, flux fluctuationσi versus
the average flux〈fi〉, where squares correspond to data in a whole
day (00:00-24:00), and circles correspond to the data in thehourly
period 03:00-04:00. The curves underlying the squares and the cir-
cles are from Eq. (1) withα2 = 0.2989 andα2 = 0.0604, respec-
tively. The dashed line (σi ∼

√

〈fi〉) and the dotted line (σi ∼ 〈fi〉)
are for eye guidance.

dard deviationσi can be calculated. The results for all inter-
sections are plotted in Fig. 7 as the squares, where the under-
lying curve is Eq. (1) forα2 = 0.2989. We see that the data
agrees with the theory well. In addition, there is a strong sig-
nature of power law relation asσi ∼ 〈fi〉. The reason is that
the average flux〈fi〉 is large.

In order to reveal the fluctuation behavior for small average
flux values, we divide the data set from each intersection into
24 hourly intervals. The minimum of the traffic-flow flux oc-
curs between3 am to4 am. We then take all the data points
(about3000 for each intersection) in this period and calculate
the fluctuation and average for each intersectioni. The results
are plotted in Fig. 7 as circles, where the underlying curve is
again Eq. (1) but forα2 = 0.0604. We observe that Eq. (1)
characterizes the real data well for both relatively large and
smallα values. A crossover from the behaviorσi ∼

√

〈fi〉 to

σi ∼ 〈fi〉 occurs about〈fi〉 = 100. Note that there are a few
outliers (solid circles). From Eq. (1), we can express the ratio
α as

α =

√

σ
2
i − 〈fi〉
〈fi〉

. (7)

We see that the value of the ratios for the outliers are indeed
quite different from the values associated with the curves.For
the outliers, the corresponding external driving (human activ-
ity) during this time period has relatively larger fluctuations
σRT

than those in other “normal” intersections.
V. CONCLUSION

By considering a general setting of complex networked
systems, we are able to obtain the law governing the flux
fluctuation and the average flux in a straightforward manner,
suggesting universal applicability of the law to complex
dynamical systems. Further support for the universality is
gained by extensive computations with respect to different
behaviors of the external driving, different network topolo-
gies, and different traffic routing protocols. Depending on
the property of the external driving, the flux-fluctuation law
exhibits a crossover between power-law scaling behaviors of
distinct exponents, which has been observed in a real-world
vehicular traffic network. Conversely, by measuring the flux
fluctuation with respect to the mean flux, the values of the key
parameterσRT

/〈RT 〉 for different nodes in the network can
be obtained, allowing abnormal nodes with relatively larger or
smaller driving fluctuations to be detected. This can be useful
for monitoring the health of the system and for controlling the
system for improved performance. Fluctuation phenomena
play an important role in the dynamics of complex systems.
Uncovering universal phenomena is of fundamental interest.
The universal flux-fluctuation law that this work aims to
establish is one such example.
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