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We investigate a nonequilibrium coarsening dynamics of a one-dimensional Ising spin system with
chirality. Only spins at domain boundaries are updated so that the model undergoes a coarsening
to either of equivalent absorbing states with all spins + or −. Chirality is imposed by assigning
different transition rates to events at down (+−) kinks and up (−+) kinks. The coarsening is
characterized by power-law scalings of the kink density ρ ∼ t−δ and the characteristic length scale
ξ ∼ t1/z with time t. Surprisingly the scaling exponents vary continuously with model parameters,
which is not the case for systems without chirality. These results are obtained from extensive Monte
Carlo simulations and spectral analyses of the time evolution operator. Our study uncovers the
novel universality class of the coarsening dynamics with chirality.
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Coarsening takes place in various systems such as mag-
netic systems, binary alloys, and social systems with
opinion dynamics. When a system is quenched from a
high-temperature disordered phase to a low-temperature
ordered phase, a typical size of domains grows in time
following a power law

ξ ∼ t1/z , (1)

with dynamic exponent z. It is known that coarsening
systems are classified into a few universality classes de-
pending on spatial dimensionality, order parameter sym-
metry, conservation in dynamics, and so on [1].
The Ising model is one of the best studied coarsen-

ing systems. It is symmetric under the global spin in-
version (Z2 symmetry) and has a scalar order param-
eter. Under the single-spin-flip Glauber dynamics [2]
that does not conserve the order parameter, the coars-
ening dynamics is characterized by z = 2. On the other
hand, the dynamic exponent is given by z = 3 under the
spin-exchange Kawasaki dynamics [3] conserving the or-
der parameter. Systems with nonscalar order parameter
constitute distinct universality classes [1].
A coarsening process is rather simple in systems with

discrete symmetry and nonconserving dynamics in one
dimension. Consider a one-dimensional (1D) Ising spin
chain with the Glauber dynamics at zero temperature,
or equivalently the voter model [4]. In this model, only
spins at domain boundaries can flip so that domain walls
diffuse and annihilate in pairs. The diffusive nature sug-
gests that the dynamic exponent is given by z = 2 and
that the domain wall density decays algebraically as

ρ ∼ t−δ (2)

with an exponent δ = 1/2. These scaling laws are verified
by the exact solution [2, 5, 6].
The power-law scaling with z = 2 and δ = 1/2 seems

to be robust in one dimension. The q-state Potts model
with the zero-temperature Glauber dynamics exhibits the
same scaling behavior [5, 7–9]. It is also observed in

nonequilibrium systems. Consider the voter model with
an additional exchange process of neighboring spins [10].
It is equivalent to the branching annihilating random
walk (BAW) model [11, 12], where domain walls diffuse,
annihilate in pairs, and branch two offsprings. Despite
the branching, the model displays the coarsening with
the same exponents [12, 13]. The voter model with a ki-
netic constraint also displays the same scaling behavior
with a logarithmic correction [14].

Most studies on the coarsening have focused on the
role of order parameter symmetry [1]. On the other
hand, some dynamical systems are characterized by cou-
pled symmetry and little is known about the coarsening
dynamics in such systems. In this Letter, we investi-
gate the coarsening dynamics of a 1D Ising spin system
which is invariant under the simultaneous inversion of
spin and space. Remarkably, the model with the coupled
symmetry constitutes a novel universality class that is
characterized by continuously varying exponents.

Initial motivation of this work was to study a one-
dimensional version of the flocking model introduced by
Vicsek et al [15] (Vicsek model, or VM for short). In the
VM, the motion of each particle i at position ri is de-
scribed by a velocity vector vi of a constant speed. Each
time step, the direction of vi is updated to the average
direction of particles within a fixed distance perturbed
by a random noise. The system coarsens into a flocking
phase when the noise strength is small [15, 16]. Note that
spatial isotropy is broken spontaneously due to the mo-
tion of particles. Consequently, the model is chiral, i.e.,
symmetric under the simultaneous rotation/inversion of
the velocity and the space.

In a 1D chain, the velocity of a self-propelled particle
is restricted to be one of +1 or −1, once the speed of each
particle remains constant just like the VM. Particles are
assumed to see only along the direction it moves and the
range of sight is limited to be 1. This one dimensional
system may be realized by the motion of myopic ants
along a pheromone trail [17, 18]. If a right-moving ant
meets a left-moving one, both ants either align to the
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FIG. 1. Plots of ρ(t) in (a) and ξ(t) in (b). Dashed curves
are for u = 0.0 while solid curves are for u = 0.1, 0.2, · · · , 0.9
from bottom to top.

same direction or just pass each other.
This model can be represented by an Ising spin system

{σ = (σ1, · · · , σN )} with velocity σi = ±1 in a 1D lattice
of N sites under periodic boundary conditions. Here we
assume that the density of particles is 1, but the gener-
alization to systems with smaller density is straightfor-
ward. In terms of the Ising spins, the VM-like interaction
in one dimension can be represented by the following up-
date rule

+− u−→ −+, −+
ū−→ +−,

+− v/2−→
{

++,

−−,
−+

v̄/2−→
{

++,

−−,
(3)

where parameters over the arrows denote the transition
rates of corresponding events. For theoretical reason, we
also introduced the interaction of a local configuration
−+. Without losing generality, we will set u+ v = 1 and
ū+ v̄ ≤ 1.
Our model is characterized by the chirality: The tran-

sition rates for events associated with down kinks (+−
pairs) and up kinks (−+ pairs) are different. This chi-
rality breaks the Z2 symmetry, but leaves system invari-
ant under the simultaneous inversion of spin and space,
σi → −σ−i. Emphasizing the role of the chirality, the
model will be referred to as the nonequilibrium chiral
Ising model (NCIM). The chirality is irrelevant for equi-
librium Ising systems [19]. However, it turns out to result
in an interesting feature in nonequilibrium cases.
The NCIM reduces to the voter model when v = v̄

and u = ū = 0, and the asymmetric simple exclusion
process (ASEP) [4] when v = v̄ = 0. A mixture of
them was studied in Refs. [20, 21] and was found to dis-
play complicated scaling behaviors. When u = ū and
v = v̄ (Z2 symmetric case without chirality), the model
becomes equivalent to the BAW model [12]. It is solvable
exactly [13] and the kink density decays with δ = 1/2 for
all u < 1. Note that the NCIM is different from the so-
called directed Ising model in which kinks are biased to
a preferred direction [22, 23].
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FIG. 2. Plots of effective exponents δeff for (a) u = 0, (b) 0.3,
(c) 0.6, and (d) 0.9.

First, we study the maximum chirality case with ū =
v̄ = 0. For convenience, we refer to this case as the
maximum chirality model (MCM).
The system is prepared in an anti-ferromagnetic state

(· · · + − + − · · · ) initially. Then, we measure the total
kink density and average it over NS samples to obtain
ρ(t) for t ≤ 107. Figure 1 (a) shows the numerical data.
The system sizes are N ≥ 221 and the number of runs is
NS = 5000 for all u. The system sizes are large enough
that the relaxation time scales are much larger than the
simulation time. Hence, the data are free from a finite
size effect. Just like the BAW model, we observed ρ(t)
decays in a power-law fashion ρ(t) ∼ t−δ for all u < 1.
Interestingly, the scaling exponent δ seems to vary with
u.
In order to estimate the scaling exponent δ precisely,

we investigate the behavior of an effective exponent de-
fined as

δeff(t) = − log [ρ(t)/ρ(t/b)] / log b (4)

with a constant b = 10. A power-law scaling implies that
the effective exponent is constant and equal to the scal-
ing exponent. However, due to a correction-to-scaling
behavior such as e.g. ρ(t) ≃ t−δ(a + ct−ζ) with a
leading correction-to-scaling exponent ζ, it behaves as
δeff(t) ≃ δ + a1t

−ζ in the long time limit. So when we
draw δeff against t−ζ with a correct value of ζ, δeff(t)
should approach to δ with a finite slope as t → ∞.
Figure 2 presents the behavior of the effective expo-

nents for u = 0, 0.3, 0.6, and 0.9. The correction-to-
scaling exponent ζ are roughly estimated from a fitting
of δeff(t) to the from δ+a1t

−ζ with three fitting parame-
ters δ, a1, and ζ. This procedure can be error-prone and
the accuracy of the estimated ζ may be questionable.
For example, the fitting yields slightly different numer-
ical values of ζ depending on the fitting interval. This
contributes to a systematic error in δ. However, such
a systematic error is smaller than a statistical error in
δeff(t) in the large t region in all values of u. From the
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TABLE I. Numerical values of δ and z of the MCM for var-
ious values of u. For z, we present the results from the seed
simulations [z (seed)] and from the eigenspectrum analysis
[z (spectrum)]. The numbers in parentheses indicate errors of
the last digits.

u δ z (seed) z (spectrum)

0 0.5000(1) 1.998(8) 2.0000(6)

0.1 0.4678(2) 1.877(9) 1.8789(5)

0.2 0.4346(3) 1.769(4) 1.7683(6)

0.3 0.4001(2) 1.667(2) 1.6666(6)

0.4 0.3639(5) 1.570(6) 1.5716(8)

0.5 0.3254(5) 1.483(4) 1.4818(7)

0.6 0.2837(4) 1.397(4) 1.3958(4)

0.7 0.2376(8) 1.313(6) 1.3117(8)

0.8 0.1850(8) 1.228(3) 1.227(2)

0.9 0.1195(3) 1.139(6) 1.136(5)

correction-to-scaling analysis, we can estimate the scal-
ing exponent δ precisely and reliably. At other values of
u, we also performed the same analysis. Table I sum-
marizes thus-obtained numerical results of δ for various
u’s and Fig. 3 illustrates δ against u. The error bars in
Table I account for the statistical uncertainty.
The intriguing feature of the MCM is that the expo-

nent δ varies continuously with u beyond the error bars.
Furthermore, as u approaches 1, δ seems to show a non-
trivial power-law behavior. Indeed, if we fit δ for the
region u ≥ 0.6 using δ ≈ a2(1 − u)χ, with two fitting
parameters a2 and χ, we found that it fits the data quite
well with a2 ≈ 0.5 and χ ≈ 0.62± 0.03; see Fig. 3. This
singular behavior of δ at u = 1 may be attributed to
a crossover from the mean-field voter dynamics to the
MCM.
When u is very close to 1 but not exactly 1, the voter
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a2(1− u)χ with a2 ≈ 0.5 and χ ≈ 0.62 (lines). Inset: Log-log
plot of δ against 1− u together with the fitting function.
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FIG. 4. Plots of effective exponents zeff for (a) u = 0, (b) 0.3,
(c) 0.6, and (d) 0.9.

dynamics which occurs with rate v = 1−u happens after
many attempts of the ASEP dynamics. Since the sta-
tionary state of the ASEP is totally uncorrelated [4], the
voter dynamics can happen only after all spins are dis-
tributed almost randomly. Hence, if we rescale the time
as τ = (1 − u)t and take a limit u → 1 with τ kept fi-
nite, the MCM should be the same as a mean-field voter
model on a complete graph. Since coarsening does not
occur on a complete graph of infinite size, δ should be
zero in the above mentioned limit. Thus, there should
be a crossover from the mean-field voter dynamics to the
1D MCM at u = 1.
We have also performed independent Monte Carlo sim-

ulations starting with a single down kink, called a seed,
in the middle of an infinite lattice (· · ·+++−−− · · · ),
which are generally referred to as seed simulations. We
have measured the particle spreading distance ξ(t) to ob-
tain the dynamic exponent z. When u 6= 0, the seed
branches other kinks spreading through the space. The
spreading distance ξ(t) is given by the distance between
the rightmost kink and the leftmost kink. When u = 0,
the seed diffuses only. So, ξ(t) is taken as the distance of
the seed from the starting position.
The numerical data are presented in Fig. 1(b). The

number of samples for the data are NS = 106 at u ≤ 0.3,
NS = 105 at u = 0.4, 0.5, 0.6, NS = 104 at u = 0.7, 0.8,
and NS = 103 at u = 0.9. We find that the spreading
length scaling follows the power-law scaling ξ(t) ∼ t1/z

with the exponent z varying with u. In order to obtain
the precise estimate of z, we followed the similar effective
exponent analysis as done for δ. The effective exponent
for the dynamic exponent is defined as

zeff(t) = {log[ξ(t)/ξ(t/b)]/ log b}−1
(5)

with b = 10. Due to a correction-to-scaling behavior,
zeff(t) approaches the asymptotic scaling exponent value

with a power-law correction as zeff(t) = z + a′t−ζ′

with
constants a′ and ζ′. Figure 4 presents the correction-to-
scaling analysis result for the dynamic exponent at u = 0,
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FIG. 5. (Color online) Effective exponents for the dynamic
exponent z obtained from the spectrum analysis and their
extrapolated estimates. Lines are guides to the eyes.

0.3, 0.6, and 0.9. As in the previous case, the statistical
uncertainty dominates the systematic error in z. The
result is summarized in Table I.
We substantiate the Monte Carlo results by study-

ing the spectrum of the time evolution operator of the
MCM. In general, a master equation can be mapped to an
imaginary time Schrödinger equation with Hamiltonian

H whose eigenvalues contain most of relevant information
of the system. For instance, the directed percolation sys-
tem has been studied successfully with the eigenspectrum
analysis [24–26].
For the MCM, the Hamiltonian takes the form

H =
1

4

N
∑

i=1

(1 + σ̂z
i )(1− σ̂z

i+1)− u

N
∑

i=1

σ̂−

i σ̂+
i+1

− (1− u)

4

N
∑

i=1

{

σ̂−

i (1− σ̂z
i+1) + (1 + σ̂z

i )σ̂
+
i+1

}

,(6)

where σ̂i is the Pauli spin operator acting on a spin at site
i. We label eigenvalues of H as En with n = 1, · · · , 2N
and call En the energy of the n-th level. Since H is not
Hermitian, En may have a complex value. The eigenval-
ues are sorted in the ascending order of ℜ[En], the real
part of En. There are two trivial levels with E1 = E2 = 0
corresponding to the two absorbing states with all spins
having the same sign. Other low-lying energy levels with
n > 2 define the relaxation time as τn = 1/(ℜ[En]).
We have diagonalized numerically the Hamiltonian

up to N = 20 to obtain the longest relaxation time
τ3. Since τ3 ∼ Nz, the dynamic exponent z is esti-
mated by extrapolating an effective exponent zeff(N) ≡
ln[τ3(N)/τ3(N − 2)]/ ln[N/(N − 2)]. The effective ex-
ponents are plotted in Fig. 5. The effective exponents
are extrapolated using the Bulirsch-Stoer (BST) algo-
rithm with an assumption of a power-law correction as
zeff (N) = z + aN−ω + · · · [27, 28]. The correction-
to-scaling exponent ω is not known a priori. Hence,
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we apply the BST algorithm with several values of ω =
0.5, 1.0, · · · , 3.0. The numerical values for z are obtained
as the average of them. Error bars are estimated as the
maximum deviation between them. They are plotted in
Fig. 5 and summarized in Table I. Both results for z from
the spectrum analysis and from the seed simulation are in
perfect agreement with each other and vary continuously
with u.
We have shown that the coarsening dynamics of the

MCM is characterized by continuously varying critical
exponents. Note that chirality lies both in the ASEP
events (u 6= ū) and the voter-model events (v 6= v̄). In
order to investigate which one is the essential ingredient,
we studied two more cases: One is the case with u = ū
and v 6= v̄ = 0 which will be called the symmetric exclu-
sion and chiral voter (SECV) model and the other is the
case with u 6= ū = 0 and v = v̄ to be called the chiral ex-
clusion and symmetric voter (CESV) model. The CESV
model is a particular limiting case of the model studied
in Ref. [20, 21]. Remind that v is always set to 1− u.
The analyses of δeff for the SECV with u = 0.1, 0.2, 0.5,

and 0.8 are summarized in Fig. 6. It seems that δeff(t) for
all u approaches 1/2 with logarithmic corrections. Notice
that if there exists a logarithmic correction as

ρ(t) ∼ (ln t+ C)κ/tδ (7)

with a constant C, the effective exponent defined in
Eq. (4) should behave as δeff(t) ≈ δ−κ/ln t in the asymp-
totic regime. Thus, if we plot δeff(t) as a function of
1/ ln t, the effective exponent should intersect the y-axis
with slope −κ. This phenomenon is quite pronounced
for the cases of u = 0.5 and 0.8 and the slope seems
to be around 0.5. Indeed, if ρ(t)

√
t/(ln t)0.53 is plotted

against t on a semi-logarithmic scale (see Inset of Fig. 6
for the case of u = 0.8), a flat region is observable in
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the long time limit for more than two log-decades. Al-
though the accurate value of κ is hard to estimate, we
can conclude that there exist a systematic logarithmic
correction as shown in Eq. (7) with the leading scaling
exponent δ = 1/2 unchanged in the SECV model.

A logarithmic correction in a 1D coarsening has been
reported in a different model [14] that corresponds to
the voter model with a weak kinetic constraint. In
that model, the kink density decays faster than 1/

√
t as

1/(
√
t ln t), but in our case it decays slower than 1/

√
t.

Qualitatively, this slowing down should be attributed to
the presence of branching dynamics which increases the
number of kinks. However, a quantitative analysis re-
quires further investigation, which is beyond the scope
of this Letter. For our purpose, it is enough to conclude
that the continuously varying exponents are not due to
the chiral voter dynamics.

The CESV model shows a more intriguing feature.
We present the effective exponent data for the density
decay in Fig. 7. For u = 0.2 [Fig. 7(a)], δeff seems
to approach 0.5 with negligible logarithmic correction.
For u = 0.5 [Fig. 7(b)], we cannot make a firm con-
clusion whether δ < 0.5 or δ = 0.5 due to strong
correction-to-scaling behavior. Quite interestingly, when
u > 0.5 [Fig. 7(c) and (d)], δ deviates from 0.5 signifi-
cantly even under the assumption of a logarithmic cor-

rection. So we conclude that the CESV has continuously
varying exponents with possible logarithmic corrections
when u > 0.5. This study shows that the chirality in the
spin exchange is responsible for the continuously varying
exponents. Nevertheless, it remains open why and when
there appears a logarithmic correction in the coarsening
process.
To summarize, we have studied the one-dimensional

coarsening dynamics of nonequilibrium Ising spin sys-
tems with chirality. Although chirality is irrelevant in
equilibrium Ising systems, it turns out that the chirality
can lead to continuously varying scaling exponents in the
nonequilibrium chiral Ising model. In particular, it turns
out that the chirality in spin exchange plays a crucial
role.
It is rare to observe continuously varying exponents

from systems without quenched disorder. The q-state
Potts model with zero-temperature Glauber dynamics
was studied in Refs. [8, 9]. It was found that the crit-
ical exponent describing the power-law decay of the per-
sistent probability varies continuously with q. Neverthe-
less, the coarsening dynamics is still pure diffusive and
characterized by z = 2 and δ = 1/2 at all values of q.
We notice that continuously varying exponents were re-
ported in a 1D sandpile model without dissipation [29]
and that there is actually a parallelism between this sand-
pile model and the MCM. This connection will be dis-
cussed elsewhere [30].
Some of Ising spin systems are exactly solvable in

one dimension [2, 5, 8, 25], for equations governing the
time evolution of correlation functions are closed. In the
presence of the chirality, however, the equations are not
closed, which makes the exact solution for the NCIM not
available in general. Our numerical finding of the uni-
versality class with continuously varying exponents can
be established more firmly if one find a minimal con-
tinuum equation obeying the proper symmetry property.
We leave it as a future work [30].
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